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Abstract

Domain adaptation has been widely explored by trans-

ferring the knowledge from a label-rich source domain to a

related but unlabeled target domain. Most existing domain

adaptation algorithms attend to adapting feature represen-

tations across two domains with the guidance of a shared

source-supervised classifier. However, such classifier limits

the generalization ability towards unlabeled target recog-

nition. To remedy this, we propose a Transferable Seman-

tic Augmentation (TSA) approach to enhance the classifier

adaptation ability through implicitly generating source fea-

tures towards target semantics. Specifically, TSA is inspired

by the fact that deep feature transformation towards a cer-

tain direction can be represented as meaningful semantic

altering in the original input space. Thus, source features

can be augmented to effectively equip with target semantics

to train a more transferable classifier. To achieve this, for

each class, we first use the inter-domain feature mean differ-

ence and target intra-class feature covariance to construct a

multivariate normal distribution. Then we augment source

features with random directions sampled from the distribu-

tion class-wisely. Interestingly, such source augmentation

is implicitly implemented through an expected transferable

cross-entropy loss over the augmented source distribution,

where an upper bound of the expected loss is derived and

minimized, introducing negligible computational overhead.

As a light-weight and general technique, TSA can be easily

plugged into various domain adaptation methods, bringing

remarkable improvements. Comprehensive experiments on

cross-domain benchmarks validate the efficacy of TSA.

1. Introduction

Deep learning has achieved remarkable success on var-

ious vision tasks, including image recognition [16, 12, 14]

and semantic segmentation [55, 49]. However, the recent

success of deep learning methods heavily relies on massive
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Figure 1. Overview of TSA, which relaxes the assumption that

source and target domains share the same classifier. For both tradi-

tional deep learning and DA methods, TSA could augment source

features towards target semantics to successfully adapt the final

classifier from source domain to target domain.

labeled data. In practice, collecting abundant annotated data

is expensive [30, 6, 54, 33]. Meanwhile, each domain has

its own specific exploratory factors, namely semantics, e.g.,

the illuminations, colors, visual angles or backgrounds, re-

sulting in the domain shift [28]. Hence, traditional deep

models trained on a large dataset usually show poor gener-

alizations on a new domain due to the domain shift issues

[24, 10]. To remedy this, one appealing alternative is do-

main adaptation (DA), which strives to leverage the knowl-

edge of a label-rich source domain to assist the learning in

a related but unlabeled target domain [24, 10].

Prior deep DA methods can be roughly categorized as

1) statistical discrepancy minimization based methods [27,

20, 51], which leverage statistical regularizations to explic-

itly mitigate the cross-domain distribution discrepancy; and

2) adversarial learning based methods [21, 25, 10], which

strive to learn domain-invariant representations across two

domains via adversarial manners.

Indeed, these DA methods have admittedly yielded

promising results, but most of them assume a shared classi-

fier with domain-invariant representations derived. Rare at-

tention has been paid to explicitly enhancing the adaptation

ability of the source-supervised classifier, which is also fun-

damental to DA problems as shown in Fig. 1. To achieve

classifier adaptation, Long et al. [26] introduce classifier

residual learning to explicitly model the classifier differ-

ence across domains. SymNets [52] constructs three classi-

fiers to facilitate joint distribution alignment. However, they
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all rely on designing complex network architectures, which

may suffer from high computational overhead and hinder

the capability and versatility of these methods.

To alleviate aforementioned issues, we propose a Trans-

ferable Semantic Augmentation (TSA) approach to implic-

itly augment source features with target semantic guidance

in the deep feature space to facilitate classifier adaptation.

Specifically, TSA is motivated by the intriguing property

that deep networks excel at disentangling the underlying

factors of data variation and linearizing the deep features

[41, 45]. There exist many different semantic transforma-

tion directions in the deep feature space, and the semantic

transformation of one sample can be enforced by translating

its deep feature along a certain direction, such as the direc-

tion of changing backgrounds. However, it is nontrivial to

explicitly discover all kinds of semantic transformation di-

rections. In addition, not all directions are meaningful.

Hence, to effectively explore meaningful transformation

directions, we first estimate the inter-domain feature mean

difference for each class as the class-wise overall semantic

(i.e., an integration of various semantics in one class) bias

in the deep feature space. Besides, since the specific se-

mantic information (e.g., different backgrounds, shapes or

visual angles) of source and target are different, TSA further

estimates target intra-class feature covariance to effectively

capture the intra-class semantic variations of target domain.

To obtain the accurate estimation, we introduce a memory

module to class-wisely calculate feature mean and covari-

ance with pseudo-labeled target samples. At last, we sample

semantic transformation directions for source augmentation

from a multivariate normal distribution, with the estimated

feature mean difference as mean and the target intra-class

covariance. In this way, the overall semantic difference be-

tween domains and the target intra-class semantic variations

can guide source augmented features towards target.

Furthermore, to avoid explicitly generating augmented

features and improve the efficiency of TSA, we develop

an expected transferable cross-entropy loss over the aug-

mented source distribution with an upper bound derived.

By minimizing the upper bound of the expected loss, the

source semantic augmentation can be performed and the ex-

tra computational overhead is negligible. Then, the trained

source classifier can be successfully adapted to target.

Contributions of this work are summarized as follows:

• We propose a novel Transferable Semantic Augmen-

tation (TSA) method for classifier adaptation, which

enables source feature augmentation towards target in

an implicit manner. Notably, TSA introduces no extra

network modules over the backbone network, making

it simple to implement and computationally efficient.

• We develop a novel expected transferable cross-

entropy loss over the augmented source distribution

for DA, which greatly enhances the classifier adapta-

tion ability. Moreover, as a light-weight and general

technique, TSA can be easily plugged into various DA

methods to significantly boost their performances.

• Extensive experiments on several cross-domain bench-

marks, including Office-Home, Office-31, VisDA-

2017 and digits demonstrate that TSA can consistently

yield significant performance improvements.

2. Related Work

2.1. Feature Adaptation

Existing domain-invariant feature learning methods

mainly fall into two categories. One is the discrepancy-

based works [24, 27, 20, 51, 28, 31, 7, 19], which con-

centrates on mitigating the domain difference by minimiz-

ing some statistical discrepancy metrics. To name a few,

DAN [24] minimizes maximum mean discrepancy (MMD)

on task-specific layers to close the domain gap. Further,

JAN in [27] introduces a joint MMD to enforce joint distri-

bution alignment between domains. [51] proposes margin

disparity discrepancy (MDD) to facilitate precise alignment

with theoretical guarantees. Based on the optimal transport

(OT) distance [53], [19] proposes an enhanced transport dis-

tance (ETD) to learn the optimal transport plan.

Another category is adversarial-based works [39, 44, 10,

25, 21], which learns domain-invariant features in adversar-

ial manners. For example, DANN [10] introduces a domain

discriminator to force the features of two domains indistin-

guishable. Following DANN, CDAN [25] integrates classi-

fication information into the domain discriminator to alle-

viate class-wise mismatching. While MCD [39] employs a

new adversarial paradigm where the adversarial manner oc-

curs between the feature extractor and classifiers rather than

the feature extractor and the domain discriminator.

In contrast, instead of learning domain-invariant fea-

tures, TSA harnesses the augmented source features to ame-

liorate the generalization ability of source classifier, which

is also crucial for tackling DA problems.

2.2. Classifier Adaptation

On par with feature adaptation methods, classifier adap-

tation is also an indispensable part of DA, since the assump-

tion that source and target domains can share one identical

classifier is rather restrictive in practical scenarios.

A branch of classifier adaptation methods augments

training samples towards target style to adapt the classi-

fier [5, 2, 13, 43, 22, 23, 8]. To be specific, Hoffman

et al. [13] exploit pixel cycle-consistency to make trans-

formed images visually close to target domain images and

use transformed samples to train the target model. UNIT

[23] exploits image-to-image translation framework based

11517



Feature Extractor
ℒ!"#(𝛉𝐅,𝐖, 𝒃)

Source Domain

Deep Feature Space

v

Target Domain

v

Class-wise Overall 
Semantic Guidance

Semantic
Augmentation

Augmented Images
(Not Shown Explicitly)

Reverse Mapping Algorithm

C
la

s
s
if
ie

r

Figure 2. Illustration of TSA, where blue and orange dots represent source and target data respectively. For each class, we exploit the inter-

domain feature mean difference which is denoted as the green dashed arrow and target intra-class covariance to augment source features

towards target style. Instead of explicitly generating augmented features, we achieve the source augmentation by minimizing the loss

LTSA, which adapts the classifier from source to target. Moreover, we provide the visualization of augmented features using the reverse

mapping algorithm in the supplement. The augmented source data with different shapes, colors and backgrounds manifest that TSA can

perform meaningful semantic transformations.

on coupled GANs to reconstruct images. TAT [22] gener-

ates augmented features with reversed gradients to adver-

sarially train the classifier. [8] leverages the gradually van-

ishing bridge (GVB) mechanism to generate intermediate

features to bridge two domains.

Apart from the generative methods, some methods do

not require to explicitly generate samples [26, 18, 52]. For

instance, RTN [26] plugs a residual block right after the

source classifier to model and mitigate the classifier pertur-

bation. SymNets [52] achieves joint distribution alignment

by constructing three different task-specific classifiers.

By contrast, TSA does not need to delicately design aux-

iliary network modules or explicitly generate training sam-

ples. TSA implicitly generates augmented source features

with target semantics (e.g., object shapes, colors or back-

grounds) to adapt the classifier only by minimizing a robust

transferable cross-entropy loss, which is extremely efficient.

3. Transferable Semantic Augmentation

3.1. Motivation and Preliminaries

This work delves into the classifier adaptation for DA

problems, which has not yet been fully explored. We

propose a Transferable Semantic Augmentation (TSA) ap-

proach to effectively augment source features towards tar-

get semantics (e.g., backgrounds, view angles or colors) by

generating a very large (infinite) number of meaningful se-

mantic transformation directions. The augmented source

features will facilitate adapting the classifier from source to

target successfully. TSA is inspired by the fact that deep

neural networks surprisingly excel at linearizing features of

input data, making it linearly separable [41, 45]. There-

fore, the relative positions in deep feature space can repre-

sent certain semantic transformations in the original input

space. Based on this observation, MCF [9] and ISDA [45]

have performed semantic augmentation for linear models

and deep networks, respectively. However, neither of them

considers the crucial domain shift issue in the real world.

To tackle the cross-domain semantic mismatch prob-

lems, we need to perform meaningful and target-wise se-

mantic augmentations for source data. In other words, the

semantic augmentation directions should effectively guide

source features to be target style, such as the shape, color,

visual angle or background of target data.

Formally, we denote the source and target domains in

DA as S = {(xsi, ysi)}
ns

i=1 with ns labeled samples and

T = {xtj}
nt

j=1 with nt unlabeled samples, respectively,

where ysi ∈ {1, 2, ..., C} is the label of xsi. Note that,

source and target data are sampled from different distri-

butions, such that certain discrepancy may exist between

their corresponding ideal classifiers. Our goal is to adapt

the source-supervised classifier to target by augmenting the

source feature representation fs = F (xs,ΘF ) ∈ R
K ,

where K is the number of feature embedding dimensions

and F (·) is the feature extractor parameterized by ΘF .

3.2. Cross­Domain Semantic Augmentation

As aforementioned, certain translating directions in deep

feature space represent meaningful semantic transforma-

tions in the original input space. Thus, we attempt to aug-

ment source data towards target in deep feature space. How-

ever, manually searching for such cross-domain transforma-

tion directions is nontrivial. To address the issue, for each

class, we propose to sample random vectors from a multi-

variate normal distribution with inter-domain feature mean

difference as mean and class-conditional target covariance

as the covariance matrix. By doing so, rich meaningful

cross-domain transformation directions can be discovered.

Then, we design an expected transferable cross-entropy loss

over the augmented feature distribution to effectively and

efficiently adapt the classifier from source to target domain.

3.2.1 Class-wise Overall Semantic Guidance.

Due to the domain shift, for the same class, the means of

source and target samples are different in the deep feature

space. Such difference reflects the bias of the overall se-
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mantics, an integration of various semantics in one class.

To conduct useful transformations, we force the mean align-

ment between augmented source features and target features

class-wisely, which effectively bridges the overall seman-

tic bias across two domains. Specifically, for each class c,
let µc

s and µc
t denote the estimated mean feature vector for

source and target domains, respectively. Here, pseudo la-

bels for target data are employed as y′tj = argmaxc P
c
tj to

address the label scarce problem in target domain, where

P tj is the softmax outputs of target sample xtj . Then, the

inter-domain mean difference ∆µc = µc
t − µc

s can be ex-

ploited to mitigate such overall semantic bias.

3.2.2 Semantic Transformation Direction Learning.

To facilitate meaningful cross-domain semantic augmenta-

tions, all possible feature transformation directions towards

target style need to be discovered. However, only utilizing

the inter-domain mean difference is infeasible to fully ex-

plore target semantic variations.

Therefore, to address this problem, we further exploit

the intra-class covariance of target features to capture tar-

get semantic variations. Specifically, we randomly sample

semantic transformation directions from a multivariate dis-

tribution N(∆µc,Σc
t) for each class c, and Σ

c
t is the corre-

sponding target intra-class covariance, which contains rich

target semantic variations. Here, we develop the normal dis-

tribution class-wisely, since the semantic knowledge in each

class may differ from each other vastly. Notably, ∆µc at-

tends to mitigating the overall semantic bias for class c, and

Σ
c
t focuses on providing abundant target intra-class seman-

tic variation knowledge. By adding the sampled transfor-

mation vectors, the augmented source features will be close

to target domain and vary along target semantic variations.

3.2.3 Memory Module.

To efficiently implement TSA in an end-to-end training

manner, for each class c, we propose to estimate ∆µc and

Σ
c
t according to a memory module that stores all the latest

features. By contrast, ISDA [45] proposes an iterative man-

ner by accumulating statistics of batches from first to cur-

rent batch. However, the weight distribution of network in

early stage will vastly differ from that in later stage. Thus,

due to its accumulation property, such iterative manner may

encounter the issue that out-of-date features will bias the

estimation of mean and covariance. To avoid this, we use

a memory module to cache all features of two domains and

update in each batch. By doing so, we can discard those

out-of-date features and replace them with the latest ones at

the negligible cost of memory. Formally, in each iteration i,
we will update a batch of features and corresponding labels

in memory module M:

f
M

j ← f
(i)
j , y

M

j ← y
′(i)
j , j ∈ B

(i)
, (1)

where j is the sample index within a batch B(i) and f
M

j /yMj is

the feature/label stored in memory module M. Comparisons

of the two manners will be shown in the experiment.

3.2.4 Sampling Strategy.

In the early training stage, the predictions of target sam-

ples are inevitably not that accurate. Thus, the estimation of

target mean and covariance may not be quite informative as

expected. To alleviate this issue, for each class c, we sample

semantic transformation directions from N(λ∆µc, λΣc
t),

where λ is a positive parameter to control the augmenta-

tion strength. Since the target predictions will become more

and more accurate as the training progresses, here we set

λ = (t/T ) × λ0, where t and T are the current and max-

imum iterations respectively, and λ0 is a hyper-parameter.

Consequently, as the training goes on, λ will gradually grow

from 0 to λ0. And this sampling strategy will reduce the im-

pact of less accurate estimations of mean and covariance at

the beginning of the training stage.

3.3. Transferable Cross­Entropy Loss Learning

Once C sampling distributions are constructed, each

source deep feature fsi can conduct various semantic trans-

formations along the random directions sampled from

N(λ∆µysi , λΣysi

t ) to generate the augmented feature f̃si,

i.e., f̃si ∼ N(fsi + λ∆µysi , λΣysi

t ). Considering a naive

method, we can augment each fsi for M times with its la-

bel preserved, which will result in an augmented feature

set {(f1si, ysi), (f
2
si, ysi), ..., (f

M
si , ysi)}

ns

i=1. Based on this,

the source network can be trained with a traditional cross-

entropy loss on the augmented feature set:

LM (ΘF ,W, b) =
1

ns

ns
∑

i=1

1

M

M
∑

m=1

− log





e
w

⊤
ysi

f
m
si

+bysi

∑

C
c=1 e

w
⊤
c fm

si
+bc



 , (2)

where W = [w1,w2, ...,wC ]
⊤ ∈ R

C×K and b =
[b1, b2, ..., bC ]

⊤ ∈ R
C are the weight matrix and bias vector

of the last fully connected layer, respectively.

To achieve desired performance, M is usually large, re-

sulting in unexpected computational cost. In TSA, instead

of explicitly generating the augmented source features for

M times, we intend to implicitly generate infinite aug-

mented source features. When M approaches infinity, we

can derive an upper-bound loss according to the Law of

Large Numbers over the augmented source distribution.

Specifically, in the case of M → ∞, our proposed ex-

pected transferable cross-entropy loss over the augmented

source feature distribution is defined as:

lim
M→∞

LM =
1

ns

ns
∑

i=1

E
f̃si



− log





e
w

⊤
ysi

f̃si+bysi

∑

C
c=1 ew

⊤
c f̃si+bc









=
1

ns

ns
∑

i=1

E
f̃si

[

log

(

C
∑

c=1

e
(w⊤

c −w
⊤
ysi

)f̃si+(bc−bysi
)

)]

.

(3)
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However, it is infeasible to tackle Eq (3) directly. Ac-

cording to the Jensen’s inequality [3] and the concave prop-

erty of logarithmic function log(·), we have E[log(X)] ≤
log(E[X]). Thus, we can derive the upper bound of the ex-

pected loss as follows:

lim
M→∞

LM ≤
1

ns

ns
∑

i=1

log

(

E
f̃si

[

C
∑

c=1

e
(w⊤

c −w
⊤
ysi

)f̃si+(bc−bysi
)

])

=
1

ns

ns
∑

i=1

log

(

C
∑

c=1

E
f̃si

[

e
(w⊤

c −w
⊤
ysi

)f̃si+(bc−bysi
)
]

)

.

(4)

Due to f̃si ∼ N(fsi + λ∆µysi , λΣysi

t ), we can de-

rive that (w⊤
c − w⊤

ysi
)f̃si + (bc − bysi

) ∼ N((w⊤
c −

w⊤
ysi

)(fsi + λ∆µysi) + (bc − bysi
), σc

si), where σc
si =

λ(w⊤
c −w⊤

ysi
)Σysi

t (wc −wysi
). Leveraging the moment-

generating function E[eaX ] = eaµ+
1
2a

2σ , X ∼ N(µ, σ),
we can obtain

lim
M→∞

LM ≤ L∞ = −
1

ns

ns∑

i=1

log
eZ

ysi
si

∑C
c=1 e

Zc
si

, (5)

where Zc
si = ŷcsi + λ(w⊤

c −w⊤
ysi

)∆µysi +
σc
si

2 and ŷcsi is

the c-th element of logits output of xsi.

Essentially, Eq (5) gives us a surrogate loss L∞ for opti-

mizing the expected transferable cross-entropy loss, which

could effectively adapt the source classifier to target with

the augmented source features. Moreover, the proposed

novel loss allows us to utilize TSA as a plug-in module for

other DA methods to further improve their transferability.

Discussion. Although the derivation of the upper bound

is kind of similar with ISDA [45], the motivation of our

method is essentially different. We aim to enhance the clas-

sifier adaptation for DA where target domain is unlabeled

and large domain shift exists between domains. Thus, the

proposed ∆µc and Σ
c
t are crucial to successfully generate

transformation directions that can really bridge the domain

gap. While ISDA is a completely supervised algorithm and

ignores the crucial domain shift issues in reality. In the abla-

tion study, we show that the performance of directly apply-

ing ISDA in DA context is inferior. Besides, different from

the iterative estimation manner in ISDA, our memory mod-

ule manner can achieve more accurate estimations of the

mean and covariance, which is shown in the experiment.

3.4. Overall Formulation

In information theory, mutual information I(X;Y ) mea-

sures how related two random variables X and Y are. Ac-

tually, strong correlations between target features and pre-

dictions will benefit our semantic augmentations, because

the extracted features will be more informative and contain

more important semantics for predictions, ignoring trivial

semantics. Thus, we employ the mutual information maxi-

mization on target data, i.e., minimizing the loss in Eq (6).

LMI =

C∑

c=1

P̂ c log P̂ c
−

1

nt

nt∑

j=1

C∑

c=1

P c
tj logP

c
tj , (6)

where P̂ = 1
nt

∑nt

j=1 P tj . Since target domain is unla-

beled, we use the average of target predictions to approxi-

mate the ground-truth distribution on target domain.

To sum up, the overall objective function of TSA is:

LTSA = L∞ + βLMI , (7)

where β is a trade-off parameter. The effects of different

parts in TSA will be analyzed in details in ablation study.

3.5. Theoretical Insight

To theoretically understand TSA, we introduce the do-

main adaptation theory proposed by [1], which reveals the

ingredients of target generalization error ǫt. Formally, let H
denote the hypothesis space and h ∈ H denote the classifier,

we can formulate the upper bound of ǫt as:

ǫt(h) ≤ ǫs(h) +
1

2
dH∆H(S, T ) + λ∗, ∀h ∈ H, (8)

where ǫs(h) is the source generalization error of h,

dH∆H(S, T ) is the H∆H-distance between source and tar-

get domains, and λ∗ = ǫs(h
∗)+ ǫt(h

∗) denotes the error of

an ideal joint hypothesis h∗ on source and target domains.

With the supervision of labeled source data, ǫs(h) is well

bounded. Besides, TSA generates transformation directions

from the constructed multivariate distribution to augment

source features towards target domain. Since these aug-

mented source features can fill the domain gap, TSA further

bounds the dH∆H(S, T ). Moreover, TSA implicitly gen-

erates infinite augmented source features that are close to

target domain class-wisely, enabling the classifier to jointly

minimize ǫs(h
∗) and ǫt(h

∗) of the shared error λ∗ on the

augmented training set. To sum up, TSA complies well with

the theory, thus further enhancing the transferability.

4. Experiment

4.1. Datasets

Office-Home [42] is a challenging benchmark for do-

main adaptation, which contains 15,500 images in 65

classes drawn from 4 distinct domains: Artistic (Ar), Clip

Art (Cl), Product (Pr), and Real-World (Rw).

Office-31 [38] is a classical cross-domain benchmark,

including images in 31 classes drawn from 3 distinct do-

mains: Amazon (A), Webcam (W) and DSLR (D).

VisDA-2017 [35] is a large-scale dataset for visual do-

main adaptation, containing over 280K images across 12

categories. Following [39], we choose the synthetic domain

with 152,397 images as source and the realistic domain with

55,388 images as target.
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Table 1. Accuracy (%) on Office-Home for UDA (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

JAN [27] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

TAT [22] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

TPN [31] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2

ETD [19] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

SymNets [52] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

BNM [7] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

MDD [51] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

GSP [47] 56.8 75.5 78.9 61.3 69.4 74.9 61.3 52.6 79.9 73.3 54.2 83.2 68.4

GVB-GD [8] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

ResNet-50 [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

+TSA 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3

DANN [10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

+TSA 56.5 71.5 78.7 62.2 73.5 72.9 61.8 55.6 80.6 72.6 61.3 82.0 69.1

CDAN [25] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

+TSA 56.7 75.3 80.5 63.9 75.6 75.5 63.8 55.5 81.6 74.8 60.2 84.4 70.7

BSP [4] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

+TSA 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2

Digital Datasets contain 4 standard digital datasets:

MNIST [17], USPS [15], Street View House Numbers

(SVHN) [29] and synthetic digits dataset (SYN) [11]. All

of these datasets provide number images from 0 to 9. We

construct four transfer tasks: MNIST to USPS (M → U),

USPS to MNIST (U → M), SVHN to MNIST (SV → M)

and SYN to MNIST (SY → M).

4.2. Implementation Details

For a fair comparison, we use ResNet [12] pre-trained

on ImageNet [37] as the backbone network for datasets:

Office-Home, Office-31 and VisDA-2017. As for digital

datasets, we employ the same network structures in [21]

and train the networks from scratch. In this paper, all ex-

periments are implemented via PyTorch [32]. We adopt

mini-batch SGD optimizer with momentum 0.9 for net-

work optimization, and deep embedded validation [50] to

select hyper-parameters λ0 from {0.1, 0.25, 0.5, 0.75, 1.0}
and β from {0.01, 0.05, 0.1, 0.15, 0.2}, and we found λ0 =
0.25, β = 0.1 works well on all datasets.

We evaluate our approach by applying TSA to the

source-only model and several mainstream DA methods,

i.e., DANN [10], CDAN [25], BSP [4] and JADA [21],

based on their open-source codes. For each task, we re-

port the average accuracy of 3 random trials. Code of TSA

is available at https://github.com/BIT-DA/TSA.

4.3. Results

Results on Office-Home are reported in Table 1. Office-

Home is a challenging dataset with large domain discrep-

ancy for DA. TSA consistently improves the generalization

ability of the four based methods. Specifically, TSA em-

powers BSP with 4.9% improvement, achieving the highest

accuracy 71.2% on average. Based on these promising re-

Table 2. Accuracy (%) on Office-31 for UDA (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Avg

ADDA [40] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [27] 85.4 97.4 99.8 84.7 68.6 70.0 84.3

ETD [19] 92.1 100.0 100.0 88.0 71.0 67.8 86.2

MCD [39] 88.6 98.5 100.0 92.2 69.5 69.7 86.5

BNM [7] 91.5 98.5 100.0 90.3 70.9 71.6 87.1

DMRL [46] 90.8 99.0 100.0 93.4 73.0 71.2 87.9

SymNets [52] 90.8 98.8 100.0 93.9 74.6 72.5 88.4

TAT [22] 92.5 99.3 100.0 93.2 73.1 72.1 88.4

MDD [51] 94.5 98.4 100.0 93.5 74.6 72.2 88.9

GVB-GD [8] 94.8 98.7 100.0 95.0 73.4 73.7 89.3

GSP [47] 92.9 98.7 99.8 94.5 75.9 74.9 89.5

ResNet-50 [12] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

+TSA 94.8 99.1 100.0 92.6 74.9 74.4 89.3

DANN [10] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

+TSA 94.9 98.5 100.0 92.0 76.3 74.6 89.4

CDAN [25] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

+TSA 95.1 98.7 100.0 95.0 76.3 75.9 90.2

BSP [4] 93.3 98.2 100.0 93.0 73.6 72.6 88.5

+TSA 96.0 98.7 100.0 95.4 76.7 76.8 90.6

sults, we can infer that TSA can stably enhance the transfer-

ability of classifiers on this difficult cross-domain dataset.

Results on Office-31 are presented in Table 2. Com-

pared with feature adaptation methods (e.g., JAN and

DANN), ResNet-50+TSA surpasses them by a large mar-

gin, indicating that classifier adaptation is also indispens-

able for DA. In particular, TSA brings a large improvement

of 7.2% to DANN, revealing that TSA is complementary to

previous DA methods. Besides, ResNet-50+TSA also sur-

passes recent classifier adaptation methods, e.g., SymNets

and TAT, revealing that TSA can explore truly useful se-

mantic information to better adapt the classifier.

Results on VisDA-2017 are summarized in Table 3.

We can observe that ResNet-101+TSA dramatically outper-
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Source Augmented Source Target Source Augmented Source Target

Figure 3. Visualization of semantically augmented images for task SVHN to MNIST. “Source” and “Augmented Source” columns present

the images from SVHN and their corresponding augmented images visualized by using our designed reverse mapping algorithm (presented

in the supplement), respectively. “Target” column provides several images representing corresponding classes from MNIST.

forms other augmentation methods, like DMRL [46] and

DM-ADA [48]. This is mainly due to the fact that TSA

exploits the mean difference and target covariance to fully

capture the meaningful semantic information class-wisely,

achieving better augmentation results. Besides, TSA also

brings remarkable improvements to other baseline methods,

which validates the effectiveness and versatility of TSA.

Results on Digital Datasets are reported in Table 4. It is

noteworthy that DIFA can be seen as DANN combined with

extra GAN-based modules which are designed for generat-

ing training samples. Thus, it is fair to compare DIFA with

DANN+TSA. DANN+TSA exceeds DIFA on average and

especially surpasses it by a large margin on U → M. Be-

sides, TSA does not require to introduce any auxiliary net-

works, which is extremely easy to implement. For CDAN

and JADA, TSA also boosts their performance on average.

These encouraging results validate that our semantic aug-

mentation approach can derive a robust classifier efficiently.

Table 3. Accuracy (%) on VisDA-2017 for UDA (ResNet-101).

Method Synthetic→ Real

DAN [24] 61.1

MCD [39] 71.9

SimNet [36] 72.9

DMRL [46] 75.5

DM-ADA [48] 75.6

TPN [31] 80.4

ResNet-101 [12] 52.4

+TSA 78.6 (26.2 ↑)

DANN [10] 57.4

+TSA 79.6 (22.2 ↑)

CDAN [25] 73.7

+TSA 81.6 (7.9 ↑)

BSP [4] 76.9

+TSA 82.0 (5.1 ↑)

4.4. Analysis

Ablation Study. For each class c, the multivariate nor-

mal distribution for sampling transformation directions con-

sists of two important parts: 1) inter-domain feature mean

difference ∆µc and 2) target intra-class covariance ma-

trix Σ
c
t . Only using Σ

c
t to build sampling distribution

Table 4. Accuracy (%) on Digital Datasets for UDA.

Method M→ U U→M SV→M SY→M Avg

ADDA [40] 89.4±0.2 90.1±0.8 76.0±1.8 96.3±0.4 88.0

PixelDA [2] 95.9±0.7 - - - -

DIFA [43] 92.3±0.1 89.7±0.5 89.7±2.0 - -

UNIT [23] 95.9±0.3 93.6±0.2 90.5±0.3 - -

CyCADA [13] 95.6±0.2 96.5±0.1 90.4±0.4 - -

TPN [31] 92.1±0.2 94.1±0.1 93.0±0.3 -

DM-ADA [48] 96.7±0.5 94.2±0.9 95.5±1.1 - -

MCD [39] 96.5±0.3 94.1±0.3 96.2±0.4 - -

ETD [19] 96.4±0.3 96.3±0.1 97.9±0.4 -

DMRL [46] 96.1±0.2 99.0±0.1 96.2±0.4 - -

Source-only 79.4±0.4 63.4±0.3 67.1±0.5 89.7±0.2 74.9

+TSA 90.9±0.3 96.9±0.2 99.2±0.1 97.8±0.2 96.2

DANN [10] 85.1±0.5 73.0±0.2 71.1±0.4 90.2±0.2 79.9

+TSA 93.2±0.3 97.7±0.2 97.1±0.3 98.0±0.2 96.5

CDAN [25] 95.6±0.1 98.0±0.1 89.2±0.3 - -

+TSA 95.1±0.2 98.7±0.1 98.0±0.1 98.2±0.2 97.5

JADA [21] 97.6±0.2 97.1±0.3 96.4±0.2 98.6±0.2 97.4

+TSA 98.0±0.1 98.3±0.3 98.7±0.2 99.2±0.1 98.5

Table 5. Ablation Study of TSA on Office-31.

method A→W D→W W→D A→D D→A W→A Avg

DANN [10] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

+TSA (w/o ∆µ
c) 92.5 98.5 100.0 90.8 70.4 69.4 86.9

+TSA (w/o Σ
c
t ) 92.3 98.8 100.0 91.1 71.8 70.9 87.5

+LMI 91.6 98.2 100.0 89.8 69.7 68.9 86.4

+TSA (w/o LMI ) 92.7 98.5 100.0 90.6 70.7 70.6 87.2

+ISDA 90.3 97.9 100.0 87.1 68.5 68.8 85.4

+TSA 94.9 98.5 100.0 92.0 76.3 74.6 89.4

N(0, λΣc
t) will suffer from overall semantic bias due to the

natural dissimilarity between two domains. While only us-

ing ∆µc to construct the distribution N(λ∆µc, 0) cannot

fully capture semantic variations underlying target domain.

Therefore, to investigate the effects of different com-

ponents in the sampling distribution, we conduct exten-

sive ablation studies of TSA based on DANN [10] in Ta-

ble 5. The results manifest that our strategy achieves the

best performance, indicating that our sampling distribution

can yield meaningful transformation directions to guide the

augmented source features towards target.

Fixing the sampling distribution N(λ∆µc, λΣc
t), we

further explore the impacts of mutual information maxi-
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DANN + TSASource-Only + TSA DANNSource-Only

Figure 4. Red and green dots denote source data of class 0 and 1. Blue dots are target data, generated via rotating source data by 30
◦. Dots

in green and yellow areas are respectively classified as 0 and 1. Black solid lines are classification boundaries.

mization loss LMI in TSA. In Table 5, TSA seems to be

more effective when incorporating LMI , since mutual in-

formation maximization helps achieve more accurate tar-

get predictions and more informative target features, which

is beneficial for capturing the underlying target semantics.

Besides, DANN+TSA (w/o LMI ) achieves much better re-

sults than DANN+ISDA. The reason is that ISDA [45] does

not consider the domain shift problem and fails to capture

target semantics, resulting in poor classifier adaptability.

Visualization for Source Augmentation. To intuitively

validate that TSA can generate meaningful augmented fea-

tures, we design a reverse mapping algorithm (presented in

the supplement) to search images corresponding to the aug-

mented features. From Fig. 3, we can observe that TSA

can alter the semantics of source images, such as back-

grounds, colors and shapes of numbers. Moreover, some

augmented images closely resemble target images. This

verifies that TSA can indeed generate diverse, meaningful

and even target-specific augmented features. More aug-

mented images are shown in the supplement.

Inter Twinning Moons 2D Problems. The goal of TSA

is to learn transferable classifiers. We carry out experi-

ments on inter twinning moons 2D problem [34] to illus-

trate the adaptation of classification boundaries brought by

TSA. In Fig. 4, source-only model and DANN correctly

classify almost all source samples, but misclassify many

target samples. By contrast, the classification boundaries

of source-only+TSA and DANN+TSA are adapted to target

data clearly. The apparent classifier movement reveals that

TSA can enhance the classifier transferability notably.

Estimation Bias Comparisons. In this section, we com-

pare the estimation bias of the iterative manner in ISDA

[45] and our memory module manner. Specifically, in each

epoch, we calculate the average Euclidean distances be-

tween ideal and practical estimations of the mean and co-

variance for all C classes, respectively. The ideal estima-

tion denotes using all features that are freshly produced by

feeding the whole dataset into current network to estimate

∆µc and Σ
c
t for each class c; the practical estimation de-

notes leveraging the iterative manner in ISDA or our mem-

ory module manner to class-wisely calculate ∆µc and Σ
c
t .

The results are shown in Fig. 5. We observe that the mean

and covariance estimations by our memory module man-

ner better approximate the ideal estimation. Based on the

results, we can infer that our manner better contributes to

deriving more precise mean and covariance estimations.
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Figure 5. Estimation bias of the iterative manner in [45] and our

memory module manner on D→A in different epochs. (a) and (b)

present the average estimations bias of inter-domain mean differ-

ence ∆µ
c and target intra-class covariance Σ

c
t for all C classes.

(b) Cl → Rw(a) Ar → Pr

𝛽

𝜆 !

𝛽
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Figure 6. Hyper-parameter sensitivity analysis of TSA on tasks

Ar→Pr and Cl→Rw (Office-Home) based on CDAN.

Hyper-parameter Sensitivity. Hyper-parameter λ0

controls the transformation strength and β balances the two

losses in TSA. To check the parameter sensitivity of TSA,

we conduct experiments on two random tasks Ar→Pr and

Cl→Rw by varying λ0 ∈ {0.1, 0.25, 0.5, 0.75, 1.0} and

β ∈ {0.01, 0.05, 0.1, 0.15, 0.2}. Fig. 6 shows that TSA is

not that sensitive to λ0 and β, and can achieve competitive

results under a wide range of hyper-parameter values.

5. Conclusion

This paper presents a transferable semantic augmenta-

tion (TSA) approach to ameliorate the adaptation ability of

the classifier by optimizing a novel transferable loss over the

implicitly augmented source distribution, introducing negli-

gible computational costs. TSA is applicable to various DA

methods and can yield significant improvements. Compre-

hensive experiments on several cross-domain datasets have

demonstrated the efficacy and versatility of TSA.
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