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Abstract

Recently, deep face recognition has achieved signifi-

cant progress because of Convolutional Neural Networks

(CNNs) and large-scale datasets. However, training CNNs

on a large-scale face recognition dataset with limited com-

putational resources is still a challenge. This is because

the classification paradigm needs to train a fully-connected

layer as the category classifier, and its parameters will

be in the hundreds of millions if the training dataset con-

tains millions of identities. This requires many computa-

tional resources, such as GPU memory. The metric learn-

ing paradigm is an economical computation method, but its

performance is greatly inferior to that of the classification

paradigm. To address this challenge, we propose a simple

but effective CNN layer called the Virtual fully-connected

(Virtual FC) layer to reduce the computational consump-

tion of the classification paradigm. Without bells and whis-

tles, the proposed Virtual FC reduces the parameters by

more than 100 times with respect to the fully-connected

layer and achieves competitive performance on mainstream

face recognition evaluation datasets. Moreover, the perfor-

mance of our Virtual FC layer on the evaluation datasets

is superior to that of the metric learning paradigm by a

significant margin. Our code will be released in hopes of

disseminating our idea to other domains1.

1. Introduction

Recently, deep face recognition with Convolutional Neu-

ral Networks (CNNs) has achieved remarkable progress be-

cause of the explosion of large-scale training datasets. Guo

et al. [3] released a dataset with almost 100 thousand iden-

tities in the academic field. In the industrial field, there are

millions of identities used to train face recognition mod-

els. For instance, the face dataset produced by Google in

2015 had 200 million images consisting of 8 million dif-

1https://github.com/pengyuLPY/Virtual-Fully-Connected-Layer.git

Figure 1. Comparison between FC (a), Model Parallel (b), Partial

FC (c), and our Virtual FC (d). D is the dimension of features, N

is the number of identities (categories), S is the number of GPUs,

and M is a hyperparameter that can be set freely based on the

balance between performance and computational resources. M =

1%×N in this paper.

ferent identities [15]. A large-scale training dataset helps a

model obtain excellent performance, but it also challenges

face recognition training paradigms.

There are two elemental deep face recognition learning

paradigms based on Convolutional Neural Networks [19].

One is learning with a classification loss function (e.g.,

the softmax loss function or ArcFace loss function) to

optimize the similarity between samples and weight vec-

tors [20, 1, 11, 22]. This classification paradigm has

achieved state-of-the-art performance in face recognition

fields. However, it needs to train a fully-connected (FC)

layer as the category classifier, which leads to the follow-

ing drawbacks: The FC layer is not necessary in inference,

but it requires many computational resources in the training

phase. Figure 2 shows that training on millions of identities

requires the classification FC layer to include hundreds of
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Figure 2. The parameters of the face recognition network in the

classification paradigm. The FC layer requires considerable com-

putational consumption, which may be even greater than the re-

quirement of the backbone. The backbone is ResNet-101, and the

feature dimension is 512 (D = 512) in this figure.

millions of parameters. Its parameters are much greater than

those of the feature extraction network. The dimensions of

its output are also in the millions. The cost of the storage

and calculation of the FC layer easily exceeds current GPU

capabilities (leading to an out of memory error, OOM) and

results in training failure. The other paradigm is to leverage

a metric learning loss function (e.g., the N-pair loss func-

tion or multi-similarity loss function) to optimize the simi-

larity between samples [16, 18, 23, 19]. This paradigm ad-

dresses the drawbacks of the classification paradigm, but its

performance is greatly inferior to that of the classification

paradigm [19, 16].

Some technologies aim to solve the OOM problem in the

classification paradigm with multiple GPUs, such as Model

Parallel [7] and Partial FC [28]. Both of these split the FC

layer into several parts, and each part is distributed to a re-

spective GPU, as shown in Figure 1(b) and (c). Their so-

lutions can train the dataset with millions of identities if

there are enough GPUs. Figure 1 shows that the parame-

ters and GPU memory are distributed but not reduced in the

solutions. Thus, the solutions require many GPUs, and it

is impossible to work with limited computational resources

(e.g., a single GPU). The challenge of training large-scale

face recognition datasets with limited training resources is

still far from being solved.

To address these problems, we propose a simple but ef-

fective CNN layer called the Virtual fully-connected (Vir-

tual FC) layer in this paper. The training pipeline of the

Virtual FC layer is illustrated in Figure 3. The pipeline splits

N training identities into M groups randomly. The identi-

ties from group l share the l-th column in the projection

matrix (W ). The l-th column is called anchorl. Because

one group’s identities share the anchors, the number of W

columns is reduced to M from N (M << N ). The number

of parameters in our Virtual FC is detailed in Figure 1 (d),

and it is much less than that of other methods. Furthermore,

the number of anchors (M ) in our Virtual FC is a hyperpa-

rameter that is not limited by the batch size or number of

identities in the mini-batch. It can be set freely based on the

balance between performance and computational resources.

To optimize W , whose anchors are shared by the groups,

we propose two novel types of anchors to constitute W .

One is the corresponding anchor, and the other is the free

anchor. If the mini-batch contains the identities from group

l, anchorl belongs to the corresponding anchor and is es-

timated by a weighted average function. Otherwise, it is a

free anchor and is estimated by the Stochastic Gradient De-

scent (SGD). The anchor type is adaptive in every training

iteration.

The anchor would encounter conflict if the same group’s

identities were sampled to the mini-batch simultaneously

because they would need to share the same anchor in this

iteration. The straightforward strategy that avoids sam-

pling identities from the same group cannot work because

it means that intra-group identities have no chance to be

optimized discriminatively. To eliminate anchor conflict ef-

fectively, we propose a re-grouping strategy in this paper.

Through our proposals, our Virtual FC layer can reduce

the number of parameters by more than 100 times with

respect to the FC layer and achieve competitive perfor-

mance in typical face recognition evaluation datasets such

as LFW [5], CFP [17], IJB-A [8], IJB-B [25], IJB-C [13],

and MegaFace [6].

The main contributions of this paper can be summarized

as follows:

1) To the best of our knowledge, we are the first to pro-

pose a solution for truly and significantly reducing the pa-

rameters in the classification paradigm to train large-scale

face recognition datasets with limited computational re-

sources (e.g., a single GPU).

2) We propose the Virtual fully-connected (Virtual FC)

layer to train large-scale datasets with limited computa-

tional resources. The Virtual FC layer consists of corre-

sponding anchors, free anchors, and a re-grouping strategy.

The two types of anchors make it possible to optimize a

W whose columns are shared by groups. The re-grouping

strategy is used to eliminate anchor conflict. Furthermore,

the proposed Virtual FC layer is compatible with accelera-

tion by Data Parallel [7] with multiple GPUs.

3) Without bells and whistles, the proposed Virtual FC

reduces the parameters by more than 100 times to the fully-

connected layer and achieves competitive performance.

Moreover, the performance of our Virtual FC is superior to

that of the metric learning paradigm by a significant margin.

2. Related Work

Face recognition is one of the most broadly researched

topics in computer vision fields. Sun et al.[20] proposed

Convolutional Neural Networks for solving the face recog-

nition problem. Based on Convolutional Neural Networks,

there are two elemental deep face recognition learning

paradigms [19]. One is learning with a classification loss
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Figure 3. Training Pipeline of the Virtual FC Layer.

function to optimize the similarity between samples and

weight vectors [20, 1, 11, 22]. The other is leveraging a met-

ric learning loss function to optimize the similarity between

samples [16, 18, 23, 19]. Because the number of pairs in the

metric learning paradigm is limited by the mini-batch and

the pair extraction strategy is tricky, its performance is infe-

rior to that of the classification paradigm. However, the cat-

egory classifier in the classification paradigm requires many

computational resources in the training phase, which easily

exceeds the current GPU capabilities and results in training

failure. There is no perfect solution to balance the perfor-

mance and the training resources.

Some technologies have tried to solve the OOM prob-

lem. Model Parallel [7] splits the final FC layer into sev-

eral parts, and each part is distributed to a respective GPU.

The logits predicted by all FC parts are synced to obtain a

complete logit prediction. Its architecture is illustrated in

Figure 1 (b). An et al. [28] proposed Partial FC based on

Model Parallel to equally store the nonoverlapping linear

transformation matrix on all GPUs in order. Each GPU is

then accountable for calculating the sum of the dot product

of the submatrix stored on its own and input features. After

that, each GPU gathers the local sum from other GPUs to

approximate the full-class softmax function. It reduces the

dimension of the logits further by sampling columns of W

in each GPU. Its architecture is illustrated in Figure 1 (c). In

summary, Model Parallel addresses the GPU memory lim-

itation by distributing the FC layer to multiple GPUs, and

Partial FC accelerates the process by reducing the sync log-

its. However, the parameters and the computational costs of

their solutions are distributed but not reduced, as shown in

Figure 1. Thus, their solutions require many GPUs, and it

is impossible to work with limited computational resources

(e.g., a single GPU).

Wen et al. [24] observed that each column in the pro-

jection matrix of the final FC layer indicates the centroid

of a category representation. Liu et al. [12] proposed the

transductive centroid projection (TCP) layer and used the

centroid as the weight of unlabeled clustering data in every

mini-batch. The number of columns in the TCP projection

matrix is greatly limited by the batch size, which restricts

its performance. However, the number of anchors in our

Virtual FC is not limited by the batch size or number of

identities in the mini-batch. It can be set freely based on the

balance between performance and computational resources.

This breakthrough helps the Virtual FC layer outperform the

TCP by a significant margin.

3. Proposal: Virtual Fully-Connected Layer

Our Virtual FC layer is an improved fully-connected

(FC) layer for training large-scale datasets with limited

computational resources. The kernel of Virtual FC is the

projection matrix W ∈ R
D×M . D is the dimension of fea-

tures. M is the hyperparameter, which can be set freely

based on the balance between performance and computa-

tional resources. With limited training resources (e.g., a

single GPU), M is set to be much less than the number of

training identities (N ). The output of the Virtual FC layer

is calculated as for the FC layer:

y = WT f + b (1)

y ∈ R
M is the output, b is the bias, and f ∈ R

D is the

feature. b is often set to zero in the representation learning

field [1, 22, 11], so we ignore it in the following paper.

In the training pipeline of the Virtual FC layer, as Fig-

ure 3 shows, we split the training identities into M groups

randomly. The identities from group l share the l-th col-

umn in W . This column is called anchorl in this paper.

To optimize a W whose anchors are shared by groups,

we propose two novel types of anchors to constitute W

in the Virtual FC layer. One is the corresponding anchor,

marked as anchorcorr. The other is the free anchor, marked

as anchorfree. If the mini-batch contains identities from
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group l, anchorl is of type anchorcorr. Otherwise, it is

of type anchorfree. The anchor type is adaptive in every

training iteration.

The anchor would encounter conflict if identities from

the same group were sampled to the mini-batch simultane-

ously because they would need to share the same anchor

in this iteration. To eliminate conflict, we propose a re-

grouping training strategy in this paper. The re-grouping

strategy achieves much better performance than the straight-

forward sampling strategy that avoids sampling identities

from the same group to a mini-batch.

In the following sections 3.1 and 3.2, we introduce the

proposed corresponding anchors and free anchors. Their

optimization is formulated in section 3.3. To make our for-

mulation brief and clear, we hypothesize that there is no

anchor conflict in these three sections. The re-grouping

strategy used to eliminate anchor conflict is introduced in

section 3.4.

3.1. Corresponding Anchor

If the mini-batch contains identities from group l,

anchorl belongs to the corresponding anchor in this iter-

ation. Inspired by the observations of Wen et al. [24] and

Liu et al. [12], namely, that each column in the projection

matrix W of the final fully-connected layer indicates the

centroid of a category representation, we formulate our cor-

responding anchors as the following equation:

anchorcorr,l =

∑K

i=1
αi,lfi,l

∑K

i αi,l

(2)

fi,l is the feature of the i-th image that belongs to group

l. Because we hypothesize that there is no anchor con-

flict in this section, {fi,l}(i = 1, 2, ...,K) belong to a sin-

gle identity. αi,l is the attention estimation used to weight

fi,l. {αi,l} can be estimated by the attention mechanism

or set to be a constant value. If {αi,l}(i = 1, 2, ..., k)
is equal to a constant value, then anchorcorr,l is the cen-

troid of {fi,l}. In the supplementary material, we show

that the αi,l estimated by a two-layer Multi-Layer Per-

ceptron (MLP) [30] approximates a constant value, which

means that anchorcorr approximates a centroid. Based on

this discovery, we set αi,l to one and use the centroid as

anchorcorr,l directly in our experiments.

We illustrate the feature distribution and the centroids

with a toy experiment in Figure 4. The training dataset

is MNIST (N=10) [9], and the network is LeNet 2

(D=500) [10]. The left column is trained with a classical

FC layer, the middle column is a Virtual FC (M=5), and the

right column is a Virtual FC (M=2). The figure shows that

the feature distribution of the Virtual FC layer is similar to

that of the FC layer, and their accuracies are comparable.

2https://github.com/BVLC/caffe/blob/master/examples/mnist/

Figure 4. Toy Example: Training with LeNet on the MNIST

dataset from scratch. The Virtual FC trains a feature extraction

network. The feature extraction network is then fixed, and a linear

classifier (N=10) is trained to classify the categories based on the

features.

3.2. Free Anchor

The number of corresponding anchors is limited by the

batch size. Because of the limitation of GPU memory, it is

difficult to implement a large batch size. The limited num-

ber of anchorcorr restricts the performance of our Virtual

FC. To break this limitation and further improve the perfor-

mance of Virtual FC, we propose novel free anchors in this

section.

anchorl is a free anchor, marked as anchorfree,l,

if there is no image from group l in this iteration.

anchorfree,l cannot be calculated with Equation 2 because

fi,l ∈ ∅. In this paper, we optimize the free anchors with the

SGD optimization method, which is detailed in section 3.3

below.

The free anchor is vital to our Virtual FC for the follow-

ing reasons:

1) Free anchors break the limitation of the batch size as

the classical FC layer does. This helps to disperse the inter-

identity representations across the mini-batches.

2) Because free anchors are not limited by the batch size

or number of identities in the mini-batch, the number of

columns (M) can be set freely based on the balance between

performance and computational resources.

3) The re-grouping strategy for eliminating anchor con-

flict would not work without free anchors. It would be a

disaster, as section 3.4 discusses.

3.3. Optimization

Because the output of a Virtual FC layer belongs to R
M ,

the ground truth of identities needs to be affiliated with the

corresponding group IDs in the classification loss function.

Because we hypothesize in this section that all the identities

in the mini-batch are from different groups, the group ID l

is almost equivalent to the ground truth of identity.

The softmax loss function of our Virtual FC is shown

in Equation 3. In addition, our Virtual FC is applicable to

other classification loss functions, such as the ArcFace loss

function [1], CosFace loss function [22], and SphereFace

432413318



loss function [11].

L = −log(
exp(yl)

∑M

i exp(yi)
) (3)

yi is the output of the Virtual FC layer, as shown in Equa-

tion 1. l is the ground truth.

We investigate the gradients of our Virtual FC and its

optimization based on Stochastic Gradient Descent (SGD).

fi,l is detached from the neural network when it is used to

estimate anchorcorr in Equation 2. This detachment makes

it easy to calculate the gradient and the error term. Based

on the chain rule, the gradient of Virtual FC is shown in

Equation 4, and its error term is shown in Equation 5.

∂L

∂W
=

∂L

∂y

∂y

∂W
=

∂L

∂y

∂WT f

∂W
= f(

∂L

∂y
)T (4)

∂L

∂f
=

∂L

∂y

∂y

∂f
=

∂L

∂y

∂WT f

∂f
= W

∂L

∂y
(5)

Because f is detached when it is used to estimate the anchor

in Equation 2, the backward gradient and error term of the

Virtual FC in Equations 4 and 5 are the same as those of the

classical FC layer. This means that the Virtual FC can be

embedded into the classification paradigm easily by merely

substituting the last FC layer with the proposed Virtual FC

layer.

Based on the SGD optimization method and the pro-

posed corresponding anchors and the free anchors, the train-

ing iteration of the Virtual FC is formulated as the following

set of equations:

Forward:

anchort =

{

Equation 2 anchort ∈ anchorcorr
anchort−1 anchort ∈anchorfree

(6)

anchor0 = Scratch (7)

W t = [anchort1, ..., anchor
t
M ] (8)

Backward:

W t+1 = W t − λt ∂L

∂W t
(9)

anchort+1

i = W t+1

i , i = 1, 2, ...,M (10)

t denotes the iteration number, i is the column number, and

λt is the learning rate used in SGD.

The optimization shows that anchorcorr,i is estimated

by Equation 2. anchorfree,j is Wj , which is optimized by

the SGD in the same way as the FC layer. Both anchorcorr
and anchorfree deliver the error term to the feature ex-

traction network (backbone) and make the learned repre-

sentations compact in intra-identities and dispersed in inter-

identities.

In addition, the type of anchor is determined by the sam-

pling images in the mini-batch. This makes the anchor type

adaptive in every training iteration.

3.4. Regrouping Strategy

In sections 3.1, 3.2, and 3.3, we hypothesize that there

is no anchor conflict in any mini-batch. A straightforward

way to satisfy this hypothesis is to avoid sampling identities

that are from the same group into a mini-batch. However,

this leads to intra-group identities not being optimized to

be dispersive. This shortcoming is a disaster for deep face

recognition. To address this problem, we propose an effec-

tive re-grouping strategy in this section.

There are three states that an identity from the group l

could be in: 1) anchorl has not been matched yet. In this

state, anchorl serves as the corresponding anchor for the

identity. 2) anchorl has been matched by another iden-

tity from group l, but there are free anchors in the Virtual

FC layer. In this state, we randomly select one free an-

chor, anchorl′ , and re-group the identity to the group l′.

anchorl′ will temporarily serve as the corresponding an-

chor for the identity in this iteration. After the updating of

this iteration, both the identity’s group and the anchor’s pa-

rameters will be RECOVERED to their original ones. 3)

anchorl has been used, and there is no free anchor left in

the iteration. The identity and its images will be ignored.

The re-grouping strategy based on these states is shown in

Figure 3.

With the proposed re-grouping strategy, identities can be

sampled randomly without considering their groups. Intra-

group identities can be sampled simultaneously into a mini-

batch, and their features can be optimized to be discrimina-

tive.

4. Experiment

The target of our Virtual FC layer is to train a large-

scale face recognition dataset with limited computational

resources. Therefore, we mainly compare our proposal with

algorithms that could significantly reduce the parameters

and computational costs, such as TCP and metric learning

paradigms (i.e., the N-pair loss function [18] and the multi-

similarity loss function [23]). We hypothesize that the per-

formance of Model Parallel [7] and Partial FC [28] is close

to the upper boundary obtained by the FC layer. However,

their parameters and computational costs are distributed but

NOT reduced. Thus, their solutions require many GPUs,

and it is impossible to work with limited computational re-

sources (e.g., a single GPU). Therefore, we do not take them

into account for comparison.

In this section, we train the models on the largest-scale

public dataset, MS-Celeb-1M [3]. The performance shown

on the evaluation datasets, including CFP [17], LFW [5],

IJB-A [8], IJB-B [25], IJB-C [13], and MegaFace [6],
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proves the effectiveness of our Virtual FC. The theoretical

analysis in Section 3 shows that our proposal can also work

in an industrial dataset with millions of identities.

4.1. Dataset

In MS-Celeb-1M, there are almost 100 thousand global

celebrities and 10 million images released. We clean the

dataset by the automatic method proposed in [27]. The

cleaned MS-Celeb-1M dataset in this paper contains 74,974

identities and 4.8 million images. CASIA-WebFace con-

sists of 494,414 near-frontal faces of 10,575 subjects from

the internet.

CFP consists of 10 folders, and each folder contains 350

same-person pairs and 350 different-person pairs for both

frontal-frontal (CFP-FF) and frontal-profile (CFP-FP) ex-

periments. LFW consists of 13,323 web photos of 5,749

celebrities, which are divided into 6,000 face pairs in 10

splits. In this paper, we follow the standard protocols of

LFW and CFP and report their mean accuracy and the stan-

dard error of the mean.

The IJB-A dataset contains 5,397 images and 20,412

video frames split from 2,042 videos of 500 individuals.

IJB-B and IJB-C are extensions of IJB-A. IJB-B contains

1,845 subjects with 21.8 K still images and 55 K frames

from 7,011 videos. IJB-C contains 140,740 face images

of 3,531 subjects. We evaluate the performance with their

standard protocols. Because of the paper length limitation,

we report the true acceptance rates (TARs) under a 10−2

false acceptance rate (FAR) in the paper. The top-K accu-

racy and the TARs under varying FARs are reported in the

supplementary material.

The MegaFace dataset includes the probe and gallery

set. The probe set is the FaceScrub dataset [14], which con-

tains 100,000 images of 530 identities, and the gallery set

consists of approximately 1,027,060 images from 690,572

different subjects. We report its rank1@106 accuracy3,

which is tested on the cleaned dataset4.

The performance on CALFW [32], CPLFW [31],

SLLFW [2], and YTF [26] is given in the supplementary

materials because of the paper length limitation.

4.2. Implementation Details

Three backbones are trained in this paper to prove that

Virtual FC can be embedded into different face recogni-

tion networks. They are CASIA-Net [29], ResNet-50 and

ResNet-101 [4]. Their feature length is 512. We use

the state-of-the-art loss function ArcFace [1] in this paper.

Other classification loss functions, such as CosFace [22],

NormFace [21], SphereFace [11], and CircleLoss [19], can

also work with the Virtual FC. However, the loss function is

not in the scope of this paper.

3http://megaface.cs.washington.edu/dataset/download/content/devkit.zip
4https://github.com/deepinsight/insightface

Figure 5. Multi-task training strategy

For CASIA-Net, we randomly sample 96×96 regions

from the aligned 100×100 face images for data augmen-

tation. The image intensities are linearly scaled to the range

[−1, 1]. The network is trained for 30 epochs. The learn-

ing rate is 0.1 and decays 10 times at the 20th, 27th and

29th epochs. The momentum is 0.9, and the weight decay

is 0.0005.

For ResNet-50 and ResNet-101, we resize the face im-

ages to 224×224. The image intensities are scaled to [-1, 1].

The networks are optimized with SGD for 16 epochs. The

learning rate is 0.01 and decays ten times at the 12th, 14th
and 15th epochs. The momentum is 0.9, and the weight

decay is 0.0005.

The number of identities of MS-Celeb-1M is 74,974

(i.e., N = 74, 974). We sample 7 images per identity into

a mini-batch (i.e., K = 7). The number of groups and the

number of anchors are 1000 (i.e., M = 1000), which are

approximately 1%×N . The number of anchorcorrs is 100,

which is approximately 0.1%×N . The influence of K and

M will be discussed in the ablation study.

TCP requires a fully-connected layer in its pipeline. It is

challenging for the metric learning loss functions (i.e., N-

pair, multi-similarity) to converge without the classification

loss function. All of them require an FC layer followed by

a classification loss function in their training pipelines. For

a fair comparison, we use the multi-task training strategy

in the experiments. The pipeline of multi-task is shown in

Figure 5. The lower boundary is trained on the CASIA-

WebFace dataset (N ≈ 10, 000) with the FC layer. The up-

per boundary is trained on the CASIA-WebFace dataset and

MS-Celeb-1M dataset (N ≈ 100, 000) with the FC layer.

The experiment of training on a single task with our Virtual

FC is detailed in the ablation study.

4.3. Comparison with Other Methods

We compare our Virtual FC with other candidate solu-

tions in Table 1. The backbone is CASIA-Net, ResNet-50

or ResNet-101. The table shows the following:
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Networks/Methods
Evaluation Dataset

LFW CFP-FF CFP-FP IJB-A@10-2 IJB-B@10-2 IJB-C@10-2 MegaFace

CASIA-Net

Lower boundary 98.05±0.64 98.56±0.54 91.66±1.91 89.90 88.40 89.94 73.14

Upper boundary 99.07±0.44 99.40±0.26 93.87±1.32 93.89 93.54 94.37 80.52

N-pair [18] 98.68±0.37 99.03±0.30 92.70±1.51 85.65 87.25 88.69 81.11

Multi-similarity [23] 98.61±2.47 99.03±0.35 92.11±1.23 85.53 85.21 85.90 78.67

TCP [12] 98.73±0.53 99.03±0.47 92.71±1.74 89.75 90.32 91.86 80.08

ours: Virtual FC 98.75±0.27 99.07±0.30 93.04±1.84 91.77 90.78 92.21 81.44

ResNet-50

Lower boundary 97.88±0.61 99.11±0.39 93.47±1.41 90.59 91.26 92.78 79.28

Upper boundary 99.55±0.24 99.91±0.37 96.97±0.91 97.33 96.71 97.19 97.63

N-pair [18] 98.33±0.60 98.80±0.54 92.74±1.97 85.32 88.46 90.08 82.56

Multi-similarity [23] 98.33±0.60 98.74±0.50 93.17±1.73 83.49 88.30 90.06 76.88

TCP [12] 98.95±0.27 99.44±0.36 94.30±1.08 85.53 90.35 92.08 88.18

ours: Virtual FC 99.32±0.27 99.73±0.33 95.77±1.11 92.83 93.21 94.53 93.18

ResNet-101

Lower boundary 98.29±0.57 99.07±0.34 93.57±1.32 90.33 91.19 92.38 76.83

Upper boundary 99.53±0.27 99.91±0.29 97.45±0.86 97.81 97.01 97.61 98.39

N-pair [18] 98.33±0.60 98.79±0.34 92.86±1.25 83.55 86.57 88.72 75.33

Multi-similarity [23] 97.82±0.29 98.86±0.43 92.76±1.56 82.02 85.56 87.50 75.70

TCP [12] 99.30±0.28 99.63±0.27 95.77±1.09 89.23 92.67 94.22 92.41

ours: Virtual FC 99.38±0.38 99.61±0.31 95.55±1.42 93.69 94.05 95.30 94.04

Table 1. Comparison with other methods

1) Our Virtual FC surpasses the lower boundary and all

other candidate solutions consistently and significantly. It

also achieves comparable performance to that of the upper

boundary with 1% computational resources of the FC layer.

2) The superiority of our Virtual FC is more significant

in complex neural network structures (e.g., ResNet50 and

ResNet101) than in simple structures (CASIA-Net). For

instance, the Virtual FC layer improves the performance

of IJB-C from 92.08% (TCP) to 94.53% in ResNet50 and

from 94.22% to 95.30% in ResNet101. The improvement is

much greater than that in CASIA-Net (91.86% to 92.21%).

So are the performance improvements on the other evalua-

tion datasets.

4.4. Ablation Study

The influence of the sampling image number (K) per

identity in a mini-batch. We study the influence of K with

CASIA-Net. All the implementation details are the same as

those introduced in section 4.2 except for K. The perfor-

mance is shown in Table 2. The table shows that the per-

formance for all K is higher than the lower boundary, and

the performance is almost equivalent when K ≥ 5. The

performance of Virtual FC is insensitive to K if K ≥ 5.

K
Evaluation Dataset

LFW CFP-FF CFP-FP IJB-A IJB-B IJB-C MegaFace

Lower boundary 98.05±0.64 98.56±0.54 91.66±1.91 89.90 88.40 89.94 73.14

Upper boundary 99.07±0.44 99.40±0.26 93.87±1.32 93.89 93.54 94.37 80.52

K=2 98.60±0.48 99.00±1.62 92.20±1.57 90.24 90.22 91.57 80.30

K=5 98.60±0.56 99.19±0.45 93.20±1.24 91.73 91.20 92.50 80.31

K=7 98.75±0.27 99.07±0.30 93.04±1.84 91.77 90.78 92.21 81.44

K=10 98.72±0.52 99.00±0.27 93.34±1.39 92.11 91.88 93.13 80.75

Table 2. The influence of K. The performance of Virtual FC is

insensitive to K if K ≥ 5.

The influence of corresponding anchors and free an-

chors. By changing the number of anchors (M ), we study

the influence of corresponding anchors and free anchors

with CASIA-Net in Table 3. The table shows that the per-

formance of our Virtual FC is improved with increasing M .

There are two types of anchors that lead to an increase in

M . 1) Corresponding anchors. If M ≤ 0.1% × N , then

there are only corresponding anchors in the Virtual FC. In

these cases, our Virtual FC degrades to the TCP. The per-

formance improvement that is caused by M increasing to

0.1%×N from 0.01%×N proves that more corresponding

anchors help Virtual FC/TCP achieve a better performance.

However, the number of corresponding anchors is limited

by the batch size. 0.1%×N is the most we can employ in our

learning platform. This limitation restricts the performance

of TCP. 2) Free anchors. If M ≥ 1% × N , then there are

free anchors in Virtual FC. The number of corresponding

anchors is fixed to 0.1%×N because of the batch size limita-

tion. The free anchors break this limitation and increase M

to 1%×N or more. The improvement when M ≥ 1% ×N

proves the importance of the proposed free anchors.

The influence of the re-grouping strategy. There may

be anchor conflicts in our Virtual FC layer, as introduced

in section 3. There are two methods to eliminate the con-

flicts. One is our proposed re-grouping strategy. The other

is a straightforward sampling strategy that avoids sampling

identities that belong to the same group into a mini-batch

simultaneously. We analyzed why the straightforward sam-

pling strategy does not work in Section 3.4. We perform

the experiments in Table 45 to prove this. The table shows

that the re-grouping strategy has a limited improvement

for CASIA-Net, but the performance for ResNet-50 and

ResNet-101 drops considerably without it. We think this

5MegaFace is shown in the supplementary materials because of the pa-

per length limitation.
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M
Evaluation Dataset

LFW CFP-FF CFP-FP IJB-A IJB-B IJB-C MegaFace

Lower boundary 98.05±0.64 98.56±0.54 91.66±1.91 89.90 88.40 89.94 73.14

Upper boundary 99.07±0.44 99.40±0.26 93.87±1.32 93.89 93.54 94.37 80.52

TCP [12]
98.73±0.53 99.03±0.47 92.71±1.74 89.75 90.32 91.86 80.08

(M=0.1%×N)

M=0.01%×N 94.67±1.26 99.06±0.41 92.37±1.36 89.61 88.57 89.72 81.21

M=0.1%×N 98.46±0.55 99.11±0.51 92.50±1.80 91.42 90.69 92.15 81.26

M=1%×N∗ 98.75±0.27 99.07±0.30 93.04±1.84 91.77 90.78 92.21 81.44

M=10%×N∗ 98.65±0.61 99.24±0.42 93.27±1.23 92.31 92.01 93.26 82.29

M=100%×N∗ 98.75±0.49 99.20±0.41 92.99±1.39 91.12 92.17 93.42 83.07

Table 3. The influence of corresponding anchors and free anchors.

The performance of our Virtual FC improves with increasing M.

A * means the Virtual FC in this row contains both corresponding

anchors and free anchors. Otherwise, there are only corresponding

anchors in the rows.

is because ResNets have massive parameters and capacity.

If the straightforward sampling strategy is used, their excel-

lent capacity makes them easily overfit in discriminating a

group but not identities. CASIA-Net does not have the ca-

pacity of ResNet, and it would not overfit. The re-grouping

strategy is essential to our Virtual FC layer, especially for

complex backbones.

Network Strategy LFW CFP-FF CFP-FP IJB-A IJB-B IJB-C

CASIA-Net
Sampling 98.52±1.90 98.94±0.27 92.76±1.44 92.14 90.34 91.77

Re-grouping 98.75±0.27 99.07±0.30 93.04±1.84 91.77 90.78 92.21

ResNet-50
Sampling 98.33±0.60 99.22±0.41 94.31±1.51 89.90 90.20 92.05

Re-grouping 99.32±0.27 99.73±0.33 95.77±1.11 92.83 93.21 94.53

ResNet-101
Sampling 98.64±0.47 98.67±0.56 92.59±1.54 87.16 88.10 89.60

Re-grouping 99.38±0.38 99.61±0.31 95.55±1.42 93.69 94.05 95.30

Table 4. Importance of the proposed re-grouping strategy. The

re-grouping strategy is essential to our Virtual FC, especially for

complex feature extraction networks.

Training Virtual FC with single-task learning. We

train our Virtual FC as a multi-task learning strategy in

the previous experiments because the methods we compare

cannot be trained as a single task. In Table 5, we train

our Virtual FC as a single task (MS-Celeb-1M) and com-

pare it with multi-task learning. For a fair comparison with

multi-task learning, the networks are pretrained by CASIA-

WebFace with an FC layer (N=10,000) and fine-tuned by

MS-Celeb-1M with a Virtual FC layer (M=1000).

Network Task LFW CFP-FF CFP-FP IJB-AIJB-BIJB-C

CASIA-Net

Lower boundary98.05±0.64 98.56±0.54 91.66±1.91 89.90 88.40 89.94

Multi-task 98.75±0.27 99.07±0.3093.04±1.84 91.77 90.78 92.21

Single-task 98.64±0.46 98.79±0.42 91.70±1.68 90.32 90.40 91.88

ResNet-50

Lower boundary97.88±0.61 99.11±0.39 93.47±1.41 90.59 91.26 92.78

Multi-task 99.32±0.27 99.73±0.33 95.77±1.11 92.83 93.21 94.53

Single-task 98.23±0.98 99.54±0.46 93.99±1.38 93.58 93.36 94.47

ResNet-101

Lower boundary98.29±0.57 99.07±0.34 93.57±1.32 90.33 91.19 92.38

Multi-task 99.38±0.38 99.61±0.31 95.55±1.42 93.69 94.05 95.30

Single-task 98.33±0.60 99.56±0.40 94.36±1.33 93.68 93.87 95.08

Table 5. Fine-tuning a network (lower boundary) pretrained on a

small-scale dataset (CASIA-WebFace) as a single task with Virtual

FC.

Table 5 shows that 1) Single-task learning surpasses the

pretrained model (lower boundary) by a significant mar-

gin. 2) Single-task learning with our Virtual FC surpasses

TCP [12], N-pair [18], and multi-similarity [23] in Table 1.

All of them are trained with the multi-task learning strategy,

which has better performance than the single-task strategy.

3) The performance of multi-task learning surpasses that

of single-task learning. Multi-task learning is an effective

method to improve the performance of our Virtual FC layer.

We train all the methods in Table 1 as a single task from

scratch. N-pair [18] and multi-similarity [23] fail to con-

verge in our experiments. We modify the architecture of

TCP to allow it to be trained as a single task. All the per-

formances are shown in Table 6. The table shows that our

Virtual FC surpasses the other methods by a large margin.

However, the performance degrades a lot when it is trained

from scratch. We think this is because the intra-identity fea-

tures are dispersed when it is trained with single-task learn-

ing from scratch. This makes our corresponding anchor

generation fail and limits the performance of the Virtual FC

layer.

Method Backbone LFW CFP-FF CFP-FP IJB-A IJB-B IJB-C

N-Pair

CASIA-Net

No Convergence

Multi-Similarity No Convergence

TCP 93.68±1.02 93.13±1.19 83.61±1.58 54.38 68.33 80.81

Virtual FC

94.27±0.60 96.44±0.51 88.36±1.38 77.22 82.94 85.01

ResNet-50 96.57±0.85 98.05±0.54 88.07±1.92 86.43 87.37 89.37

ResNet-101 98.15±1.50 98.58±0.37 90.07±1.75 87.87 88.19 90.81

Table 6. Training the network as a single task from scratch with

Virtual FC.

Tables 5 and 6 show that our Virtual FC can work well

as a multi-task learning strategy or single-task learning from

a pretrained model. Its performance would have a signifi-

cant drop if it were trained as a single task from scratch. It

would be our future work to address this limitation. How-

ever, it is easy to obtain a model that has been pretrained on

a small-scale dataset or to train the model with the multi-

task learning strategy (one task is trained on a small-scale

dataset with the FC layer, and the other task is trained on

a large-scale dataset with our Virtual FC layer). Our work

will inspire the academic field and industrial field to train

large-scale face recognition datasets with limited training

resources.

5. Conclusion

This paper proposes a simple but effective Virtual fully-

connected (Virtual FC) layer to train large-scale face recog-

nition datasets in a classification paradigm with limited

computational resources. The proposed Virtual FC re-

duces the parameters by 100 times with respect to the fully-

connected layer and achieves competitive performance.

Moreover, the performance of our Virtual FC is superior to

that of the metric learning paradigm by a significant margin.
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