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Abstract

Data is the engine of modern computer vision, which

necessitates collecting large-scale datasets. This is expen-

sive, and guaranteeing the quality of the labels is a ma-

jor challenge. In this paper, we investigate efficient anno-

tation strategies for collecting multi-class classification la-

bels for a large collection of images. While methods that ex-

ploit learnt models for labeling exist, a surprisingly preva-

lent approach is to query humans for a fixed number of

labels per datum and aggregate them, which is expensive.

Building on prior work on online joint probabilistic mod-

eling of human annotations and machine-generated beliefs,

we propose modifications and best practices aimed at min-

imizing human labeling effort. Specifically, we make use

of advances in self-supervised learning, view annotation as

a semi-supervised learning problem, identify and mitigate

pitfalls and ablate several key design choices to propose ef-

fective guidelines for labeling. Our analysis is done in a

more realistic simulation that involves querying human la-

belers, which uncovers issues with evaluation using exist-

ing worker simulation methods. Simulated experiments on

a 125k image subset of the ImageNet100 show that it can be

annotated to 80% top-1 accuracy with 0.35 annotations per

image on average, a 2.7x and 6.7x improvement over prior

work and manual annotation, respectively. 1

1. Introduction

Data, the basic unit of machine learning, has tremendous

impact on the success of learning-based applications. Much

of the recent A.I. revolution can be attributed to the cre-

ation of the ImageNet dataset [12], which showed that im-

age classification with deep learning at scale [25] can result

in learning strong feature extractors that transfer to domains

and tasks beyond the original dataset. Using citations as

a proxy, ImageNet has supported at least 40,000 research

projects to date. It has been unmatched as a pre-training

dataset to downstream tasks, due to its size, diversity and the

1Code at: https://github.com/fidler-lab/efficient-annotation-cookbook
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Figure 1: We tackle efficient model-assisted annotation of multi-

class labels at scale. We propose improvements to prior work by

incorporating self- and semi-supervised learning and address asso-

ciated challenges. Extensive ablation of common design choices in

realistically simulated experiments leads us to provide best prac-

tice recommendations to minimize human annotation effort.

quality of labels. Since its conception, interest in creating

large datasets serving diverse tasks and domains has sky-

rocketed. Examples include object detection [47], action-

recognition- [10], and 3D reconstruction [32, 6], in domains

such as self-driving [15, 3], and medical imaging [44].

ImageNet and its successors such as OpenImages [26]

collected their data using search engines on the web, fol-

lowed by human verification of either the search query term

or automatically generated labels. Thus, their labeling is

formulated as a verification task, i.e., does this image really

belong to the class, allowing efficient annotation at scale.

In contrast to ImageNet labeling, in many practical use

cases, the data and labels of interest are often known apriori.

This departs from the case above where arbitrary images

could be used by querying keywords online. A common

approach used in practice is to query humans to get a fixed

number of labels per datum and aggregate them [29, 22],

presumably because of its simplicity and reliability. This

can be prohibitively expensive and inefficient in human re-

source utilization for large datasets, as it assumes equal ef-

fort needed per datum. We build on prior work and inves-

tigate integration of modern learning methods to improve
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annotation efficiency for multi-class classification at scale.

Recent work [2] explored integrating a learnt classifier

into the DS model [11] in an online setting. Their method

allows principled online estimation of worker skills and la-

bel uncertainty. This is used to decide whether another hu-

man should be queried for a datum. We follow this frame-

work, while noting that directions such as design of user-

interfaces [13], computing optimal task assignment [20] etc.

can provide complementary benefits.

Having a pool of workers that can be repeatably queried

improves both skill estimation over time and reduces anno-

tation noise typically found in crowdsourcing, where work-

ers perform micro-tasks and their presence is fleeting. Thus,

in this work we choose to focus on a fixed worker pool.2

We first investigate integrating advances in self-

supervised learning in our setting. Next, we view online

labeling as a semi-supervised problem and show conse-

quent efficiency gains. These additions can sometimes lead

to negative feedback cycles, which we identify and rem-

edy. Finally, to encourage adoption into a practitioner’s

toolchain, we ablate several key design choices and pro-

vide a set of good practices and guidelines. We avoid the

expense of running large experiments with human workers

by proposing a more realistic annotator simulation that in-

volves collecting statistics from human annotators. Prior

work [2, 41] collected a large number of human labels for

all experiments, leading to 1) smaller individual experiment

scale and 2) a barrier for further research since these labels

are not available and expensive to collect. We note that [41]

also look into efficient multi-class annotation for large label

sets, with a focus on efficient factorization and learning of

worker abilities. This is important and orthogonal to our ex-

ploration into integration of learning methods. In summary,

we make the following contributions:

• Explore the usage of advances in self-supervised learn-

ing to efficient annotation for multi-class classification

• Propose to view the annotation process as a semi-

supervised learning problem, identify resulting insta-

bilities and provide remedies

• Ablate several key design choices for the annotation

process providing a set of best practices and guidelines

to facilitate adoption into a practitioner’s toolchain

• Provide a realistic annotator simulation to conduct

such experiments at scale while avoiding the high cost

of involving human annotators for every experiment

• Release a modular codebase to facilitate adoption

and further research into efficient human-in-the-loop

multi-class labeling

2This is also a growing trend in the industry, with large companies using

trained labelers over offering micro-tasks.

We experiment on subsets of varying difficulty from Im-

ageNet [12]. We show 87% top-1 label accuracy on a 100

class subset of ImageNet, with only 0.98 annotations per

image. 80% top-1 label accuracy needed 0.35 annotations

per image, a 2.7x reduction with respect to prior work and a

6.7x reduction over manual annotation. On the small-scale

experiment using human annotations, we achieve 91% label

accuracy with 2x fewer annotations.

2. Related Work

2.1. Image Annotation in Computer Vision

Large datasets [25, 29] have had a pivotal role in recent

advances in computer vision. [24] make a comprehensive

survey of crowdsourcing techniques. As an example, [37]

integrates machines and human-labelers as an MDP and op-

timize questions asked to labelers to collect an object de-

tection dataset. LSUN [50] interleaves worker annotation

and training machine models, making a large high-quality

dataset at a low cost. The machine models here are used to

perform confirmation (ExistOrNot question). Instead, we

adopt a probabilistic framework [11] that incorporates ma-

chine beliefs with human annotated labels in a principled

manner. We follow the method proposed in [2, 41], who

extend [11] to an online crowdsourcing framework that in-

cludes the learner as a prior. We however, consider the

learning problem as a semi-supervised task. It is also akin to

active learning, where the task to optimize for is the quality

of the collected dataset itself.

2.2. Semi­supervised Learning

We treat the learning task in online image annotation as a

semi-supervised problem enabling us to incorporate various

algorithms. Graph-based semi-supervised learning [53, 43]

leverages the structure in both labeled and unlabeled data

for transductive learning. In neural networks, several meth-

ods aim at smoothing the decision boundaries of the learnt

model by enforcing consistency between image augmenta-

tions [48, 34], leveraging pseudo labels on unlabelled data

[39, 49, 38], interpolating between data points [42].

Recently, self-supervised learning to learn strong rep-

resentations from unlabelled image collections has been

shown to be highly performant, allowing learning tasks

with limited labels. Multiple pre-text tasks are proposed

to learn representation encoders from unlabelled images,

such as predicting patch position [14], predicting image ro-

tation [16], solving an image jigsaw puzzle [35], etc. Con-

trastive learning methods have gained popularity recently

[19, 7, 17, 4, 5, 9, 36], where consistency across augmenta-

tions of an image and inconsistency across multiple images

is used as a learning signal.
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2.3. Truth Inference

Crowdsourcing provides low-cost noisy annotations. To

infer a true label from noisy observations, one needs to infer

the importance of each annotation. This problem was dis-

cussed 40 years ago in the medical domain with the Dawid-

Skene model [11], optimized with EM. Many variants have

since extended the DS model. GLAD [46] assumes a sce-

nario with heterogeneous image difficulty and worker relia-

bility. [45] consider each worker as a multidimensional en-

tity with variables representing competence, expertise and

bias. [41] parametrize worker skills factorized by a taxon-

omy of target concepts. Instead of using EM, BCC [23]

infers the unobserved variables with bayesian inference.

EBCC [28] extends BCC by considering underlying worker

correlations and use rank-1 approximations to scale to large

worker cohorts. However, there is still no dominant truth in-

ference strategy [52]. Work in [2, 41] is the closest to ours.

[2] extend the DS model to an online setting and incorpo-

rate a learning model as a prior. We follow this direction

for multiclass classification, view the problem as a semi-

supervised learning problem and rigorously ablate various

design parameters as a means to provide best practice guide-

lines. [41] also work on multiclass classification, but focus

on worker parametrization, whereas we focus on improving

machine learning models in the procedure.

3. Background

In this section, we first formulate our problem and in-

troduce the notation used (Sec. 3.1). Next, we describe the

DS model [11] for probabilistic label aggregation (Sec. 3.2)

and its extension to an online data collection setting with a

learning algorithm in the loop [2] (Sec. 3.3).

3.1. Problem Formulation

Given a dataset with N images X = {xi}i=1:N and a

set of K target labels, the goal is to infer the correspond-

ing “true” label Y = {yi|yi ∈ [K]}i=1:N from worker

annotated labels Z . Labels are sampled from M workers

W = {wj}j=1:M . Worker annotations are noisy, hence

each image is labeled by few workers Wi = {j|zij ∈ Z},

where zij is the label assigned by worker wj on image xi. In

an online setting (Sec. 3.3), at each time step t, a requester

constructs a batch (of size B) of Human Intelligence Tasks

(HITs) and assigns them to B workers. Online estimates of

the true label Yt at each step can be inferred from all previ-

ous annotations Z1:t. The process ends until the requester

is satisfied with the current Yt or if a time horizon (related

to having a budget) T is reached. We omit t for simplicity.

3.2. Dawid­Skene Model

The Dawid-Skene model [11] views the annotation

process as jointly inferring true labels and worker re-

liabilities. The joint probability of labels Y , worker

annotations Z , and worker reliability W (overloaded

notation for simplicity) is defined as P (Y,Z,W) =∏
i∈[N ] p(yi)

∏
j∈[M ] p(wj)

∏
i,j∈Wi

p(zij |yi, wj), where

p(yi) is the prior over K possible labels, p(wj) is the prior

reliability of worker j, and p(zij |yi, wj) models the likeli-

hood of worker annotations. The worker reliability is usu-

ally represented as a confusion matrix over the label set.

In practice, inference is performed using expectation max-

imization, where parameters for one image or worker are

optimized at a time,

ȳi = argmax
yi

p(yi)
∏

j∈Wi

p(zij |yi, w̄j) (1)

w̄j = argmax
wj

p(wj)
∏

i∈Ij

p(zij |ȳi, wj) (2)

where Ij = {i|zij ∈ Z} is the set of images annotated by

worker j. We refer readers to [52] for a comprehensive ex-

planation and comparison of other work on truth inference.

3.3. Extension to Online Labeling

Lean Crowdsourcing [2] extends the DS model with a

learning model in the loop and implements it in an online

setting. The authors replace the label prior p(yi) with pre-

dicted probabilities from a learnt model p(yi|xi, θ). At each

time step, after running Eq. 1 and Eq. 2, they additionally

optimize the model parameters θ from D = {xi, ȳi||Wi| >
0}, i.e. using the current label estimate for images with at

least one human annotation. Their learning model involves

a fixed feature extractor φ with a classifier head. In this

work, we use a 2 layer MLP, optimized with gradient de-

scent.3 Its parameters are learnt from scratch at every step

by minimizing a loss function H .

θ̄ = argmin
θ

E(xi,yi)∼DH(ȳi, p(yi|φ(xi), θ)) (3)

To construct B HITs for the next step, they compute the

bayesian risk of ȳi as the expected cost of mis-labeling,

R(ȳi) =

K∑

yi=1

H(ȳi, yi)p(yi|Zi, θ)

=

K∑

yi=1

H(ȳi, yi)
p(yi|xi, θ̄)

∏
j∈Wi

p(zij |yi, w̄j)
∑K

y=1 p(y|xi, θ̄)
∏

j∈Wi
p(zij |y, w̄j)

(4)

At every step, they construct B HITs by randomly sampling

from a set of unfinished examples, U = {xi|R(ȳi) ≥ C}
i.e. images with risk greater than a threshold. To compare

with online labeling without any learning model, we adopt

3Previous work [2] used a linear SVM as the classifier head, but we

found that using 2 layer MLP sufficient to achieve comparable perfor-

mance with far less time.
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(a) Commodity (b) Dog (c) Insect + Fungus

Figure 2: Example images from datasets (Tab. 3). Commodity dataset consists of data

with coarse-labels, while the Dog and Insect+Fungus datasets are more fine-grained and

difficult to annotate, which is reflected in the lower avg. worker accuracy.

Dataset # Images # Classes Worker Acc. Fine-Grain.

Commodity 20140 16 0.76

Vertebrate 23220 18 0.72

Insect + Fungus 16770 13 0.65 X

Dog 22704 19 0.43 X

Dog + Vertebrate 45924 37 0.59 X

ImageNet100 125689 100 0.70 X

Figure 3: ImageNet100 sub-tasks. We

separate ImageNet100 into different diffi-

culty levels.
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Figure 4: Results on ImageNet100. We compare our full frame-

work with [2] and the online DS model on our ImageNet100

dataset (125k images). Our framework achieves 80% top-1 la-

bel accuracy with 0.35 annotation per image, a 2.7x reduction

from [2], and 6.7x compared to the online DS model.
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Figure 5: Over-optimistic results from workers with uniform

noise. Human workers tend to make “structured” mistakes. Sim-

ulated workers with uniform label noise (blue) can result in over-

optimistic annotation performance. Experiments under workers

with structured noise reflect real-life performance better.

this sampling scheme and remove the model learning, re-

ferred to as “online DS” in the following sections.

In the following sections, we propose improvements to

this online labeling framework, both in how learnt models

are used and in practical design choices. Our proposed im-

provements are validated on multiple subsets of varying dif-

ficulty from the ImageNet dataset, using realistically simu-

lated labelers, both of which we also introduce next.

4. Improving Annotation Efficiency

In this section, we explore modifications to the online-

labeling algorithm proposed in Lean Crowdsourcing [2], fo-

cused on improving efficiency of learning in the loop and

improving practical implementation choices. We present

these as proposals followed by their resulting impact on an-

notation efficiency and label accuracy.

We first introduce datasets in Sec. 4.1 constructed by tak-

ing subsets of ImageNet [12] which we use for experiments.

Experiments and ablations at scale with human labelers are

prohibitively expensive. Hence, we also propose a more re-

alistic worker simulation in Sec. 4.2.

In Sec. 4.3, we investigate whether self-supervised learn-

ing can be used to replace the feature extractor φ in the al-

gorithm. Next, in Sec. 4.4 we cast the learning problem in

online-labeling as a semi-supervised problem. We identify

that semi-supervised learning during online-labeling can

cause a negative feedback loop in the algorithm, which we

mitigate. In Sec. 4.5, we ablate several key design choices

and provide good practices and guidelines to encourage fu-

ture adoption. Finally, in Sec. 4.6, we apply all of our

proposed methods and best practices on our ImageNet100

dataset. These results are shown in Fig. 4, where we observe

that we can achieve 80% top-1 label accuracy with 0.35

annotations per image, which is a 2.7x improvement over

[2] and 6.7x improvement over the online DS model. We

achieve 87.4% top-1 label accuracy with 0.98 annotations

per image at convergence, compared to 79.5% and 46.9%

in label accuracy for the competing methods. To validate

our proposed approach in experiments with human annota-

tions, we conduct a small-scale experiment in Sec. 4.7. We

show that our approach achieves 91% top-1 accuracy with

2x fewer annotations compared to the previous work [2].

4.1. ImageNet100 Sandbox

Evaluating and ablating multi-class label annotation effi-

ciency at scale requires large datasets with diverse and rel-

atively clean labels. We construct multiple subsets of the

ImageNet dataset [12] for our experiments. We use 100

classes sampled from the ImageNet label set [40] and con-

struct smaller sub-tasks of varying difficulty using the label

hierarchy. These tasks range from 20k to 125k images in

size. We use the average accuracy of human workers on

these datasets (Sec. 4.2) as a proxy for their difficulty, with

the average human accuracy ranging from 43% to 76%.

Tab. 3 details the different sub-tasks, the number of images,

classes, and average human accuracy. Fig. 2 shows example

images from these tasks. For each class, we use 10 images
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Figure 6: Self-supervised features advance online labeling. We com-

pare different self-supervised features, showing that improvements in self-

supervised learning translate into improvements in online labeling. For the

Dog, using BYOL [17] helps reach the same accuracy achieved without

learning in the loop (Online DS) with 5x fewer annotations. (Sec. 4.3)
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Figure 7: Semi-supervised learning advances online labeling. The

learning problem in online-labeling can be seen as a semi-supervised prob-

lem (Sec. 4.4). We compare two semi-supervised techniques: Pseudo-

Labeling [27] and MixMatch [1]. Both improve annotation efficiency on all

subsets, particularly for fine-grained datasets. Surprisingly, Pseudolabels per-

forms slightly better than a modified version of MixMatch (Sec. 4.4).

as prototype images to be provided by the requestor. They

ground concepts for human annotators and also help with

learning and model selection.

4.2. Simulating Realistic Workers

Prior work [30, 21] simulated workers as confusion ma-

trices. Class confusion was modeled with symmetric uni-

form noise, which can result in over-optimistic performance

estimates. Human annotators exhibit asymmetric and struc-

tured confusion i.e., classes get confused with each other

differently. Fig. 5 compares the number of annotations per

image in simulation using uniform label noise vs. structured

label noise that we crowdsource. We see large gaps between

the two. This arises particularly when using learnt models

in the loop, due to sensitivity to noisy labels coming from

structured confusion in the workers.

To efficiently crowdsource a diverse set of worker con-

fusion matrices for ImageNet100, we split the dataset into

6 disjoint subsets using the ImageNet label hierarchy and

crowdsource annotations (using HITs on Amazon Mechan-

ical Turk) for each subset. The assumption is that these sets

contain most of the confusion internally and are rarely con-

fused with each other, which we also verify. We collect 40

annotations per worker, which gives us a noisy estimated

confusion matrix. To simulate a worker, we sample a con-

fusion matrix per subset and smooth it using an affine com-

bination with the average confusion matrix.

Through additional HITs, we verify that workers con-

fuse classes across our subsets with a very low probability

(0.03). Therefore, we uniformly spread a probability mass

of 0.03 for class confusion across our subsets. Overall, we

crowdsourced a total of 2680 annotations from 67 work-

ers for these statistics. In comparison, a single experiment

with 20k images with 0.5 annotation each would need 10k

crowdsourced labels. More details are in the Appendix.

4.3. Self­supervised Learnt Features

With recent advances in self-supervised learning, it is

feasible to learn strong image feature extractors that rival

supervised learning, using pretext tasks without any labels.

This allows learning in-domain feature extractors for anno-

tation tasks, as opposed to using features pre-trained on Im-

ageNet [2]. We compare the efficacy of using BYOL [17],

SimCLR [4], MoCo [19], relative location prediction [14]

and rotation prediction [16] learnt on full ImageNet raw im-

ages as the feature extractor φ in Eq. 3. We compare the

performances in online labeling in Fig. 6. Improvements in

self-supervised learning consistently improve efficiency for

datasets with both fine and coarse-grained labels, with up to

5x improvement at similar accuracy compared to not using

a model in the loop. For the rest of the experiments, we use

BYOL [17] as our fixed feature extractor.

4.4. Learning in Online­Labeling is a Semi­
Supervised Problem

During online-labeling, the goal is to infer true labels for

all images in the dataset, making learning θ akin to trans-

ductive learning, where the test set is observed and can be

used for learning. Thus, it is reasonable to expect efficiency

gains if the dataset’s underlying structure is exploited by

putting the unlabeled data to work, using semi-supervised

learning. This has also been demonstrated recently in the

related field of active learning [33]. Eq. 3 accordingly can

be modified to,

θ̄ = argmin
θ

E(xi,yi)∼{xi,ȳi}1:NH(ȳi, p(yi|φ(xi), θ))

Various methods have been proposed in the literature to

improve semi-supervised learning. Since the feature extrac-

tor φ is fixed in our setting, we adopt the off-the-self semi-

supervised learning algorithms that work directly on a fea-

ture space. Specifically, we investigate using Pseudolabels

[27] and MixMatch [1].

Pseudolabeling refers to using the current model be-

lief on unlabeled data as labels for learning. We use hard

pseudo-labels (argmax of belief), and only retain those la-

bels whose highest class probability falls above a threshold

τ . We use model predictions from the previous time step to

generate pseudo labels and set the threshold τ to be 0.1.

θ̄ = argmin
θ

E(xi,yi)∼{xi,ȳi|p(ȳi|Zi)>1−τ}H(ȳi, p(yi|φ(xi), θ))

MixMatch constructs virtual training examples by mix-

ing the labeled and unlabeled data using a modified version
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of MixUp [51]. We modify MixMatch for our use-case and

provide details in the Appendix.

Fig. 7 shows results using PseudoLabels and MixMatch

during learning. Semi-supervised learning consistently im-

proves annotation efficiency across datasets, with more pro-

nounced improvements shown in coarse-grained datasets.

For Dog, while all methods fail to reach 80% accuracy due

to the poor quality of worker annotations, using PseudoLa-

bels reaches the performance of its counterpart at conver-

gence with 30% fewer annotations.

Despite its simplicity and other published results, we

surprisingly find Pseudolabeling performs better than Mix-

Match in our case. We remind the reader that for online-

labeling, the inputs to the semi-supervised learnt models

are the feature vectors φ(x) instead of raw images. There-

fore, various data augmentation strategies applied at an im-

age level cannot be applied directly, which we hypothesize

to be the reason for the observed trend. In the rest of the

experiments, we use Pseudolabels by default.

Semi-supervised learning during online-labeling can

be unstable: Learning in the loop helps provide a better

prior for label-aggregation (Eq. 1) while also improving

worker skill inference (Eq. 2). We find that alternate maxi-

mation of these two objectives can lead to a negative feed-

back cycle once either of them converges to a bad solution,

often resulting in divergence. It is known that EM opti-

mization does not always converge to a fixed point, with

the likelihood function of the iterates likely to grow un-

bounded [31]. Using semi-supervised learning exacerbates

this issue since wrong confident intermediate labels can be-

come more confident through subsequent time-steps. Fig. 8

shows this divergence behavior. We mitigate these with

simple heuristics related to EM convergence and model se-

lection through time. During EM, there are two popular

ways to determine convergence: 1) Hard Constraint: stop-

ping if the E-step does not change across steps, and 2) Soft

Constraint: stopping if the average likelihood of the obser-

vation changes minimally across steps.

Hard: argmax p(yti |z
t
i) = argmax p(yt−1i |zt−1i ), ∀i (5)

Soft: |

∑
i∈[N ]

∑
j∈Wi

p(zti |y
t
i , w

t
j)

|Zt|
−

∑
i∈[N ]

∑
j∈Wi

p(zt−1i |yt−1i , wt−1
j )

|Zt−1|
| ≤ ǫ

(6)

We find that adopting the latter mitigates divergence during

EM with ǫ = 0.01. Moreover, we perform model selection

across time-steps i.e., do not replace the model if its vali-

dation performance does not improve. We use a fixed val-

idation set comprised of the prototype images across steps,

ablated in Sec. 4.5. We show the efficacy of applying the

proposed heuristics in Fig. 8.
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Figure 8: Instability in model parameter learning (gradient descent)

and the label aggregation (EM) during semi-supervised learning can lead

to a negative feedback loop. Using two simple heuristics, global model

selection and soft convergence in EM, avoids this issue. The dashed lines

show results beyond our early stopping criterion (Sec. 4.5.9)

4.5. Practical Considerations

We ablate several design choices involved in implement-

ing such an online-labeling system, leading us to identify

guidelines for future practitioners. We find these design

choices can significantly affect efficiency results, discussed

sequentially in the following sections.

4.5.1 Generating calibrated model likelihoods

Prior work [2] uses a modified cross-validation approach

to generate model likelihoods. They ensure that the esti-

mated prior p(yi|xi, θ̄) is produced using a model that was

not trained or validated on labels from image i. We find

that this can underperform when estimated labels are noisy,

which pollutes validation splits and makes calibration chal-

lenging. Instead, we propose to use the clean prototype

images as the validation set. We ablate the importance of

having clean validation and performing cross-validation in

Fig. 10. We find that having a clean validation set is more

important than using cross-validation. All our experiments

use temperature calibration [18] with a clean validation set

comprised of prototype images to be provided by the task

requestor.

4.5.2 Model update frequency

How often should one update the model vs. collect hu-

man labels? The latency of model updates vs. collection

dictates varies across applications. We find that for fine-

grained datasets, lower update frequencies (higher number

of annotations per update) tend to overshoot in the number

of annotations, while the method is robust to low update fre-

quency on coarse-grained datasets. See more details in the

Appendix.

4.5.3 Tuning Hyperparameters

Tuning hyperparameters is difficult when the task is to label

data itself. We split our prototypes (10 per class) into train

and validation sets to tune hyperparameters. Though there

are few prototypes, we find that this works almost as well

as tuning with backdoor label access. The requestor can
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Cauliflower Harmonica Window Screen Pirate

(a) Images with no annotations

Boxer Cocktail Shaker Kuvasz Milk Can

Bottlecap American Lobster Mexican Hairless Walking Stick

(b) Images with 3 annotations

Figure 9: Example images with different numbers of

annotations under our full framework on ImageNet100.

Images without annotations (left) usually contain only one

centered object. Images with 3 annotations (right) either

have multiple objects (Bottlecap), a small object of inter-

est (Mexican Hairless, Walking Stick), ambiguous objects

(Boxer, Cocktail Shaker), and some not in their typical state

(Kuvasz puppies). We also find simple examples (Milk

Can) with 3 annotations, pointing to room for improvement.
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Figure 10: Validation set selection and cali-

bration. We find using a clean validation set is

more important than performing cross-validation.
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Figure 11: Early-stop by monitoring the size

of the finished set. This avoids over-sampling for

confusing images. Dashed lines represent trajec-

tories using stopping criterion from [2].
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Figure 12: Task Assignment. We adopt a sim-

ple greedy task assignment scheme (Eq. ??) using

learnt worker skills. We show that the learnt skills

help assign more tasks to “important” workers.

always add more images to the prototype set from the up-

to-date annotations for improved hyperparameters search.

4.5.4 Pre-identifying Worker Skills

We explore to leverage class-dependent and worker-

dependent priors. In reality, the requestor can ask gold stan-

dard questions or apply prior knowledge to design the prior.

In our experiment, we find that this is especially useful for

fine-grained datasets. The best explored prior improves ac-

curacy by 15% in Dog, while in Commodity, the improve-

ment is marginal. See more details in the Appendix.

4.5.5 Task Assignment with Inferred Skills

There are certain particularly hard classes, with only a few

workers having enough expertise to annotate them correctly.

We ask whether the learnt skills can be used to assign

tasks better. Prior work on (optimal) task assignment tackle

crowdsourcing settings with vastly different simplifying as-

sumptions [20, 8], and designing a new task assignment

scheme is out of the scope of this paper. To verify if the

learnt worker skills help with task assignment, we propose

a simple greedy algorithm with a cap on the maximum num-

ber of annotations α allowed per worker.

Fig. 12 shows results with task assignment with α =
2000. The simple task assignment allows saving 13% of

annotations to reach 75% label accuracy. On the right, we

show the distribution between worker importance. Ideally,

number worker annotations would be highly correlated with

worker importance. The results show that, while not per-

fect, the learnt skills indeed help assign more tasks to im-

portant workers.

4.5.6 Number of Workers

We explore how annotation efficiency is affected by the dif-

ferent number of simulated workers. With the fixed number

0 0.5 1
50

60

70

80
+0%
+10%
+30%
+50%
+100%
+200%

Dog+Vertebrate

#Annotations per Target Class ImageAc
cu

ra
cy

 o
f T

ar
ge

t C
la

ss
es

 (%
)

Figure 13: Dataset contains

OOD images. Our method retains

efficiency till around 100% out-of-

distribuion images. (Sec. 4.5.7)
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Figure 14: Transfer to hu-

man workers. Our method in-

crease efficiency w.r.t. previous

work [2] even when using human

annotations, achieving 91% accu-

racy with 2x reduction. (Sec. 4.7)

of annotations, we find that having more workers hurts the

performance due to the fewer observations of each worker,

resulting in poor worker skill estimation. On the contrary,

having fewer workers significantly helps in fine-grained

datasets. Reducing the number of workers from 50 to 10

improves the accuracy by 17% in Dog. See more details in

the Appendix.

4.5.7 Pre-Filtering Datasets

We have assumed that the requestor performs perfect filter-

ing before annotation, i.e., all the images to be annotated

belong to the target classes, which does not always hold.

We add an additional “None of These” class and ablate an-

notation efficiency in the presence of unfiltered images. We

include different numbers of images from other classes and

measure the mean precision with the number of annotations

of the target classes. In Fig.13, we see that even with 100%

more images from irrelevant classes, comparable efficiency

can be retained on a fine-grained dataset.
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4.5.8 Risk Threshold

The risk threshold C in online labeling determines how fast

the annotation process converges and the possible final label

quality. As expected, having lower risk threshold results in

slower convergence, but improves final label quality. We

use C = 0.1 for all other experiments in this paper. See

more details in the Appendix.

4.5.9 When to Stop Annotating?

A clear criterion to stop annotation is when the unfinished

set of images (images with estimated risk greater than a

threshold) is empty [2, 41]. However, we observe that the

annotation accuracy usually saturates and then grows slowly

because of a small number of data points that are heavily

confused by the pool of workers used. Therefore we sug-

gest that the requestor 1) stop annotation at this time and

separately annotate the small number of unfinished sam-

ples, possibly with expert annotators, and 2) set a maxi-

mum number of annotations per image we use 3 in our pa-

per. However, how do we automatically decide when to stop

without access to true labels? We find that performing early

stopping on the size of the finished set of images is suffi-

cient, as shown in Fig. 11. If the finished set size does not

increase from its global maximum value for β consecutive

steps, we stop annotation. We adopt this stopping criterion

and set β = 5 for all other experiments in this paper.

4.6. Putting it Together on ImageNet100

We finally compare our full framework (Algo 1), with

[2] (Lean), an adapted version with prototypes as valida-

tion set and without cross-validation (Lean*) and the online

DS model in Fig. 4. Dashed lines represent results of re-

moving the stopping criterion mentioned in Sec. 4.5.9. Our

framework consistently provides higher accuracy and stable

improvement over time. We achieve nearly 87% top-1 label

accuracy on a 100 class subset of ImageNet with only 0.98

annotations per image and 80% top-1 label accuracy with

0.35 annotation per image, a 2.5x reduction reduction w.r.t.

“Lean*”, 2.7 reduction w.r.t “Lean” and a 6.7x reduction

over “Online DS”.

In Fig. 9, we visualize images with 0 and 3 annotations

received, respectively, along with their ground truth Ima-

geNet label. We find that images that got 0 annotations usu-

ally contain only one clear centered object. Images with

3 annotations sometimes have multiple objects (Bottlecap),

or have a small object (Walking Stick, Mexican Hairless)

or an ambiguous object (Boxer, Cocktail Shaker). We also

note that there are simple images that receive 3 annotations

(Milk Can), showing room for improvement.

4.7. Transfer to Human Workers

To validate if these good practices apply outside our sim-

ulation and in the real world, we collect 3088 annotations of

Algorithm 1: Efficient Annotation

Input: Unlabeled images X = {xi}
N
i=1

and workersW = {wj}
M
j=1

Output: labels Y = {yi}
N
i=1

1 Set unfinished set U = {i}Ni=1
, finished set F = ∅, loss∗ = inf , and θ̄∗

is randomly initialized

2 θ̄ ← θ̄∗

3 φ← Self-supervised learning on X
4 while stopping criterion 4.5.9 is not met do

5 Construct B HITs from U , sample B workers

6 Obtain annotations Z

7 Initialize worker skills W̄
8 while Eq. 6 is not met do

9 Ȳ ← Aggregate Y by Eq. 1

10 W̄ ←MaximizeW by Eq.2

11 θ̄ ← Model Parameter learning by Eq. 5

12 θ̄ ← Calibrate with prototypes 4.5.1

13 loss← Measure loss on prototypes

14 if loss ≤ loss∗ then

15 θ̄∗ ← θ̄; loss∗ = loss

16 else

17 θ̄ ← θ̄∗

18 for i ∈ {i}1:N do

19 ifR(ȳi) < C: F ← F ∪ i, U ← U \ i

20 return Y

1878 images from Insesct+Fungus. Fig. 14 shows that our

method works well when transferring to human workers,

achieveing 91% accuracy with 2x fewer required annota-

tions w.r.t. previous work [2]. More details in the Appendix.

5. Discussion and Conclusion

We presented improved online-labeling methods for

large multi-class datasets. In a realistically simulated exper-

iment with 125k images and 100 labels from ImageNet, we

observe a 2.7x reduction in annotations required w.r.t. prior

work to achieve 80% top-1 label accuracy. Our framework

goes on to achieve 87.4% top-1 accuracy at 0.98 labels per

image. Along with our improvements, we leave open ques-

tions for future research. 1) Our simulation is not perfect

and does not consider individual image difficulty, instead

only modeling class confusion. 2) How does one accelerate

labeling beyond semantic classes, such as classifying view-

ing angle of a car? 3) ImageNet has a clear label hierarchy,

which can be utilized to achieve orthogonal gains [41] in the

worker skill estimation. 4) Going beyond classification is

possible with the proposed model by appropriately model-

ing annotation likelihood as demonstrated in [2]. However,

accelerating these with learning in the loop requires specific

attention to detail per task, which is an exciting avenue for

future work. 5) Finally, we discussed annotation at scale,

where improvements in learning help significantly. How

can these be translated to small datasets? We discuss these

questions more in the Appendix, and release a codebase to

facilitate further research in these directions.
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