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Abstract

In many real-world applications, the relative depth of ob-

jects in an image is crucial for scene understanding. Recent

approaches mainly tackle the problem of depth prediction

in monocular images by treating the problem as a regres-

sion task. Yet, being interested in an order relation in the

first place, ranking methods suggest themselves as a natural

alternative to regression, and indeed, ranking approaches

leveraging pairwise comparisons as training information

(“object A is closer to the camera than B”) have shown

promising performance on this problem. In this paper, we

elaborate on the use of so-called listwise ranking as a gener-

alization of the pairwise approach. Our method is based on

the Plackett-Luce (PL) model, a probability distribution on

rankings, which we combine with a state-of-the-art neural

network architecture and a simple sampling strategy to re-

duce training complexity. Moreover, taking advantage of the

representation of PL as a random utility model, the proposed

predictor offers a natural way to recover (shift-invariant)

metric depth information from ranking-only data provided

at training time. An empirical evaluation on several bench-

mark datasets in a “zero-shot” setting demonstrates the

effectiveness of our approach compared to existing ranking

and regression methods.

1. Introduction

Estimating depth in monocular images constitutes a prob-

lem of practical importance when aiming to understand the

geometry of a scene, e.g., in autonomous driving systems

or for augmented reality applications. Due to its ill-posed

nature, methods approaching this problem nowadays typi-

cally incorporate complex models, trained on large amounts
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of data using machine learning methods.

The majority of existing approaches tackles depth es-

timation (whether per-pixel or per-object) as a regression

problem, i.e., as the problem of learning a model to predict

a (pseudo-)metric map (e.g., [1, 9, 17, 18]). However, on

the one hand, accurate prediction of metric depth actually

depends on the intrinsic camera parameters, which are often

not available. On the other hand, instead of predicting abso-

lute depth, it is often enough to predict the relative depth of

pixels or higher level concepts (such as objects), that is, to

sort them from closest to farthest away from the camera.

One may then argue that regression is solving an un-

necessarily difficult task, and rather advocate a formaliza-

tion of depth estimation as a ranking task [12]. So-called

“learning-to-rank” methods can be used to minimize suitable

performance metrics based on relative errors. As absolute

depth measurements are not necessarily needed, ranking

has the additional advantage that it potentially allows for

learning from weaker training information. This includes

depth annotations that are not metric but can be regarded as

pseudo-metric data, e.g., disparity maps constructed from

stereo images or videos [6, 14, 20], or human-annotated data

[5, 7]. Without the need for metric RGB-D data produced

by depth sensors, the diversity of training datasets can be

drastically increased due to cheaper data acquisition [33].

Existing ranking methods are essentially based on pair-

wise comparisons of the form “object A is closer to the cam-

era than B” [5, 33, 34, 35]. Pairwise relations of that kind are

sampled from a depth map as training information, and pre-

dictive models are induced by minimizing pairwise ranking

losses. While these approaches have proven effective, the

quadratic number of possible pairs that can be constructed

renders them rather inefficient and necessitates sophisticated

sampling strategies to eliminate less informative pairs [34].

Besides, breaking a linear order into pairwise comparisons

necessarily comes with a certain loss of information. In par-
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ticular, information about the transitivity of order relations,

which is implicitly contained in a linear order, will be lost.

To avoid these drawbacks, so-called “listwise ranking”

[32] has been proposed as an alternative to pairwise meth-

ods. In the listwise approach, higher order rankings of arbi-

trary length can be considered as training information. In

this paper, we elaborate on the use of listwise ranking for

depth estimation in images. More specifically, we propose a

listwise ranking method based on the well-known Plackett-

Luce (PL) model [22, 24], which allows for learning proba-

bility distributions over rankings from pseudo-metric data.

Moreover, taking advantage of the representation of PL as a

random utility model [27], we suggest a natural way to re-

cover translation-invariant approximations of the underlying

metric depth information. Along with that, we propose a

state-of-the-art neural network architecture as a backbone,

together with a simple sampling strategy to construct training

examples from raw pseudo-depth data.

In a zero-shot evaluation, where we compare models on

data not considered for training, we study the cross-dataset

performance of our model and compare it with state-of-the-

art approaches. Thereby, we demonstrate that listwise rank-

ing is an effective approach for rank-based error minimiza-

tion, and our model constitutes an appropriate choice for

the prediction of depth orders in unseen scenes, as well as

providing promising results in recovering metric depth.

2. Related Work

In learning to rank, the goal is to infer ranking models

from training data in the form of rankings (permutations)

of individual items. According to a rough categorization of

methods, one can distinguish between pointwise, pairwise,

and listwise approaches [21]. While single items are con-

sidered as training examples in pointwise learning-to-rank

methods, relations between items are typically used as train-

ing examples in the other categories, either relations of order

two (pairwise) or arbitrary length (listwise). In the case of

pointwise learning-to-rank, examples are usually annotated

by a score that determines their individual usefulness, from

which, for instance, regression models can be induced. For

pairwise approaches, where examples are typically given as

single relations among two items, existing methods range

from SVM-based classifiers [15] to boosting methods [11]

and ranking networks [2]. Similarly, several listwise ranking

methods have been proposed, in which examples are rep-

resented by higher order (potentially partial) item rankings.

One of the most well-known representative is ListMLE [32],

a maximum likelihood estimation method to infer Plackett-

Luce probability distributions over rankings.

Several approaches to tackle the problem of estimating

depth in images using relative depth information for train-

ing have been proposed. Among the first, Zoran et al. [35]

classify individual point pairs from an image, which are then

combined into a global solution for a complete dense map

over all image pixels. Following a similar motivation, Chen

et al. [5] train a deep neural network architecture by using

a pairwise ranking loss, directly predicting a dense-map in

an end-to-end fashion. This approach has also been adopted

in subsequent works and improved in various directions,

for example by using a different model architecture [33],

additional data [6], or improved sampling strategy [34]. Fur-

thermore, Ewerth et al. [10] propose a method to estimate

relative depth using a RankBoost model. Alternative ap-

proaches also exploit ordinal depth information [20], either

directly or to pretrain regression models [4].

To learn models that work well for arbitrary scenes, e.g.,

in both indoor and outdoor scenarios, diversity of train-

ing data is crucial. Commonly used metric data produced

by depth sensors typically provide limited diversity, e.g.,

NYUD-v2 [26] with indoor-only or KITTI [13] with only

street scenes. Since maximal depth capacities of sensors

constrain the recognizable depth, they fail to capture scenes

“in the wild”. This is why Chen et al. [5] propose a human-

annotated dataset with pairwise point samples, for which

the “closer-to-camera” relation is captured. However, as

it provides ground truth information for only two points

in each image, and the human annotation process is quite

costly, other strategies aiming to automatically extract depth

information have been proposed. For instance, stereo images

[33] or sequences of images in videos [6] have been facili-

tated to predict structural disparity maps from the motion of

elements. Combinations of such methods have been consid-

ered, too [31]. As none of them delivers metric information

per pixel, the information produced must be considered as

pseudo-depth, which, as previously explained, is still suffi-

cient for depth relations. Although scale-invariant regression

methods are also capable of learning from such data [20, 25],

their ability to generalize to new datasets with structurally

different scenes is fairly limited, at least for the task of depth

ordering, as our empirical evaluation will confirm later on.

3. Plackett-Luce Model for Depth Estimation

In the following, we introduce our proposal of a Plackett-

Luce model for depth estimation as illustrated in Fig. 1, along

with a description of the model architecture and sampling

strategy to construct training examples from raw depth data.
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Figure 1. Overview of our method: The PL model incorporates a

deep neural network to predict scores for each pixel in an input

image, which are then turned into probabilities for rankings of

queried image locations. For training, we sample rankings from

images annotated by pseudo depth.

3.1. Problem Formulation

We assume training information in the form of RGB im-

ages I together with (pseudo-)depth annotations D, i.e., tu-

ples (I,D) ∈ R
h×w×3 × R

h×w, where h and w denote the

image height and width, respectively. Moreover, D[l] de-

notes the (pseudo-)depth of a position l ∈ {1, . . . , h} ×

{1, . . . , w} identified by a height and width coordinate.

Without loss of generality, lower values D[l] encode shorter

distances to the camera.

We are mainly interested in the order relation of the lo-

cations in an image I as induced by the (pseudo-)depth

D. Formally, the relation between n locations M =

{l1, l2, . . . , ln} can be represented in terms of a permuta-

tion π of [n] := {1, . . . , n} such that D[lπ(i)] < D[lπ(i+1)]

for i ∈ {1, . . . , n− 1}. This permutation encodes the rank-

ing lπ(1) ≻ lπ(2) ≻ · · · ≻ lπ(n), i.e., location lπ(1) is closest,

then lπ(2), etc. At query time, when I is given but D is

not, the task of a rank-based depth estimation model is to

predict the “closer-to-camera” relation ≻, that is, to produce

an accurate order-preserving estimate of D. Formally, this

estimate can again be represented in terms of a permutation,

which is then compared to the ground truth permutation π.

3.2. Listwise Depth Ranking

We model information about rankings in a probabilis-

tic way, which has several advantages, especially from a

learning point of view (for example, it makes the problem

amenable to general inference principles such as maximum

likelihood estimation). A well-known probability model on

rankings is the Plackett-Luce (PL) model, which is param-

eterized by a vector v = (v1, . . . , vK) ∈ R
K
+ , where K

is the number of items (length of the ranking). Referring

to the interpretation of a ranking in terms of a preferential

order, the value vi is also called the (latent) utility of the ith

item — subsequently, we shall use the more neutral notion

of PL score or parameter. The probability of a permutation

π of [K] is then given by

P (π |v) =

K−1
∏

i=1

vπ(i)
∑K

k=i vπ(k)
, (1)

where π(i) is the index of the item on the ith rank. One

easily verifies that, the larger the score vi, the higher the

probability that the ith item will show up on a top rank.

Moreover, the mode of the distribution, i.e., the ranking with

the highest probability, is obtained by sorting the items in

decreasing order of their scores.

The PL model has the appealing property that each

marginal of a PL model is again a PL model (with the same

parameters). More specifically, if J = {j1, . . . , jk} ⊆ [K]

is a subset of the K items, then the corresponding marginal

of (1) is a PL model with parameters vj1 , . . . , vjk . This prop-

erty greatly facilitates learning and inference from possibly

incomplete rankings that do not comprise all K items. In

fact, learning to rank with the PL model essentially comes

down to estimating the score vector v = (v1, . . . , vK).

In the case of depth estimation, items correspond to the

pixels of an image, and the task of the learner is to predict

the scores of these pixels. To make this possible, we assume

that the score of a pixel can be expressed as a function of

its context on the image. Thus, a parameter vi is defined

through a function φi : X −→ R on an input space X [8],

where X = R
h×w×3 corresponds to the space of all possible

images of size h×w. Assuming all images to have the same

size, we set the overall number of alternatives K to h× w.

In the domain of depth estimation, the most obvious way

to represent the functions φ1, . . . , φK is to model them as a

(joint) deep convolutional neural network. Thus, each func-

tion φi is represented in terms of a set of network parameters

wi, a subset of the parameters w of the entire (joint) network.

In the experimental section, different state-of-the-art model

architectures will be assessed for that purpose.

For an image x ∈ X , let w(x) denote the output of the

neural network under parameterization w and

(v1, . . . , vK) = (φ1(x), . . . , φK(x)) = exp(w(x)) (2)

the induced (non-negative) PL parameters. Thus, the entire

PL model for the image x is eventually specified by the

network parameters w. Given a ranking π of (a subset of)
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the pixels of x as training information, one can thus deter-

mine the probability P (π |x,w) of that ranking under w

according to (1). More generally, given training informa-

tion in the form of a collection of images with rankings,

{(xi, πi)}
L
i=1, learning an optimal model can be realized as

maximum likelihood estimation [32]:

w
∗ ∈ argmin

w

−

L
∑

i=1

logP (π |x,w) . (3)

3.3. Metric Depth Estimation

Going beyond the prediction of rankings, one may won-

der whether there is any possibility to recover metric depth

information from a learned PL model. At first sight, this

would be surprising, because the model is only trained on

qualitative information in the form of rankings, and predicts

probabilities instead of metric depth. Yet, the PL model also

comprises a quantitative part, namely the scores vi, which,

as will be explained in the following, are in direct correspon-

dence with the underlying metric information.

The PL model is a specific random utility model (RUM)

[23]. In this class of models, it is assumed that the true

order z1 < z2 < . . . < zn of n real numbers — think of

them as the true depth values of the pixels in a image —

is “randomized” through (independent) measurement noise:

Each value zi is replaced by the measurement Xi = zi + ǫi,

where ǫi is an error term, and what is observed as a ranking

is the order of the measurements X1, . . . , Xn. In particular,

the true order relation zi < zj between two items is reversed

if the corresponding error terms satisfy ǫi − ǫj > zj − zi,

and the smaller the distance |zi − zj |, the more likely such

a mistake is going to happen. Thus, the probability of a

ranking error is indicative of the distance between zi and zj .

The PL model is obtained for the special case where

the error terms ǫi follow a Gumbel distribution with fixed

shape parameter [27]. More specifically, the so-called Thur-

stone model with parameters z1, . . . , zn is equivalent to the

PL model (1) with parameters vi = exp(zi), i = 1, . . . , n.

In the context of depth estimation, the model can thus be

interpreted as follows: The true depth of the ith image ob-

ject (pixel) is given by zi, but due to measurement noise,

these distances are not observed precisely. Accepting the

assumption of a Gumbel distribution1, a PL model fitted to

the observed (noisy) rankings of image objects yields esti-

mates v̂i of vi = exp(zi). Thus, a natural estimate of the

underlying metric depth is given by ẑi = log(v̂i).

1This distribution looks similar to the normal distribution. Even if not

provably correct, it is certainly not implausible.

We note that, since the PL model (1) is invariant toward

multiplicative scaling (i.e., P (π |v) ≡ P (π |λv) for λ > 0),

the parameter v can only be determined up to a multiplica-

tive factor. Correspondingly, the parameter z can only be

determined up to an additive constant. This is indeed plau-

sible: Assuming that the probability of reversing the order

of two image objects only depends on their true distance

|zi − zj |, this probability will not change by shifting the

entire scene (i.e., moving the camera closer or farther away).

In addition to this shift invariance, there is also a scaling

effect, albeit of a more indirect nature. This effect is caused

by fixing the shape parameter of the Thurstone model to 1.

Therefore, instead of a simple log-transformation, we shall

use an affine transformation of the form ẑ = s log(v̂) + t,

with s, t ∈ R fitted to the image at hand.

3.4. Model

Regarding the underlying neural network, taking an im-

age x as input and producing w(x) as used in (2) as output,

we suggest two variants of our listwise ranking approach.

The first one, dubbed PLDepthResNet, uses the same model

architecture as suggested by Xian et al. [33]. As a sec-

ond model, by consideration of recent neural architecture

research, we propose PLDepthEffNet as a closely related ar-

chitecture relying on EfficientNet [29] as backbone. Without

further notice, the variant EfficientNetB5 is used as encoder,

while the decoder part is a stack of repeating convolutional,

BatchNormalization, ReLU and bilinear upsampling layers

until the original shape is recovered. Similar to the model

in [33], different scale features from the encoder branch are

fed into the corresponding levels of the decoder part. In-

stead of fusing these features by addition, we concatenate

at the respective layers. As a result, we obtain a model with

approximately 45 million parameters for PLDepthEffNet,

which is similar to the size of PLDepthResNet with 42 mil-

lion parameters, while increasing the model performance at

the same time (cf. empirical evaluation).

For both PLDepthResNet and PLDepthEffNet, we use en-

coders pretrained on ImageNet. Consequently, we standard-

ize input images to match the preprocessing on ImageNet.

During training, we freeze the encoder part and only allow

the BatchNormalization layers to adjust to the new input

data as typically done in transfer learning.

3.5. Sampling

In the past, different strategies to construct pairwise re-

lations from raw depth data have been proposed, including

superpixel sampling [35], random sampling [5], and com-

binations of multiple structure-guided strategies [34]. Ac-
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cording to Xian et al. [34], random sampling of pairwise

relations from raw depth data may harm the model’s perfor-

mance, due to training on uninformative or even misleading

examples. Even worse, due to imprecision in the ground

truth data, the risk of incorrectly ordered items increases

with larger samples.

To address these issues, we propose a random sampling

strategy that is almost as simple as pure random sampling,

and which allows for incorporating the depth structure of

the given image while leading to a relatively low training

complexity. For R n-ary rankings to be queried per training

tuple (I,D), N · R item sets M with n individual image

locations are sampled, where N > 1 is a parameter. For

each ranking set M , we order all image locations l by D[l]

to construct a ground truth permutation π. Given π, we sum

up all pairwise depth differences |D[lπ(i)] − D[lπ(i+1)]|,

i ∈ [n − 1]. Afterwards, we sort all N · R rankings per

image in a decreasing order according to this sum of depth

difference and select the top R rankings as training examples.

This way, we consider those rankings that seem to be most

informative, since their relative depth values are maximized

among the samples. Other strategies, such as the minimum

among all pairwise depth differences in a ranking, are of

course also possible as a proxy of the amount of information.

It is worth to mention that the Plackett-Luce model does

not support partial rankings, i.e., neither allows for ties nor in-

comparability between items. Thus, as opposed to strategies

incorporating equality relations, as e.g. [5], such relations

are not explicitly considered here. To avoid sampling point

pairs that are almost equally far away from the camera, we

add a penalty of −10 to the depth difference sum for each

compared image location pair l1 and l2 if their depth differ-

ence is such that max
{

D[l1]
D[l2]

,
D[l2]
D[l1]

}

< 1 + τ , where the

parameter τ is set to τ = 0.03 in our experiments.

4. Experiments

To demonstrate the effectiveness of our method, we con-

duct an exhaustive empirical evaluation on several bench-

mark datasets. Before presenting the results, we first in-

troduce the datasets, followed by a brief description of the

baseline methods and metrics used for assessment.

4.1. Datasets

To train our models, we use the recently intro-

duced pseudo-metric “High-Resolution Web Stereo Image”

(HR-WSI) dataset [34]. It consists of 20, 378 diverse, high

resolution images annotated with pseudo-depth maps gener-

ated from flow predictions. For hyperparameter optimization,

a separate set of 400 images was used. Since the flow pre-

dictions provided as depth annotation failed for some image

regions, a consistency mask is attached to each prediction

to allow for sampling only from pixels that provide a rea-

sonable depth value. To this end, a forward-backward flow

consistency check has been applied. Furthermore, the an-

notations have been preprocessed to also assign a constant

depth value to sky regions. Despite its relatively small size,

we found this dataset to provide highly informative image

and depth pairs to learn from.

In the experiments, we compare our model to various

baselines in a “zero-shot” generalization study on datasets

that were not used within the training processes. Thus, we

follow the basic evaluation scheme by Ranftl et al. [25]. As

datasets, we consider Ibims [16], Sintel [3], DIODE [30],

and TUM [28]. In the supplementary material, we detail the

characteristics of each dataset, such as their data diversity.

With this choice of benchmark targets, we capture indoor,

outdoor, and computer generated scenes, which provides a

good basis for assessing the generalization performance of

different models, and their ability to predict depth orders in

a wide variety of applications.

4.2. Baselines

We compare our PL-based approach to state-of-the-art

depth estimation models using depth relations as training

information. To this end, we consider the ResNet-based

model trained on “Relative Depth from Web” (ReDWeb),

“Depth in the Wild” (DIW), and YouTube3D as described by

Chen et al. [6], hereinafter referred to as YouTube3D, and the

same model as used by Xian et al. [34] trained on HR-WSI

(referred to as Xian 2020). Both approaches have shown

compelling generalization performance, corroborating our

motivation to use relative data for supervision.

Besides models trained on relative depth information,

regression models are obviously also capable of inferring

rankings, simply by sorting the image locations based on

their values in a predicted dense depth map. Therefore,

we consider state-of-the-art (pseudo-)regression methods as

additional baselines, namely, DenseDepth [1], BTS [18],

MegaDepth [20], MannequinChallenge (MC) [19], and Mi-

DaS [25]. Furthermore, we also evaluated MonoDepth2 [14]

as a completely unsupervised resp. self-supervised method.

While we considered most baselines as described in the

related work, let us note that the authors of MiDaS provide a

model trained on approximately 2 million examples, which

is far more than most of the other methods we compare with.

To account for this, we re-implemented their approach and

14599



retrained the model on HR-WSI for a fairer comparison. For

a complete overview of all baselines, including a categoriza-

tion of the respective training data diversity, we refer to the

supplementary material.

4.3. Metrics

To evaluate our models, we report the “ordinal error”

on sampled point pairs as done by Xian et al. [34]. For

two points l1 and l2 sampled from an example (I,D), with

I being the image and D a dense (pseudo-)depth map as

specified before, the ground truth ordinal relation r(l1, l2, D)

is given by +1 for D[l1] > D[l2], −1 for D[l2] > D[l1] and

0 otherwise. The ordinal error is then given by

ord(D) =
1

|D|

∑

(I,D,l1,l2)∈D

✶
(

r(l1, l2, D) 6= r(l1, l2, f(I))
)

,

(4)

where f is the function predicting depth or, in the case of

a PL model, scores for each pixel of the input image I ,

resulting in a dense depth map just as given by D, and D

denotes the set of all point pairs sampled from the test dataset

images and depth maps.

As already noted, we omit all equal pairs, i.e., relations

with r(·, ·, ·) = 0. Hence, we report ord on unequal pairs

only without any equality thresholding. Thus, there is no

need to rely on re-scaling and -translating as done in [25] and

[34] to identify reasonable equality thresholds, which comes

with additional complications for the evaluation process.

Often, depth orders have varying priorities, i.e., closer

elements are more critical for correct ordering than elements

far away from the camera. For example, an autonomous

vehicle has less time to react to elements very close to the

car and must rely on valid input for safe interactions. This

is reflected by metrics like the discounted cumulative gain

(DCG), which measures the usefulness of rankings by ac-

cumulating graded relevances of ranking items discounted

with decreasing rank. More precisely, for every image lo-

cation l associated with a dense depth map D, we set the

relevance score of l in D to rel(l,D) = 1
D[l]+1 . Given

these scores, we can specify the DCG score for a ranking

lπ(1) ≻ lπ(2) ≻ · · · ≻ lπ(n) by

DCG(π,D) =
n
∑

i=1

rel(lπ(i), D)

log2(i+ 1)
. (5)

For our experiments, we used the normalized DCG (nDCG),

which divides (5) by the best DCG possible on D.

For the metric comparison, we assess the root-mean-

square error (RMSE) between the dense ground truth and

predicted depth maps and the percentage of predictions ẑ

such that max
(

ẑ
z
, z
ẑ

)

= δ > 1.25 for the ground truth

depth z. To calculate the metrics, we normalized the given

ground truth scores by the maximum depth capacity of the

corresponding dataset (cf. the dataset characteristics in the

supplement) to obtain error values on a similar scale.

4.4. Results

To show the effectiveness of our method proposal,we first

compare different losses using the same model architecture

and training dataset, followed by a comparison of our method

to the baselines. Every reported result is the average of three

runs with different randomization seeds.

4.4.1 Loss Comparison

There are many experimental studies in the literature show-

ing improved performance of a method, but not isolating the

key factors contributing to the improvement, e.g., the neural

network architecture, loss function, training procedure, train-

ing data, etc. To assess the influence of a listwise approach

to ranking more clearly, we evaluate three methods trained

on the same data and with the same neural network architec-

ture, namely (scale-invariant, SI) regression, pairwise, and

listwise ranking. It is true that the model, loss, and data may

strongly interact with each other (i.e., a loss might work well

with a certain architecture on a particular dataset, while the

same architecture may harm the performance of a different

method). Nevertheless, we found that the ResNet-based ar-

chitecture as proposed by Xian et al. [33] and subsequently

also used in [25] serves as a good basis for a fair comparison.

For our experiments, we re-implemented the SI mean-

squared error loss as also used in MiDaS and the pairwise

ranking loss as described in [5] and [33]. As training in-

formation, we used HR-WSI as a state-of-the-art diverse

pseudo-depth dataset. We refer to the supplement for a de-

tailed description of all hyperparameters.

All three methods require different sampling strategies:

While the SI-regression uses the complete (masked) image,

pair- and listwise methods involve different amounts of sam-

pled points selected per ranking. For a fair comparison, we

adopted the number of sampled rankings in the listwise case

to the number of drawn pairwise relations, such that one

approach does not see much more points than the other dur-

ing training. In the case of pairwise rankings, we randomly

sampled 1k point pairs per image and epoch, resulting in

a maximum of 2k seen points per image and epoch. For

our listwise approach, we found a size of 5 to achieve a

good trade-off between highly informative rankings and effi-
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Table 1. Ordinal errors on 50k randomly sampled pairs per loss, us-

ing the architecture from [34] trained on HR-WSI (lower is better).

Loss Ibims Sintel DIODE TUM Avg. Rank

SI-Regression 0.308 0.311 0.334 0.222 3

Pairwise 0.281 0.299 0.291 0.192 1.75

Listwise 0.273 0.289 0.285 0.218 1.25

cient training. Hence, we sampled 400 rankings of ranking

size 5 per image and epoch. Here, we explicitly stick to

random-only sampling to alleviate side effects.

Table 1 presents the results of the method comparison

on 50k randomly sampled location pairs per image. As can

be seen, the relative models outperform the SI-regression

method, suggesting to serve as a better surrogate loss for

optimizing the ordinal error. Moreover, our listwise approach

seems to perform slightly better than the pairwise approach,

although the difference does not appear to be significant.

4.4.2 Ordinal Prediction

After having compared the loss function on a shared model

and data level, we now analyze individual depth estimation

models with regard to their ordinal error and nDCG perfor-

mance as trained by the respective authors, who made an

attempt at optimizing the interplay between data, network

architectures, and training procedures.

For the baseline models, we used the best provided pre-

trained models by the authors or, if official implementa-

tions were not available, by popular and carefully tested

re-implementations. For our PL models, we kept most of

the training hyperparameters the same (see supplementary

for more details). Within our sampling strategy, we set the

factor N = 5 (cf. Section 3.5). For MiDaS, we also used our

proposed EfficientNet-based architecture, which delivers su-

perior performance compared to the formerly used architec-

ture, for reasons of fairness. Here, as opposed to the version

of MiDaS within the loss comparison, where we primary

focused on comparing different problem considerations, we

employ the trimmed absolute deviation loss providing the

best performance among the regarded alternatives (cf. [25]).

Table 2 reports the individual ordinal errors on unequal

relations for the four benchmark datasets, again on 50k ran-

domly sampled location pairs per image. As can be seen, our

PLDepthEffNet achieves the lowest averaged rank over all

datasets, while outperforming the other methods on half of

the datasets at the same time, demonstrating the effectiveness

of the listwise ranking approach to optimize the ordinal error

metric. Supporting the observations made in the previous

experiment, the generalization capabilities of MegaDepth

Table 2. Ordinal errors on benchmark datasets with 50k randomly

sampled relations for each image (lower is better).

Model Ibims Sintel DIODE TUM Avg. Rank

DenseDepth 0.208 0.384 0.317 0.224 5.75

MegaDepth 0.297 0.324 0.316 0.227 7.5

BTS 0.190 0.384 0.323 0.251 6.25

MC 0.272 0.387 0.378 0.206 7.25

MiDaS 0.269 0.278 0.263 0.207 3.75

MonoDepth2 0.375 0.425 0.407 0.336 9.75

YouTube3D 0.272 0.292 0.288 0.199 4.75

Xian 2020 0.225 0.278 0.263 0.184 2.25

PLDepthResNet 0.245 0.284 0.277 0.213 4.75

PLDepthEffNet 0.213 0.272 0.256 0.204 2

Table 3. nDCG on benchmark datasets with 100 randomly sampled

rankings of size 500 for each image (higher is better).

Model Ibims Sintel DIODE TUM Avg. Rank

DenseDepth 0.916 0.986 0.821 0.986 4.75

MegaDepth 0.911 0.989 0.815 0.983 7.5

BTS 0.918 0.986 0.825 0.983 4.75

MC 0.908 0.986 0.828 0.987 5.5

MiDaS 0.913 0.991 0.806 0.987 6.25

MonoDepth2 0.896 0.981 0.836 0.961 7.75

YouTube3D 0.911 0.993 0.816 0.988 4.75

Xian 2020 0.916 0.993 0.817 0.990 2.75

PLDepthResNet 0.914 0.993 0.817 0.985 5

PLDepthEffNet 0.916 0.994 0.819 0.988 2.5

as another scale-invariant regression method, even by hav-

ing access to over 600k diverse instances, to correctly rank

elements are fairly limited. Moreover, in agreement with

the previous results, the ranking approaches are consistently

among the best models, suggesting ranking losses to be the

favorite choice as surrogates for ordinal error minimization.

Additionally, Table 3 reports the results for nDCG as per-

formance metric on 100 randomly sampled rankings of size

500 per image. In accordance with the ordinal errors, rank-

ing methods are well suited to optimize this metric. Here,

the top-3 models are all of that kind, with PLDepthEffNet

slightly better performing than Xian 2020.

4.4.3 Metric Prediction

As motivated theoretically in Section 3.3, our method pro-

vides an interface to recover metric depth information ap-

proximated from observed rankings. Here, we compare our

model to the baselines with regard to the two metric error

measures RMSE and δ > 1.25 using the same models as

in Section 4.4.2. As all benchmark datasets have different

scales and might be shifted arbitrarily, we rescale and shift

the predictions to the resolution of the ground truth as de-
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Table 4. Evaluation results on benchmark datasets with regard to metric depth error measures (lower is better in both cases).

Model
Ibims Sintel DIODE TUM Avg. Rank

RMSE δ > 1.25 RMSE δ > 1.25 RMSE δ > 1.25 RMSE δ > 1.25 RMSE δ > 1.25

DenseDepth 0.016 20.9 0.128 39.6 0.110 53.5 0.084 69.7 5.25 4.5

MegaDepth 0.020 35.9 0.119 35.5 0.094 55.3 0.082 70.8 6 7

BTS 0.016 18.9 0.133 41.8 0.112 54.4 0.089 72.4 7 6.25

MC 0.018 31.3 0.128 38.8 0.120 58.7 0.074 67.8 5.25 5.5

MiDaS 0.019 33.2 0.091 27.7 0.081 53.5 0.085 71.1 4 4.75

MonoDepth2 0.023 42.6 0.143 43.8 0.122 61.1 0.088 72.5 9.75 10

YouTube3D 0.019 31.8 0.101 31.1 0.096 54.5 0.077 68.4 4.75 5.25

Xian 2020 0.018 31.5 0.096 30.5 0.085 51.4 0.080 69.4 3 3.25

PLDepthResNet 0.019 30.9 0.099 30.7 0.092 53.1 0.084 71.9 5 4.75

PLDepthEffNet 0.017 29.1 0.093 29.3 0.085 52.7 0.083 71.6 3 3.5
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Figure 2. Sample predictions given by the reconstructed metric

scores of the PLDepthEffNet model as used in the experiments.

scribed in [25] by optimizing a least-squares criterion.

The results are given in Table 4. As can be seen, although

our model was solely trained on rankings, it is capable of

recovering the underlying depth structure relatively precisely.

Noteworthy, it is superior to all regression baselines and

on a par with Xian 2020 for RMSE, although this ranking

baseline additionally incorporates a smooth gradient loss

term for sharp boundaries, directly accessing the metric

depth information at training time. While it delivers the

highest δ > 1.25 accuracy, our approach still proves to be

very competitive in this regard.

Fig. 2 shows exemplary predictions of our model. Ob-

viously, the model is able to capture tiniest object details,

such as tree branches in the image from DIODE, and pre-

dicting sharp object boundaries. This shows that, even with

simple sampling strategies, listwise ranking is able to reflect

and predict such small details, without any need for very

complex strategies based on the depth structure of an image.

5. Conclusion

We have proposed to tackle the problem of depth order-

ing in images as a listwise ranking problem, for which we

employed a Plackett-Luce model tailored to the domain of

monocular depth estimation. Thus, compared to estimat-

ing the exact depth values, we solve an arguably simpler

problem, at least if the goal is to minimize an ordinal error

metric. Besides, compared to precise numerical data re-

quired by regression models for training, a ranking approach

allows for leveraging weaker and more diverse training data.

Although not directly trained on metric data, our model is

capable of providing precise (shift-invariant) depth predic-

tions, essentially by exploiting the relationship between the

(latent) distance between image objects and the probability

of reversing their order in a ranking.

Through an exhaustive zero-shot cross-dataset evaluation,

we showed that our approach, combined with a state-of-the-

art neural network as backbone, achieves superior ranking

performance compared to previous approaches. In partic-

ular, it improves upon existing pairwise ranking methods,

in spite of using a much simpler and more efficient sam-

pling technique. Remarkably, our model also performs very

competitive on metric error measures.

Motivated by these promising results, we plan to elaborate

on further improvements of the listwise ranking approach.

This includes an investigation of the effect of varying the

ranking size, as well as an extension toward learning from

partial rankings and incorporating equality relations. In

addition, as we only applied random sampling so far, we plan

to develop more sophisticated sampling strategies leading to

more informative rankings to learn from.
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