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Abstract

Existing inpainting methods have achieved promising

performance in recovering defective images of specific

scenes. However, filling holes involving multiple seman-

tic categories remains challenging due to the obscure se-

mantic boundaries and the mixture of different semantic

textures. In this paper, we introduce coherence priors be-

tween the semantics and textures which make it possible to

concentrate on completing separate textures in a semantic-

wise manner. Specifically, we adopt a multi-scale joint op-

timization framework to first model the coherence priors

and then accordingly interleaving optimize image inpaint-

ing and semantic segmentation in a coarse-to-fine manner.

A Semantic-Wise Attention Propagation (SWAP) module is

devised to refine completed image textures across scales by

exploring non-local semantic coherence, which effectively

mitigates the mix-up of textures. We also propose two coher-

ence losses to constrain the consistency between the seman-

tics and the inpainted image in terms of the overall structure

and detailed textures. Experimental results demonstrate the

superiority of our proposed method for challenging cases

with complex holes.

1. Introduction

High-quality image inpainting aims to fill in missing re-

gions with synthetic content [1, 2, 5]. It requires both se-

mantically meaningful structures and visually pleasing tex-

tures. To this end, deep learning-based methods [24, 39,

42, 44, 46, 47] resort to encoder-decoder based networks to

infer the context of a corrupted image and then refine the

texture details in the initial inference of a missing region by

some tools, such as non-local algorithms. Although current

image inpainting methods have made significant progress,

it still poses technical challenges in completing complex

holes, particularly when a missing region involves multi-

ple sub-regions with different semantic classes. The main

reason falls in the failure of modeling the prior distributions
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Figure 1: Upper part: Mapping between image textures and

edges/semantics (Dot arrow - extraction of edges/semantics; solid

arrow - texture generation). Notice that two similar edge patches

in a green circle could be mapped to completely different semantic

textures, but one semantic will be clearly mapped to a certain tex-

ture category. Lower part: an example showing two similar edge

patches map to two different semantic textures.

of a mixture of different semantic regions, which usually

result in blurry boundaries and unrealistic textures [15, 16].

A feasible approach is to adopt structural information,

such as edges [12, 21], contours [38], and smooth im-

ages [26], as guidance to complete missing structures and

textures in two steps. The assumption is that structures of-

fer semantic clues for inferring an unknown scene, mak-

ing them suitable for guiding the filling of textures. How-

ever, we notice that the correspondence between structural

information and textures is not apparent, making the filled

textures still highly rely on the local correlation around the

missing region. Figure 1 demonstrates the ambiguity of the

mapping from mid-level structures (e.g., the edges) to the

textures, which can significantly degrade the visual authen-

ticity of the generated textures.
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Compared with mid-level structures, high-level seman-

tic information offers more vital semantic clues to the ob-

ject textures. For example, in Figure 1, the semantic animal

leads to fluffy fur while the semantic tree leads to green

leaf in the image, which cannot be usually distinguished

solely from their mid-level structures. In contrast, object

textures have been shown to provide sufficient information

about the semantic classes [7, 11]. Thus we characterize the

relationships between the semantics and textures of objects

as coherence priors and build our inpainting method on the

coherence priors to complete complex holes while ensuring

the mutual consistency between the predicted semantics and

textures.

Based on the above motivation, we propose to utilize co-

herence priors between semantics and textures to facilitate

joint optimization of semantic segmentation and image in-

painting. To this end, our framework extracts a shared fea-

ture to represent the common information of the two tasks,

and characterize the interaction between scales to enable

the utilization of coherence priors to optimize the two tasks

jointly. Specifically, two novel designs are proposed: 1)

A Semantic-Wise Attention Propagation (SWAP) module is

used to explicitly capture the semantic relevance between an

unknown (missing) area and the known regions. As a result,

when mapping semantics to image textures, filling in an un-

known patch only refers to those known patches with the

same semantic, rather than to the entire image, to avoid ir-

relevant texture filling. 2) We devise two loss terms to learn

the global and local coherence relationships, respectively.

The image-level structure coherence loss is used to super-

vise the structural matching between the inpainted image

and the corresponding segmentation map to generate clear

boundaries in the inpainted image. Besides, the non-local

patch-level coherence loss aims to assess the distribution of

patch textures in the semantic domain to encourage the gen-

erated textures to be as similar as the matched known patch

of the same semantics.

Unlike the existing semantics-guided inpainting meth-

ods, such as SPG-Net [28] and SGE-Net [15], which syn-

thesize textures by convolution to involve the local seman-

tic information, our proposed method predicts the textures

and the semantics simultaneously, and borrows the known

texture feature of the same semantic to fill in a missing

region by a semantics-guided non-local means, which not

only ensures realistic textures but also is valuable for se-

mantic recognition.

The main contributions of our paper are three-fold:

• We introduce coherence priors that highlight the mu-

tual consistency between the semantics and textures in

image inpainting and devise two coherence losses to

boost the consistency between semantic information

and inpainted image in the global structure level and

local texture level.

• We propose a novel semantic-wise attention propa-

gation module, which generates semantically realistic

textures by capturing distant relationships and refer-

ring to the texture feature of the same semantic in the

feature maps.

• Our approach outperforms existing state-of-the-art im-

age inpainting methods [15, 21, 43, 45] on completing

complex hole with multiple semantic regions in terms

of the sharpness of boundaries and the coherence and

visual plausibility of textures.

2. Related Work

2.1. Image inpainting

Deep learning-based inpainting approaches have re-

cently been proposed by understanding the images, which

can generate meaningful content for filling in the missing

region. Context Encoder [24] was first proposed to em-

ploy generative adversarial networks and demonstrated its

potential for inpainting tasks. Based on it, efforts have

been made to enhance the inpainting performance, includ-

ing introducing specific losses [6, 34, 47], building recur-

sive architectures for progressive refinement [13, 40], de-

signing special convolutional layers to better handle irreg-

ular holes [18, 43], and involving the structural priors in a

two-stage framework as guidance for structural consistency

[14, 21, 26, 41]. However, these methods lack the ability

to model long-term correlations between distant contexts,

leading to blurry textures.

To better refine the inpainted image textures, non-local

algorithms are adopted to borrow distant features from a

known region, which contains fine textures, to the missing

region. [42] firstly proposed to compute textural affinity

within the same image to fill the corrupted area with more

realistic texture patches from the available area. [45] de-

vised a pyramid of contextual attention at multiple layers

to refine the textures from high-level to low-level. [19]

used a coherent semantic attention layer to ensure seman-

tic relevance between nearby filled features. [37] extends

the single attention map to bidirectional attention maps and

re-normalizes the features to let the decoder concentrate on

filling the holes. Although these methods have delivered

considerable improvements, they failed to address the se-

mantic ambiguity as they try to measure the texture affinity

across all semantics.

2.2. Semantic­guided image processing

Recent research reveals that the semantic priors of the

high-level vision tasks are useful in the guidance of low-

level vision tasks [4, 17, 32, 35]. One hot research topic

is semantic-guided image generation. It covers several re-

search directions, including image translation from segmen-

tation maps to realistic images [10, 31] and semantic image

6540



2
1

2

E

... 
...

extract 
patches

... 
...

extract 
patches

dilated
convolution

l+1

CIM

SWAP

SWAP

... ... 

S 1

S 2

S L

I 1

I 2

I L

M
I

f_buildingpredicted

f_buildingknown

f_ tree
known

f_ tree
predicted

S_buildingattention

S_treeattention

f_buildingupdated

f_ tree
updated

f_
all
updated

L

M

S l

l

l+1

f l

L

1

(a) Overall Framework (b) Semantic-wise Attention Propagation (SWAP) Module

Figure 2: Proposed network architecture. At each scale, both the inpainted image and segmentation map are output from two task-specific

heads to control the predicted structures of the shared features. SWAP is added between scales to progressively optimize the texture details

of contextual feature.

synthesis [4, 29, 32]. To avoid the vanishing of semantic

priors in the generation process, [23] proposed a spatially

adaptive normalization layer to propagate the semantic in-

formation to the synthesized images. With the useful se-

mantic priors, it can generate high-quality images.

The semantic priors have also been applied to promote

many conditional low-level vision tasks and demonstrated

its effectiveness in constraining the plausible solution space

in the ill-posed problems. For example, they are involved in

the tasks of super-resolution [33], dehazing [25], denoising

[17], style transfer [20, 30], image manipulation [9, 22]. In-

spired by the successful assistance from semantic priors in

conditional image generation, we also exploit the semantic

guidance in completing a corrupted image, especially when

the hole involves multiple semantic regions.

3. Proposed Method

How to achieve high-quality inpainting results on both

semantically reasonable structures and visually pleasing

textures? We argue that such results should not only be

able to reconstruct the structures of the semantic objects for

the global structure, but also the textures of them should

look realistic with the same semantic in the image for local

pixel continuity. To this end, we build a multi-task learn-

ing framework on the coherence priors to explicitly recon-

struct both the structures and textures of semantic objects.

Moreover, we propose a new SWAP module to optimize the

textures by semantically binding the textures between an in-

painted region and the known regions based on the coher-

ence priors. we also devise two losses to guide the learning

of coherence relationships both in the global structure level

and in the local patch level, respectively.

3.1. Framework Overview

We build our network on an alternating-optimization ar-

chitecture to utilize the coherence priors to mutually as-

sist image inpainting and semantic segmentation for a cor-

rupted image. Specifically, we propose a multi-task learn-

ing framework by sharing features in the decoder for the

two tasks (as shown in Figure 2). The encoder encodes the

corrupted image and its mask into hierarchical contextual

features, which are then fed into the decoder to predict the

inpainted images and semantic segmentation maps across

scales. Prior to feeding the encoded feature of the last layer

into the decoder, we initially complete the feature via a Con-

text Inference Module (CIM) based on the contextual infer-

ence method [15, 36].

In the decoder, the contextual feature at each scale is pro-

cessed by two task-specific heads to predict the inpainted

image and the segmentation map, respectively. Different

from the method proposed in [15] that updates the contex-

tual features by spatial adaptive normalization to capture

the common properties of the same semantic, we propose

a SWAP module to stress the realistic texture of each se-

mantic patch by referring to the semantic relevant features

from the known regions. In this way, the contextual features

are learned to represent the global structure and refined with

the semantic-aware texture details.

For brevity, we adopt the following notations. ϕl and φl

denote the features from the encoder and decoder at scale l,

respectively; Î l and Ŝl respectively represent the inpainted

image and the predicted k-channel segmentation map from

a inpainting head h(·) and a segmentation head g(·) at scale

l, where k is the total number of semantic labels; l ranges

from 1 (the coarsest layer) to 5 (the finest layer).
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Figure 3: Proposed coherence losses. (a) non-local patch coher-

ence loss encourages the generated texture to be as similar as any

known patch of the same semantic in the real image; (b) struc-

ture coherence loss ensures the structural consistency between the

entire segmentation map and the inpainted image.

3.2. Semantic­wise Attention Propagation (SWAP)

The SWAP module is designed to optimize the contex-

tual features by enhancing the semantic authenticity of tex-

tures based on coherence priors. As shown in Figure 2(b),

SWAP takes four inputs: two of them are the current-scale

feature φl and the next-scale skip feature ϕl+1 from the en-

coder. The third is the predicted segmentation probability

map Ŝl, that is used to guide the separation of features. The

last is the missing-region mask M . The propagation process

can be formulated as follows:

φl+1 = swap(φl, ϕl+1, Ŝl,M), (1)

where swap(·) is the process of refining the contextual fea-

tures in SWAP.

The attention-based approaches in [27, 37, 42] resort to

contextual attention to pick known regions as references to

complete a missing region, which, however, cannot distin-

guish patches of different semantics and thereby leads to

blurry boundaries and semantic confusion during attention

propagation. Unlike these approaches, SWAP calculates

the attention scores by matching semantic-aware features

of missing patches and the known patches based on the co-

herence priors. Specifically, we first split the contextual fea-

tures f l, which is generated from φl and ϕl+1, into different

semantic parts according to the labels in the predicted seg-

mentation map Ŝl of the l-th layer. We subsequently drop

the superscript l for the sake of notational simplicity.

Within each semantic part, each patch’s attention score is

evaluated by the patch affinity between the missing region

and a known region using the normalized inner product fol-

lowed by a softmax operation:

Df c
i,j = 〈

pci
||pci ||2

,
pcj

∣

∣

∣

∣pcj
∣

∣

∣

∣

2

〉, (2)

ωc
j,i =

exp(Df c
i,j)

∑N

i=1
exp(Df c

i,j)
, (3)

where pci is the i-th patch extracted from semantic feature

f c of class c in the known region, pcj is the j-th patch ex-

tracted from f c in the missing region. Df c
i,j is the affinity

between them, and ωc
j,i is the attention score representing

the normalized affinities for each patch.

After obtaining the attention score from the known re-

gion, the feature of the j-th missing patch is updated by

pcj =
Nc

∑

i=1

ωc
j,i p

c
i . (4)

where N c is the total number of patches of semantic class c

in the known region.

The output feature of SWAP is generated by merging the

updated features of all semantics, followed by four groups

of dilated convolutions with different rates to improve the

structural coherence in the final reconstructed features.

3.3. Coherence Losses

We devise new coherence losses between the semantics

and textures as supervisions to guide the image inpainting

and semantic segmentation to meet the following require-

ments: 1) the overall structures between the inpainted im-

age and segmentation map should match each other; 2) the

predicted textures of a certain semantic class should have

the same distribution as that of the semantic textures in the

known region. Under these considerations, we propose two

coherence losses shown in Figure 3, a non-local patch co-

herence loss and a structure coherence loss, to respectively

evaluate the patch similarity and the structural matching.

Non-local Patch Coherence Loss. Given the final in-

painted image Î and the predicted segmentation map Ŝ, we

aim to maximize the texture similarity between Î and I .

This is, the generated patches attributed to a specific class c

should be similar to the realistic patches of the same class

in the ground-truth image.

Similar to the attention propagation process, we first split

Î and I into different semantic images and extract patches to

build the corresponding semantic patch sets P c = {pcj} and
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Bc = {bci} according to Ŝ and S. For each patch in P c, we

randomly select one patch from Bc with the same semantic,

and compute the pairwise cosine distances between them as

Dici,j = 1− 〈
pci − µc

b

||pci − µc
b||2

,
bcj − µc

b
∣

∣

∣

∣bcj − µc
b

∣

∣

∣

∣

2

〉, (5)

where µc
b =

1

Nc

∑

j b
c
j , Nc is the number of patches in Bc.

The non-local patch coherence loss for each semantic

class c aims to maximize the similarity between the patch

couples:

Lc
nlc(P

c, Bc) = − log(
1

N c
P

(
∑

i

Dici,j)), (6)

where N c
P is the cardinality of the set of the generated

patches with class label c. Our objective is defined as the

sum of all the single-class non-local patch coherence losses

over different classes found in Ŝ:

Lnlco(I, Î, S, Ŝ) =
∑

c

Lc
nlco(P

c, Bc), (7)

where c assumes all the class labels of mask in Ŝ. Note that

if the label value in Ŝ is not found in S, the coherence loss

of the corresponding semantic patch set is set to 0.

Structure Coherence Loss. Besides the local patch sim-

ilarity, we adopt a structure coherence loss to encourage

the structural coherence between the inpainted image and

the predicted segmentation map. In this work, we use two

conditional discriminators to judge whether the semantics

and the same image’s textures are coherence. The texture-

conditioned discriminator Dt is introduced to detect the pre-

dicted segmentation map’s “fakes” given the real image,

while the semantics-conditioned discriminator Ds is trained

to detect the inpainted image’s “fakes” given the real seg-

mentation map. The structure coherence loss can be ex-

pressed as:

Lsco(I, Î, S, Ŝ) = Lcs(I, Î, S) + Lct(S, Ŝ, I)

= EI,S [logDs(I, S)] + E
Î,S

[log(1−Ds(Î , S))]

+ ES,I [logDt(S, I)] + E
Ŝ,I

[log(1−Dt(Ŝ, I))].

(8)

3.4. Objective Functions

We design appropriate supervised loss terms for learn-

ing the inpainting and segmentation tasks at each scale to

obtain multi-scale predictions. We adopt the reconstruction

loss, the adversarial loss and the proposed coherence losses

to promote the fidelity of the inpainted images. The cross

entropy loss is adopted for ensuring the accuracy of the pre-

dicted segmentation maps.

Reconstruction Loss. We use the L1 loss to encourage per-

pixel reconstruction accuracy at all scales.

L1(I, Î) =
∑

l

∣

∣

∣

∣

∣

∣
I − up(Îl)

∣

∣

∣

∣

∣

∣
. (9)

where up(·) is to upsample Îl to the same size as I .

Adversarial Loss. We use a multi-scale PatchGAN [32] to

classify the global and local patches of an image at different

resolutions. The discriminator at each scale is identical and

only the input is a differently scaled version of an image.

Lα(I, Î) =
∑

k=1,2,3

(EI [logD(pkI )] + E
Î
[(1− logD(pk

Î
)]),

(10)

where D(·) is the discriminator, pkI and pk
Î

are the patches

in the k-th scaled versions of I and Î .

Cross-Entropy Loss. This loss is used to penalize the seg-

mentation performance.

Lxe(S, Ŝ) = −
∑

l

∑

p∈S

S(p) log(up(Ŝl)(p)), (11)

where p is the pixel index for segmentation map S.

Overall Training Loss. The overall training loss function

for our network is defined as the weighted sum of the above

mentioned losses.

LFinal = L1(I, Î) + λαLα(I, Î) + λxeLxe(S, Ŝ)

+λco(Lnlco(I, Î, S, Ŝ) + Lsco(I, Î, S, Ŝ)),
(12)

where λα, λse and λco are the weights for the adversarial

loss, cross-entropy loss and coherence loss, respectively.

4. Results

4.1. Experimental Settings

We evaluate our method on the Outdoor Scenes [33] and

Cityscapes [48] datasets. Outdoor Scenes contains 9,900

training images and 300 test images. Cityscapes contains

5,000 street-view images in total. In order to enrich the

training set of Cityscapes, we use 2,975 images from the

training set and 1,525 images from the test set for training,

and test on the 500 images from the validation set. Since

the test set lacks human-labeled semantic annotations, we

generate the annotations for training by using the state-of-

the-art segmentation model Deeplab [3]. We resize each

training image to ensure its minimal height/width to be 256

for Outdoor Scenes and 512 for Cityscapes, and then ran-

domly crop sub-images of size 256 × 256 as inputs to our

model. The fine annotations of segmentation labels for both

datasets are also provided for training, in which Outdoor

Scenes and Cityscapes are annotated to 8 and 20 categories,
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(a) Input (b) GatedConv (c) PEN-Net (d) EdgeConnect (e) SGE-Net (f) Our method (g) Ground-truth

Figure 4: Qualitative comparison of inpainting results on image samples from Outdoor Scenes and Cityscapes.

respectively. Please note that the annotations can also be re-

placed by the extracted segmentation maps from the state-

of-the-art segmentation models.

We compare our method with the following four

learning-based inpainting methods: 1) GatedConv [43]:

Contextual attention for leveraging the surrounding textures

and structures. 2) EdgeConnect [21]: Two-stage inpainting

framework with edges as low-level structural information.

3) PEN-Net [45]: Cross-layer attention transfer and pyra-

mid filling in a multi-scale framework. 4) SGE-Net [15]:

Semantic guidance for inpainting based on spatially adap-

tive normalization [23].

4.2. Qualitative Comparisons

Figure 4 shows the qualitative comparisons of our

method with all the baselines. The corrupted area is sim-

ulated by sampling a central hole (128 × 128 for Outdoor

Scenes and 96 × 96 for Cityscapes) or randomly placing

multiple irregular masks based on [43]. As shown in the

figure, the baselines usually suffer from artifacts and unsat-

isfactory boundaries while completing complex holes. Gat-

edConv and PEN-Net adopt contextual attention to bring

in the features of the known region, but they usually dis-

tort the structures when referencing to incorrect semantic

textures from the surrounding, especially in completing the

complex holes. EdgeConnect and SGE-Net are able to re-

cover correct structures owning to the use of structure pri-

ors. However, EdgeConnect may generate mixed edges,

making it difficult to generate correct textures, whereas the

textures of SGE-Net are often over-smoothed without tex-

ture refinement. In contrast, our method generates more re-

alistic textures and better boundaries delineating semantic

regions than all the baselines thanks to the coherence priors

between semantics and textures.

4.3. Quantitative Comparisons

Table 1 shows the quantitative comparisons on Outdoor

Scenes and Cityscapes datasets based on three quality met-

rics: Peak Signal-to-Noise Ratio (PSNR), Structural Simi-

larity Index (SSIM) and Fréchet Inception Distance (FID)

[8]. In general, the proposed method achieves signifi-

cantly better objective scores than the baselines, especially

in PSNR and SSIM.

4.4. User Study

We randomly select 100 images from the two datasets

(50 from Outdoor Scenes and 50 from Cityscapes) and in-

vite 20 subjects with image processing expertise to rank the

visual qualities of images inpainted by the five inpainting

methods (GatedConv, PEN-Net, EdgeConnect, SGE-Net,
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Table 1: Objective quality comparison of five methods in terms of PSNR, SSIM, and FID on Outdoor Scenes and Cityscapes (↑: Higher

is better; ↓: Lower is better).

Outdoor Scenes Cityscapes

centering holes irregular holes centering holes irregular holes

PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓

GatedConv 19.06 0.73 42.34 18.47 0.74 44.15 21.13 0.74 20.03 17.13 0.67 43.14

PEN-Net 18.58 0.75 44.12 17.56 0.69 48.95 20.48 0.72 22.34 16.37 0.66 47.87

EdgeConnect 19.32 0.76 41.25 19.12 0.74 42.27 21.71 0.76 19.87 17.63 0.72 39.04

SGE-Net 20.53 0.81 40.67 19.46 0.76 39.14 23.41 0.85 18.67 17.78 0.74 41.45

Ours 21.18 0.81 38.15 20.31 0.80 36.74 23.89 0.84 18.14 17.86 0.76 38.18

Figure 5: Comparisons between different attention modules.

From left to right: input, the most matched patches in existing

attention module, result from existing attention module, the most

matched patches in SWAP module, and result from SWAP mod-

ule. The arrows in columns 2 and 4 indicate the matched patch

from known region to the missing region.

and our method). They are not informed of any mask in-

formation. For each test image, its five inpainting results

are presented in a random order, and each subject is asked

to rank the five methods from the best to the worst. The

result shows that our method receives 51.8 % favorite votes

(i.e., the top-1 in 1,036 out of 2,000 comparisons), surpass-

ing 21.3 % with SEG-Net, 13.5 % with EdgeConnect, 7.8 %

with GatedConv, and 5.6 % with PEN-Net. Note, the higher

percentage of favorite votes, the better subjective evalua-

tion. Hence, our method outperforms the other methods.

4.5. Ablation Studies

4.5.1 Effectiveness of SWAP

We verify the effectiveness of SWAP by comparing it with

the contextual attention module from GatedConv [43]. To

show the difference, we highlight the location of the best-

match patch for a patch in the missing area. As shown in

Figure 5, since the existing attention module refers to the

whole known region without any semantic guide, it usually

matches wrong texture patches to the missing area, leading

to ambiguous textures. In contrast, benefiting from SWAP,

our method matches the patches within the same seman-

tic class, which effectively improves the fidelity of matched

reference textures so as to generate more realistic textures.

Figure 6: Visual quality comparisons between EdgeConnect and

our method. From left to right: input, reconstructed edges and im-

ages by EdgeConnect, reconstructed segmentation maps and im-

ages by our method. The red arrows highlight the unrealistic re-

gions generated from Edgeconnect compared with ours.

Figure 7: Visual quality comparisons on four variants to show the

effectiveness of SWAP and Coherence Loss. From left to right:

input, results of Ours (Base), Ours (Att), Ours (SWAP), and Ours

(Full).

4.5.2 Edge vs. Semantic Segmentation

Our work assumes that semantic segmentation labels offer

tighter clues to the textures than edges. To validate it, we

compare the reconstructed structures of EdgeConnect and

our model in Figure 6. We find that the edges of different

objects may be mixed up in the edge maps, making Edge-

Connect fill in incorrect texture details for some missing ar-

eas. In contrast, the inferred semantic segmentation labels

from our model help well delineate the layout of images,

and the semantics can guide the filling of the textures, re-

sult in more photo-realistic results.
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Figure 8: Visual quality comparisons on image samples from

Places2. From left to right: input, results of GatedConv, Edge-

Connect, and Our method, ground-truth.

Table 2: Statistical comparison on semantic segmentation ac-

curacy between the semantic-guided inpainting methods, namely

SPG-Net [28], SGE-Net[15] and our method on Outdoor Scenes

and Cityscapes.

Outdoor Scenes Cityscapes

Methods mIoU% Methods mIoU%

SPG-Net 0.51 SPG-Net 0.39

SGE-Net 0.68 SGE-Net 0.53

Ours 0.71 Ours 0.57

Table 3: Comparisons on the performance gains with SWAP and

Coherence Loss (Co-Loss) in terms of three metrics.

SWAP Co-Loss PSNR↑ SSIM↑ FID↓

Ours (Base) ✗ ✗ 17.43 0.65 57.31

Ours (Att) ✗ ✗ 19.77 0.76 43.54

Ours (SWAP) ✓ ✗ 20.58 0.79 39.46

Ours (Full) ✓ ✓ 21.18 0.81 38.15

4.5.3 Comparison of Segmentation Accuracy

In order to further validate the coherence priors between se-

mantics and the textures, We also conduct experiments to

compare the generated segmentation maps from SPG-Net,

SGE-Net, and our method. Due to the alternative optimiza-

tion of the inpainting and the segmentation tasks, we can

generate high-quality segmentation maps, which in turn im-

prove the inpainting results. Table 2 shows that our method

outperforms the SPG-Net and the SGE-Net in semantic seg-

mentation. The once-forward process from SPG-Net is hard

to generate reliable semantic labels for the large missing ar-

eas, while the SGE-Net does not explicitly exploit the inter-

action between segmentation and inpainting.

4.5.4 Performance Gains with SWAP and Coherence

Losses

In our method, the two core components, SWAP and co-

herence loss, are devised to improve the inpainting perfor-

mance. In order to investigate their effectiveness, we con-

duct an ablation study on four variants: a) Ours (Base), with

only joint optimization of inpainting and segmentation in a

multi-scale framework; b) Ours (Att), adopting the atten-

tion module [42] to measure the texture affinity across all

semantics; c) Ours (SWAP), with SWAP; d) Ours (Full),

with both SWAP and Coherence loss.

The visual and numeric comparisons on Outdoor

Scenes are shown in Figure 7 and Table 3, respectively. In

general, the inpainting performance increases with the num-

ber of added modules. Specifically, the joint framework

helps learn a more accurate scene layout, and the contex-

tual attention does a good job of generating detailed con-

tent. Our SWAP can identify more relevant textures thanks

to the predicted semantics. Moreover, the coherence losses

further improve the texture details of inpainted regions.

4.5.5 Additional Results on Places2

We also conduct performance evaluation on the Places2

dataset [48] without semantic annotation, which was used in

the assessment by both GatedConv and EdgeConnect. We

use our model trained on Outdoor Scenes to complete the

images with similar scenes in Places2. The subjective re-

sults in Figure 8 show that our model is still able to gener-

ate proper semantic structures and textures, owing to the su-

pervision of the coherence loss, which provides better prior

knowledge about the scenes.

5. Conclusion

We proposed a novel joint optimization framework of se-

mantic segmentation and image inpainting to exploit the co-

herence priors that existed between semantics and textures

for solving the complex holes inpainting problem. To ad-

dress the irrelevant texture filling, we proposed a semantic-

wise attention propagation module to optimize the predicted

textures from the same semantic region and two coherence

losses to constrain the consistency of the semantic and tex-

ture in the same image. Experimental results demonstrate

that our method can effectively generate promising seman-

tic structures and texture details.
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