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Abstract

Real-time and high-performance 3D object detection is

an attractive research direction in autonomous driving. Re-

cent studies prefer point based or voxel based convolution

for achieving high performance. However, these methods

suffer from the unsatisfied efficiency or complex customized

convolution, making them unsuitable for applications with

real-time requirements. In this paper, we present an effi-

cient and effective 3D object detection framework, named

RangeIoUDet that uses the range image as input. Ben-

efiting from the dense representation of the range image,

RangeIoUDet is entirely constructed based on 2D convo-

lution, making it possible to have a fast inference speed.

This model learns pointwise features from the range im-

age, which is then passed to a region proposal network for

predicting 3D bounding boxes. We optimize the pointwise

feature and the 3D box via the point-based IoU and box-

based IoU supervision, respectively. The point-based IoU

supervision is proposed to make the network better learn

the implicit 3D information encoded in the range image.

The 3D Hybrid GIoU loss is introduced to generate high-

quality boxes while providing an accurate quality evalua-

tion. Through the point-based IoU and the box-based IoU,

RangeIoUDet outperforms all single-stage models on the

KITTI dataset, while running at 45 FPS for inference. Ex-

periments on the self-built dataset further prove its effec-

tiveness on different LIDAR sensors and object categories.

1. Introduction

As the vital component of autonomous driving systems,

3D object detection from point clouds has attracted more

and more attention. Many methods have been proposed

for processing point clouds and achieved excellent perfor-

mance. However, most of these methods are difficult to ap-

ply in practice, due to the complex framework, high mem-
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Figure 1. Speed (Hz) versus accuracy (AP) on the test set of KITTI

3D car detection. The single-stage methods are drawn as circles

and the two-stage methods are drawn as squares. RangeIoUDet

outperforms all methods except the top two-stage method PV-

RCNN [24], and is much faster than PV-RCNN.

ory complexity, and slow inference time (Fig. 1). The meth-

ods preferred by practical applications generally meet the

following characteristics: simple framework for easy de-

ployment, fast inference time, and 2D convolution based

model without extra customized operations.

In terms of the input representations of point clouds,

most existing methods can be divided into three types:

voxel based, point based, and range image based meth-

ods. Voxel based [38, 32, 8, 26, 24] and point based meth-

ods [20, 31, 25, 27, 33] are currently the popular methods,

but they are difficult to apply in practice due to the memory

and time complexity issue. Range image based methods

have been explored in early deep learning based 3D object

detection [4]. As the raw data format of the LIDAR sensor,

the range image is dense and compact, and retains almost

all original information with minor loss. Operating on the

range image enjoys the benefit of applying mature 2D con-

volution and does not suffer from the sparsity issue of point

clouds, but this representation has been ignored for a long

time for its unsatisfied performance [18]. Recently, several

methods [18, 2, 29] rethink the advantages of this represen-

tation and propose effective frameworks based on the range
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image. However, the inference speeds of these methods are

still unsatisfactory due to the two-stage architecture [2] or

multi-view fusion [29], making them still unable to meet the

needs of practical applications. In this paper, we propose a

high-performance and fast-speed single-stage 3D detection

method based on the range image.

A simple idea utilizing the range image is to extract

pointwise features from the range image [19] and then

regress 3D bounding boxes from the bird’s eye view, illus-

trated in the upper part of Fig. 2. Such a framework was

proposed in our preliminary work [16] on the ArXiv. It

only needs 2D convolution thanks to the dense represen-

tation of the range image. We introduce this framework in

Sec. 3.1 of this paper. Although the framework is elegant,

its performance is not satisfactory. The main drawback of

the range image representation is the lack of the 3D local

relationship, which means that points far away in the 3D

space may be adjacent in the range image plane. It causes

that although the pixels around the boundary of the object

and background are far away in the 3D space, their fea-

tures extracted from the range image may be similar due

to the blurry issue of 2D feature extraction, which leads to

the inaccurate pointwise features. The range image stores

3D spatial coordinates in its input channels, which means

that it has the potential to learn more accurate features. To

this end, we propose a point-based module to allow the net-

work to learn the hidden spatial information encoded in the

range image by explicit loss supervision, thereby indirectly

enhancing the pointwise features. Specifically, the point-

wise features are aggregated within the receptive field of

3D points, and then supervised by the point-based IoU [1].

It is worth noting that the point-based module is only used

to supervise the learning of pointwise features during train-

ing, and is not needed for inference, so it will not bring extra

computation cost or customized convolution.

Apart from enhancing the pointwise features, it is neces-

sary to design power supervision losses to force the network

to learn high-quality 3D boxes, especially for the single-

stage model without the refinement stage. The performance

of the 3D bounding box is mainly affected by the seven

positioning parameters and the confidence score of the 3D

box. Most current methods use smooth L1 loss to indepen-

dently optimize the seven positioning parameters, and use

the classification score to represent the confidence of the

box. However, the positioning parameters are usually cou-

pled with each other [35, 23], and the classification score

cannot fully reflect the quality of the box. In order to ad-

dress the above two challenges, we propose the 3D Hybrid

GIoU loss based on the implementation of the differentiable

3D IoU. The ”Hybrid” here consists of two meanings: the

hybrid regression strategy and the combination of the re-

gression and quality evaluation. On the one hand, we pro-

pose to use the smooth L1 loss to supervise the location of

the box center and use the 3D GIoU loss to indirectly super-

vise the size of the 3D box. Such a combination avoids the

local optimum of smooth L1 loss, and achieves better per-

formance compared to the sole 3D GIoU. On the other hand,

because most 3D objects have only partial point clouds, it

is not easy to accurately regress the 3D bounding boxes, so

a score that accurately measures the quality of the box is

meaningful. 3D IoU is just a crucial indicator to measure

the box quality, so we use the differentiable 3D IoU as the

quality score to evaluate the quality of the 3D bounding box.

In summary, our contributions can be summarized into

four-fold:

• We propose a single-stage 3D detection model

RangeIoUDet based on the range image, which is sim-

ple, effective, fast, and only uses 2D convolution.

• We enhance pointwise features by supervising the

point-based IoU, which makes the network better learn

the implicit 3D information from the range image.

• We propose the 3D Hybrid GIoU (HyGIoU) loss for

supervising the 3D bounding box with higher location

accuracy and better quality evaluation.

• Our proposed single-stage model RangeIoUDet

achieves state-of-the-art performance on the compet-

itive KITTI 3D detection benchmark and the actual

operation scenario dataset.

2. Related Work

2.1. 3D Object Detection

3D Object Detection based on 2D convolution. Early

3D object detection methods are mostly based on the 2D

convolution. [4] directly projects the point clouds to the

bird’s eye view and predicts the 3D bounding box using 2D

convolution. Many methods [10, 14, 13] improve this idea

by multi-view aggregation and multi-sensor fusion. How-

ever, these 2D convolution based methods do not achieve

the leading position in the benchmark. Also, the pipelines

of these methods are complicated caused by the fusion strat-

egy. [11] introduces a pillar-based encoding method and

design a fast and effective 3D detection method. Recently,

[18, 2] use the range image as the main representation to ex-

tract 3D features. [2] operates on the range image without

conversion between views, and conducts experiments on the

large-scale Waymo dataset [28]. The 2D convolution based

methods have advantages in practical applications benefit-

ing from the efficiency of 2D convolution.

3D Object Detection based on 3D convolution. The

3D convolution mainly includes two types: 3D voxel based

convolution and 3D point based convolution. The pioneer-

ing work VoxelNet [38] divides the point cloud into 3D vox-

els, which are further processed by voxel feature encoder
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Figure 2. The architecture of RangeIoUDet. The range image is input to a 2D fully convolutional network (2D FCN) to extract high-

dimensional features. The 2D FCN is an encoder-decoder structure that consists of a series of downsample blocks (green) and upsample

blocks (blue). The pointwise feature is obtained according to the correspondence between the range image and point clouds. For improving

the quality of the pointwise feature, a point-based IoU module is proposed to indirectly supervise the pointwise feature using Lovasz-

Softmax loss. For improving the quality of the 3D bounding box, the 3D Hybrid GIoU loss is introduced to simultaneously provide

accurate position and quality evaluation.

and 3D convolution. The resolution of the 3D voxel was

limited by the memory complexity issue for a long time in

the past. Afterward, the sparse convolution is proposed to

reduce the memory and time complexity of 3D voxel based

convolution, which greatly promotes the development of the

voxel based methods [32, 8, 26, 24]. Until now, the 3D

voxel based methods leads most of the 3D benchmark. The

3D point based convolution is a big innovation in the field of

point cloud processing. The pioneering work in this field is

PointNet [21]. Many following researches [22, 30, 12, 15]

propose local operations based on PointNet. The point

based methods [27, 33, 20, 31, 25] also have wide appli-

cations in 3D object detection. [20, 31] propose a two-stage

framework which combines the 2D image detection and the

3D frustum detection. [25] proposes a bottom-up frame-

work based on [22] for 3D bounding box generation.

Compared with the 2D convolution based methods, the

3D convolution based methods are not preferred by practi-

cal applications given the implementation and efficiency.

2.2. Intersection over Union

Intersection over Union (IoU) is widely used in many

tasks. For the segmentation task, IoU is used for evaluat-

ing the accuracy of the pixel-wise or pointwise prediction,

which reflects the quality of the learned feature. The cross

entropy loss is a widely used loss function for the segmenta-

tion task. For alleviating the class-imbalance problem, focal

loss [17] is proposed. By learning better on the hard exam-

ple, the pixel-wise or pointwise IoU is improved. Lovasz-

Softmax loss [1] directly optimizes the IoU measure for bet-

ter performance. For the object detection task, IoU is used

as a metric for the quality of the predicted bounding box.

In 2D detection, [35] first introduces IoU Loss to replace

the smooth L1 loss for the bounding box regression. [23]

extends IoU loss to a generalized version. [37] extends 2D

IoU loss to 3D object detection. [36, 6] are proposed for

easy and clever implementation of 3D IoU, but suffer from

the approximation error. Besides the approximation error,

most of these methods directly replace the smooth L1 loss

with 3D IoU related losses instead of exploring their opti-

mal combination for 3D detection. Also, they only pay at-

tention to the accuracy of the bounding box while ignoring

the quality evaluation for the 3D box.

3. RangeIoUDet for 3D Object Detection

In this section, we describe the proposed method

RangeIoUDet, a single-stage 3D object detector optimized

by the point-based IoU and box-based IoU. In section 3.1,

we describe the single-stage model based on the range im-

age as our baseline. In section 3.2, we design a point-
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based module to supervise the point-based IoU by Lovasz-

Softmax loss, which indirectly enhances the pointwise fea-

ture passed to bird’s eye view (BEV). In section 3.3, we in-

troduce the 3D Hybrid GIoU loss to optimize the quality of

the predicted 3D bounding box. Thanks to the optimization

via IoU, the potential of the single-stage model is fully ex-

ploited, which achieves state-of-the-art performance in 3D

object detection while maintaining a fast inference speed.

3.1. Baseline Model of RangeIoUDet

The range image representation has multiple advantages,

especially on the network implementation and inference

time. In this section, we describe the design of the range

image based single-stage model, which uses the 2D convo-

lution for feature extraction and box regression.

The input of the network is the range image, which is

generated by spherical projection of point clouds [19]. The

resolution of the range image is determined by the horizon-

tal angular resolution and the number of vertical lasers. For

the Velodyne 64E LIDAR, it produces 64 lasers and approx-

imately 2000 points for each laser. Thus, the resolution of

the range image is set to 64 × 2048, and the pixel in the

range image and the point in the point cloud are approxi-

mately one-to-one. For each pixel, it encodes five channels

including the 3D coordinates (x, y, z), range r and intensity

e. Particularly, if we only pay attention to the front view of

the vehicle whose horizontal field of view is 90 degrees and

remove invalid vertical lasers, the size of the range image

will be 48 × 512 × 5. The compact representation of the

range image dramatically reduces the computation cost.

The range image is input to a 2D fully convolutional neu-

ral network, shown in Fig. 2. The output of the 2D FCN is

the pixel-wise high-dimensional features. The downsample

block and the upsample block share a similar structure. The

main difference is that the downsample block uses the av-

erage pooling to downsample the output of the block while

the upsample block uses the bilinear upsampling to recover

the resolution. They both apply a series of dilated convolu-

tions [3] with different dilation rates to extract multi-scale

features. Benefiting from the full-resolution output feature

and the approximately one-to-one correspondence between

the range image and the point clouds, the pointwise fea-

ture can be recovered from the pixel-wise feature with mi-

nor loss. The pointwise feature has multiple usages. One

simple and effective usage is to project it to the x-y plane to

generate the BEV feature and then apply the 2D convolution

to predict the bounding box based on BEV.

The above single-stage model is extremely fast benefit-

ing from the efficiency of 2D convolution and the compact

representation of the range image. However, this model

does not achieve a similar performance as state-of-the-art

methods. We use it as the baseline model and optimize it by

the proposed point-based IoU and box-based IoU.
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Figure 3. Network structure of the point-based IoU module. (a)

Baseline structure with only 1×1 convolution. (b) Local PointNet

with ball query, 1×1 convolution, and max pooling. (c) Cascade

structure with several local PointNet layers. (d) Parallel structure

with multi-scale Local PointNet layers applied in parallel.

3.2. Pointwise Feature Optimized by Lovasz­
Softmax Loss

The 2D FCN outputs the pixel-wise feature of the range

image, which is further transferred to the point cloud to ob-

tain the pointwise feature. Due to the 2D receptive field in

the range image plane, points far away in the 3D space may

obtain similar features if they are adjacent in the range im-

age. The pointwise feature is directly passed to the follow-

ing module without any extra supervision. We argue that

the implicit 3D position information encoded in the range

image is not fully exploited. We propose to supervise the

pointwise feature to make the 2D FCN learn better.

One simple idea is to directly apply a segmentation loss

function to the pointwise feature, shown in Fig. 3(a). Di-

rectly supervising the pointwise feature of the point cloud

is equivalent to supervise the pixel-wise feature of the range

image, which does not further utilize the 3D position infor-

mation of point clouds. In fact, this simple idea can not

improve the detection accuracy. We analyze that the main

problem is the lack of the 3D receptive field. However, uti-

lizing the 3D receptive field needs to introduce the point

based or voxel based convolution, which may slow down

the inference speed and increase the difficulty of the deploy-

ment. Considering the above factors, we design the point-

based IoU module shown at the bottom right of Fig. 2.

To make use of the 3D receptive field of point clouds, we

search the local neighbors of each point using ball query and

apply PointNet to extract local features (shown in Fig. 3(b)).

We choose different radii for achieving multi-scale features.

The multi-scale features are extracted in parallel and con-

catenated pointwisely. Finally, the features extracted in the

7143



IoU = 0.694

Lg Lp

IoU = 0.690 IoU = 0.681

Wp

Wg

Figure 4. Illustration of the local optimum of smooth L1 loss. The

green box is the ground truth. The blue box is the prediction. Un-

der the supervision of Smooth L1 loss, the length L and width W

learns better but the IoU becomes worse.

3D space is supervised by Lovasz-Softmax loss [1] to di-

rectly optimize the point-based IoU for better distinguishing

the foreground and background. The local PointNet refines

the pointwise feature which makes the final segmentation

result better. Meanwhile, the better supervision promotes

the 2D FCN to learn better through back-propagation. As a

result, the pointwise feature passed to BEV becomes better

even though the local PointNet is not directly applied to it.

When designing this module, we adopt the parallel struc-

ture (Fig. 3(d)) instead of the cascade strcuture (Fig. 3(c)) to

extract the multi-scale feature. The parallel structure allows

the gradient to be faster and more easily backpropagated to

the 2D FCN, which leads to the point-based IoU supervision

to have a more direct impact on the pointwise feature. The

deeper structure may improve the quality of the pointwise

segmentation but degrade the detection performance.

Discussion. Compared to the point representation, the

range image representation has the drawback of lacking

3D local relationship. Introducing the proposed point-

based IoU module in the training stage makes the network

aware of the 3D receptive field. Although the point-based

IoU module does not directly update the pointwise feature

passed to BEV during the forward propagation, its function

is indirectly reflected through gradient propagation. More-

over, this module can be ignored if there is no requirement

for the segmentation result when applying the inference,

which means that it does not slow down the inference speed.

3.3. 3D Bounding Box Optimized by 3D Hybrid
GIoU Loss

The performance of 3D object detection is affected

by two factors: (1) the positioning accuracy of the 3D

bounding box, which is determined by seven parameters

(x, y, z, L,W,H, θ); (2) the confidence score of the box,

which has a great influence on the quality evaluation. The

positioning accuracy and quality of the predicted box are

GT
Pred

Vertex of Intersection
Center of Vertexes

Enclosing Box
Heading Direction

Triangle Area

Figure 5. Illustration of calculating 3D GIoU loss. For simplicity,

we visualize the example for the 2D rotated box. 3D IoU can be

easily achieved by multiplying the height based on 2D rotated IoU.

both highly related to its IoU with the corresponding ground

truth, which motivates us to explore the value of the box-

based IoU in 3D detection. This section proposes a 3D Hy-

brid GIoU loss, including hybrid GIoU regression loss and

3D IoU quality loss to improve the above two aspects.

Positioning Accuracy. The 3D bounding box has seven

parameters. Optimizing these parameters independently us-

ing the smooth L1 loss may lead to the local optimum. The

reason is that the seven parameters are mutually coupled. In

Fig. 4, the x and y coordinates remain unchanged. When the

length L and the width W become better, the IoU decreases.

This motivates us to jointly optimize the seven parameters.

Extending the IoU or GIoU loss in 2D detection to the 3D

application [37] seems a natural choice. However, extend-

ing 2D IoU to 3D has two problems: (1) the calculation of

analytic and differentiable 3D IoU is non-trivial, especially

when considering the fast and parallel implementation; (2)

using only 3D GIoU loss for regression still cannot effec-

tively improve the accuracy of the box, because IoU loss is

an indirect loss function for box regression.

For problem (1), we implement a parallelized and differ-

entiable 3D IoU. 3D IoU can be easily achieved based on

the 2D rotated IoU by multiplying the height. We briefly

introduce the main calculation pipeline of the 2D rotated

IoU (shown in Fig. 5): (a) Calculating the vertexes (shown

in red in Fig. 5) of the intersection area by determining the

valid intersections and corners; (b) Calculating the area of

the intersection by sorting the vertexes clockwisely around

their center and summing up the triangle areas; (c) Calcu-

lating the area of the predicted box and ground truth. Addi-

tionally, for 3D GIoU loss, we define the heading angle of

the enclosing box [23] as the average of the GT and predic-

tion angles. Such a definition is simple and easy to imple-

ment, and allows the enclosing box to better fit the geome-

try shape compared to the axis-aligned enclosing box. The

above operations are implemented in a parallelized manner.

The core of parallelization is to use the knowledge of plane

geometry to allow most of the operations to be implemented

in parallel based on the basic functions in Pytorch with au-

tomatic differentiation, avoiding time-consuming loops.

Based on the parallel implementation of calculating the
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differentiable 3D IoU (IoU3D) and the enclosing box of the

predicted bounding box and the ground truth, we achieve

the 3D GIoU loss which is nearly cost-free in runtime. The

formula is as follows:

LGIoU3D
= 1−

Ai

U
+

Ac − U

Ac
(1)

where Ac is the area of the enclosing box [23]. Ai is the

area of the intersection. The area of union U is equal to

Ap+Ag−Ai, where Ap and Ag are the area of the predicted

box and ground truth. IoU3D is equal to Ai

U
.

For problem (2), although 3D GIoU loss can serve as an

independent loss for box regression, we find that the smooth

L1 loss still has its advantages. In Fig. 4, the reason why a

better length L does not lead to a better IoU is that it does

not get a more accurate x coordinate. This rule also ap-

plied to (y,W ) and (z,H). Therefore, predicting an accu-

rate center position (x, y, z) is a prerequisite for obtaining

an accurate box. Based on the above observation, we use the

smooth L1 loss to directly supervise the position of the cen-

ter, and use the 3D GIoU Loss to indirectly guide the net-

work to learn the coupling relationship between the seven

parameters (x, y, z, L,W,H, θ), so as to make full use of

the advantages of the smooth L1 loss and the 3D GIoU Loss.

A direction classifier Ldir [32] is used to judge whether the

heading angle falls in [0, π) or [π, 2π). In summary, we pro-

pose the combination of the smooth L1 loss and 3D GIoU

loss with an additional direction classifier to achieve a more

global optimization. The formula is as follows:

LHyGIoUreg
=

∑

b∈x,y,z

LsmoothL1(∆b) + LGIoU3D
+ αLdir

(2)

Quality Evaluation. Besides accurate regression, the

quality evaluation of the 3D box is also critical to the final

result. As the object is usually partial, it does not always

provide enough features for predicting an accurate box. Un-

der such circumstances, assigning an accurate quality score

for evaluating the quality of the predicted bounding box is

very necessary. The quality score can guide the process

of Non-Maximum Suppression (NMS) and the calculation

of the AP metric. However, most current 3D detection al-

gorithms only use the classification score to determine the

quality of the box, which is obviously one-sided. Besides

the classification quality, the positioning quality should also

be considered, which motivates us to use the 3D IoU calcu-

lated in the 3D GIoU loss as the ground truth of the posi-

tioning quality score (QS). The formulation is as follows:

LHyGIoUqs
= ‖ IoU3D −QS ‖2 (3)

It should be noted that the ground truth (IoU3D) and the

predicted score (QS) are both differentiable, which means

that they are jointly optimized. We introduce the posi-

tioning quality score to decide the priority of the predicted

bounding box, which brings an obvious improvement. By

using the differentiable IoU3D as the ground truth, we sur-

prisingly find that even though we do not use the position-

ing quality score for inference, the AP metric also increases.

We analyze in detail in the experiment section.

In summary, the 3D Hybrid GIoU loss consists of the

hybrid GIoU regression loss and IoU quality loss. These are

both beneficial from the differentiable 3D box-based IoU.

The box-based IoU does not only improve the accuracy of

the 3D position but also learns a reasonable evaluation for

the predicted box. The whole loss function is as follows:

LHyGIoU = LHyGIoUreg
+ LHyGIoUqs

(4)

3.4. Loss Functions

We utilize the multi-task loss function for jointly opti-

mizing the box classification, box-based IoU, and point-

based IoU. The total loss function is as follows:

Ltotal = Lcls + βLHyGIoU + γLpoint (5)

where Lcls is focal loss with default hyper-parameters.

LHyGIoU is introduced in Sec. 3.3. Lpoint is Lovasz-

Softmax loss for optimizing the IoU of foreground and

background points (Sec. 3.2). β and γ is set to 2.0 and 1.0.

4. Experiments

In this section, we first describe the implementation de-

tails (Sec. 4.1) of RangeIoUDet. We compare with state-of-

the-art methods on the challenging KITTI dataset (Sec. 4.2)

and an actual operation scenario dataset (Sec. 4.3). In

Sec. 4.4, we conduct extensive ablation studies to validate

the effectiveness of different components.

4.1. Implementation Details

Network Details. The whole framework is shown

in Fig. 2. The structure of the 2D FCN is illustrated in

the figure. The size of the projected BEV feature map is

496 × 432 with resolution [0.16m, 0.16m], ranging from

[0m, 69.12m] for the x axis and [−39.68m, 39.68m] for the

y axis. The BEV feature map is downsampled to 248×216,

124 × 108, 62 × 54 to extract multi-scale features. The

three feature maps are all upsampled to 248 × 216 and

then concatenated. For the local PointNet, we use two

scales [0.4m, 0.8m] for searching neighbors.

Training and Inference Details. The proposed

RangeIoUDet is optimized with the ADAM optimizer. We

train the network with the batch size 32, learning rate 0.01

for 80 epochs on 4 NVIDIA Tesla V100 GPUs, which takes

about 2.3 hours for the KITTI dataset and 12 hours for the

self-built dataset. A cosine warmup strategy is used in the

first 32 epochs with a 0.1 ratio. For the rest epochs, we

adopt the cosine annealing learning rate strategy for the

learning rate decay. For data augmentation, we use the ran-

dom flipping along the x axis, random global scaling fol-

lowing the uniform distribution [0.95, 1.05], random global
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Method Reference Modality
Car Cyclist mAP

FPS
Easy Moderate Hard Easy Moderate Hard Moderate

Two-stage:

MV3D [4] CVPR 2017 RGB+LIDAR 74.97 63.63 54.00 - - - - 2.8

AVOD-FPN [10] IROS 2017 RGB+LIDAR 83.07 71.76 65.73 63.76 50.55 44.93 61.16 10

F-PointNet [20] CVPR 2018 RGB+LIDAR 82.19 69.79 60.59 72.27 56.12 49.01 62.96 5.9

F-ConvNet [31] IROS 2019 RGB+LIDAR 87.36 76.39 66.69 81.98 65.07 56.54 70.73 -

UberATG-MMF [13] CVPR 2019 RGB+LIDAR 88.40 77.43 70.22 - - - - -

EPNet [9] ECCV 2020 RGB+LIDAR 89.91 79.28 74.59 - - - - -

PointRCNN [25] CVPR 2019 LIDAR 86.96 75.64 70.70 74.96 58.82 52.53 67.23 10

Part-A2 [26] TPAMI 2020 LIDAR 87.81 78.49 73.51 79.17 63.52 56.93 71.01 14

Fast Point R-CNN [5] ICCV 2019 LIDAR 85.29 77.40 70.24 - - - - 15.4

STD [34] ICCV 2019 LIDAR 87.95 79.71 75.09 78.69 61.59 55.30 70.65 10

PV-RCNN [24] CVPR 2020 LIDAR 90.25 81.43 76.82 78.60 63.71 57.65 72.57 10

Single-stage:

SECOND [32] Sensors 2018 LIDAR 83.34 72.55 65.82 71.33 52.08 45.83 62.32 20

PointPillars [11] CVPR 2019 LIDAR 82.58 74.31 68.99 77.10 58.65 51.92 66.48 62

Point-GNN [27] CVPR 2020 LIDAR 88.33 79.47 72.29 78.60 63.48 57.08 71.48 1.6

3D-SSD [33] CVPR 2020 LIDAR 88.36 79.57 74.55 82.48 64.10 56.90 71.84 26

SA-SSD [8] CVPR 2020 LIDAR 88.75 79.79 74.16 - - - - 25

RangeIoUDet (ours) - LIDAR 88.60 79.80 76.76 83.12 67.77 60.26 73.79 45

Table 1. The average precision (AP) with 40 recall positions (R40) of 3D object detection on the KITTI test set.

rotation around the z axis following the uniform distribu-

tion [−π
4 ,

π
4 ] and the ground truth sampling [32].

For the post-processing stage, we keep the predicted

boxes whose confidence scores are higher than 0.2. The

threshold of NMS is set to 0.1 to remove the redundant

boxes. The model runs at 45 FPS on a NVIDIA Tesla V100.

4.2. 3D Detection On the KITTI Dataset

KITTI dataset [7] is one of the most popular datasets for

3D object detection. It contains 7481 training samples and

7518 test samples. We follow the general split of 3712 train-

ing samples and 3769 validation samples. Table 1 shows

the performance of RangeIoUDet on the test set. The AP

of the moderate level is the most important metric which

is chosen as the ranking basis on the benchmark. On the

moderate level of Car, our method outperforms all previous

single-stage and two-stage methods except PV-RCNN. On

the hard level of Car, our method achieves almost the same

accuracy as the top two-stage model PV-RCNN. We ana-

lyze that the compact and dense representation of the range

image provides rich context information for hard examples,

which alleviates the sparse issue of distant objects. While

achieving high performance, our method is more than four

times faster than PV-RCNN.

In order to further explore this advantage, we also train

the model on the cyclist category. RangeIoUDet achieves

the best performance. Besides the hard car examples,

the dense representation of the range image also makes

it easy to extract rich context information for small ob-

jects. Compared to state-of-the-art methods, the proposed

RangeIoUDet has advantages both in accuracy and effi-

ciency. More importantly, RangeIoUDet is a model based

on 2D convolution, making it easy to implement and deploy.

In the field of the range image based detection, Laser-

Net [18] is a forward-looking work that points out the po-

tential of the range image. It reports the result (74.52%)

of BEV detection on the KITTI dataset. Our method out-

performs it by a large margin (88.59%), which proves the

effectiveness of the range image on the small-scale dataset.

4.3. 3D Detection On the Actual Operation Dataset

To show the generalization on different LIDAR sensors

and the performance in actual scenarios, we use the self-

built dataset to investigate the proposed RangeIoUDet. The

LIDAR used in this dataset is Pandar40P, which generates

40 lasers, each with about 1800 points. Pandar40P provides

the laser id on the driver, which makes the range image more

accurate. In order to match the above network structure, we

use the zero padding operation to extend the range image

for the front view to the size of 48× 512× 5.

The dataset is collected on the city road. It contains

18,000 training samples, 2,000 validation samples, and

3,000 testing samples. This section compares the pro-

posed RangeIoUDet with PointPillars[11], SECOND[32],

and PV-RCNN[25]. The pixel height of the bounding box

on the 2D image is used to measure the difficulty. The cat-

egories Car reflects the detection performance for large ob-

jects, and Pedestrian and Cyclist reflect the detection per-

formance when the number of point clouds is scarce.

Table 2 shows the comparison of the above methods.

In the Car category, RangeIoUDet outperforms the other

three methods. In the Pedestrian category, RangeIoUDet

is weaker than PV-RCNN but outperforms the other two

single-stage methods. We think that the two-stage refine-

ment of PV-RCNN focuses on a local region, which can bet-

ter learn the feature for small pedestrians. In the Cyclist cat-

egory, the performance of RangeIoUDet is better than that

of the other three methods. The above results prove that (1)

even if the LIDAR is changed, the proposed method still has

good detection performance, showing its good versatility,
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Method
Car AP0.7 Pedestrian AP0.5 Cyclist AP0.5

Height>40 Height>25 Height>40 Height>25 Height>40 Height>25

PointPillars[11] 96.57 95.37 50.31 40.03 73.26 66.58

SECOND[32] 98.54 95.46 51.50 42.52 76.67 70.80

PV-RCNN[25] 98.81 95.48 56.21 45.34 78.34 71.33

RangeIoUDet (ours) 99.09 96.27 53.38 44.83 79.65 72.81

Table 2. The average precision (AP) with 40 recall positions (R40) of 3D object detection on the test set of the actual self-built dataset.

The height is used to measure the difficulty level.

Box-based IoU Loss Confidence Score Easy Moderate Hard

Baseline (SL) Class 87.79 79.26 76.17

3D IoU Class 88.49 80.57 77.31

3D GIoU Class 89.61 80.97 78.01

HyGIoUreg Class 90.58 81.40 78.42

HyGIoUreg + HyGIoUqs Class 90.59 81.72 78.71

HyGIoUreg + HyGIoUqs Class * QS 91.10 82.42 79.05

Table 3. Comparision of different loss functions for the 3D bound-

ing box. The AP with 40 recall positions (R40) is used.

(2) when an accurate scan id can be obtained, RangeIoUDet

method will have better performance, even surpassing the

current SOTA method PV-RCNN in some categories, (3)

the proposed RangeIoUDet method also has good detection

performance for the small and complex types.

4.4. Ablation Study

In this section, we conduct ablation studies to analyze the

effectiveness of different components. We do the following

experiments on the validation set of KITTI for the car class.

Effectiveness of the Box-based IoU Loss. In this pa-

per, the 3D Hybrid GIoU loss is proposed to improve the

location accuracy and quality evaluation of the 3D bound-

ing box. We thoroughly investigate the effects of different

components in this loss function. We use the smooth L1 loss

as the baseline (Sec. 3.1). 3D IoU loss improves the quality

of the 3D box by jointly optimization, and the 3D GIoU loss

improves it by introducing the enclosing box with the aver-

age heading angle. Compared to the sole 3D GIoU loss, us-

ing the proposed hybrid regression (HyGIoUreg) achieves

a higher performance (4th row of Table. 3), which verifies

the effectiveness of our analysis and design. Surprisingly,

adding the supervision for the quality score (QS) promotes

the learning of the network (5th row of Table. 3), even

though we do not use the quality score for the confidence

score. Finally, we set the confidence score to the prod-

uct of the classification score and the quality score, which

achieves the highest performance (6th row of Table. 3).

Effectiveness of the Point-based IoU Module. We in-

vestigate the influence of different structures of the point-

based IoU supervision based on the best performance in

Table 3 (6th row). Directly supervising the pointwise

feature after a fully connected layer (Fig. 3(a)) degrades

the performance (2nd row of Table. 4) compared with the

model without the point-based supervision (1st row of Ta-

ble. 4). Utilizing the 3D receptive field by local Point-

Point-based IoU Module Car IoU Easy Moderate Hard

× × 91.10 82.42 79.05

Fully Connected Layer 63.92 89.82 82.34 78.01

Local PointNet-SingleScale 70.58 91.58 82.99 79.36

Local PointNet-Cascade 73.35 91.48 82.77 79.75

Local PointNet-Parallel 72.72 91.92 83.19 80.10

Table 4. Comparision of different structures of the point-based IoU

module. The point-based IoU for the Car category is provided.

Net (Fig. 3(b)) can contribute to the 3D detection result.

Using single-scale local PointNet already achieves a good

improvement (3rd row of Table. 4), while the multi-scale

parallel structure (Fig. 3(d)) further improves the result (5th
row of Table. 4). The cascade structure does not lead to

further improvement. The reason is that the function of the

point-based module is to indirectly supervise the pointwise

feature instead of directly updating it in the forward propa-

gation. A deeper network will make the supervision have a

weaker impact on the pointwise feature passed to BEV.

Accuracy of Semantic Segmentation. Although our

network is designed for 3D object detection and the point-

wise segmentation is ignored during the inference, we ana-

lyze the pointwise IoU for better understanding the result.

The IoU of the car category is shown in Table 4. After in-

troducing the local PointNet, the pointwise IoU improves

significantly, from 63.92 to 70.58. Especially, the cascade

structure performs better than the parallel structure for the

pointwise IoU, but worse for the 3D detection result, which

confirms the rationality of our network design.

5. Conclusion

We have presented RangeIoUDet, an efficient and accu-

rate single-stage 3D object detector based on the range im-

age. By optimizing the point-based IoU and the box-based

IoU for the pointwise feature and the 3D bounding box re-

spectively, the potential of the range image based single-

stage model is well exploited. Benefiting from the com-

pact representation of the range image and the efficiency of

2D convolution, our method runs at real-time frame rates.

Experiments on the KITTI dataset and the actual operation

dataset show the effectiveness and generalization on differ-

ent LIDAR sensors and object categories. RangeIoUDet is

simple to construct and can leverage vast design experience

of mature image-based network structures, which makes it

easy to be practically applied and continuously improved.
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