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Figure 1: Anycost GAN can be executed at flexible computation costs (fast preview with low cost and high-quality output

with full cost), enabling interactive image editing with quick preview. The low-cost sub-generator produces consistent outputs

compared to the full-cost generator during both image projection and latent code traversal, making the sub-generator an

accurate proxy for various editing tasks (e.g., no smile, changing hair color). Interactive demos are available here.

Abstract

Generative adversarial networks (GANs) have enabled

photorealistic image synthesis and editing. However, due to

the high computational cost of large-scale generators (e.g.,

StyleGAN2), it usually takes seconds to see the results of

a single edit on edge devices, prohibiting interactive user

experience. In this paper, inspired by quick preview features

in modern rendering software, we propose Anycost GAN

for interactive natural image editing. We train the Anycost

GAN to support elastic resolutions and channels for faster

image generation at versatile speeds. Running subsets of the

full generator produce outputs that are perceptually similar

to the full generator, making them a good proxy for quick

preview. By using sampling-based multi-resolution train-

ing, adaptive-channel training, and a generator-conditioned

discriminator, the anycost generator can be evaluated at

various configurations while achieving better image quality

compared to separately trained models. Furthermore, we

develop new encoder training and latent code optimization

techniques to encourage consistency between the different

sub-generators during image projection. Anycost GAN can

be executed at various cost budgets (up to 10× computation

reduction) and adapt to a wide range of hardware and la-

∗ Part of the work done during an internship at Adobe Research.

tency requirements. When deployed on desktop CPUs and

edge devices, our model can provide perceptually similar

previews at 6-12× speedup, enabling interactive image edit-

ing. The code and demo are publicly available.

1. Introduction

Generative Adversarial Networks (GANs) [17] have ex-

celled at synthesizing diverse and realistic images from ran-

domly sampled latent codes [41, 42, 43, 57, 6]. Furthermore,

a user can transform the generated outputs (e.g., add smiling

to a portrait) by tweaking the latent code [61, 38, 42, 24, 65].

In real-world use cases, a user would often like to edit a natu-

ral image rather than generating random samples. To achieve

this, one can project the image into the image manifold of

GANs by finding a latent code that reconstructs the image,

and then modify the code to produce final outputs [79].

Despite its photorealistic results and versatile editing abil-

ity, modern deep generative models incur huge computa-

tional costs, prohibiting edge deployment. For example,

the StyleGAN2 generator [43] consumes 144G MACs, 36×

larger compared to ResNet-50 [26]. The expensive model

often introduces a several-second delay for a single edit,

leading to a sub-optimal user experience and shorter battery

life when used on an edge device.

Modern 2D/3D content creation workflows, such as the
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preview rendering feature in Maya and Blender, as well as

the playback feature in Adobe Premiere Pro, allow users

to easily control the tradeoff between image quality and

rendering speed. A user can turn off certain visual effects,

reduce the resolution and fidelity, or use a fast method dur-

ing user interaction. Once the edit is finalized, a user can

use an expensive method with additional visual effects at a

higher resolution. In rendering literature, this tradeoff can be

easily achieved by reducing the number of sampled rays in

ray/path tracing [39], or early stopping of iterative solvers in

progressive radiosity [18, 13]. In this work, we aim to bring

a smooth tradeoff between visual quality and interactivity to

deep generative models.

We propose “Anycost” GANs for interactive image syn-

thesis and editing. Our goal is to train a generator that can

be executed at a wide range of computational costs while

producing visually consistent outputs: we can first use a low-

cost generator for fast, responsive previews during image

editing, and then use the full-cost generator to render high-

quality final outputs. We train the anycost generators to sup-

port multi-resolution outputs and adaptive-channel inference.

The smaller generators are nested inside the full generator

via weight-sharing. Supporting different configurations in

one single generator introduces new challenges for minimax

optimization, as the adversarial optimization involves too

many players (different sub-generators). Vanilla GAN train-

ing methods fail catastrophically in this setting. To stabilize

the training process, we propose to perform stage-wise train-

ing: first train sub-generators at multiple resolutions but with

full channels, and then train sub-generators with reduced

channels. To account for different sub-generators’ capacities

and architectures, we train a weight-sharing discriminator

that is conditioned on the architectural information of the

specific sub-generator.

We train Anycost GAN to support two types of channel

configurations: uniform channel reduction ratio and flexi-

ble ratios per layer. The combined architecture space leads

to high flexibility in terms of computation cost, containing

sub-generators at > 10× computation difference. We can

directly obtain low-cost generators by taking a subset of

weights without any fine-tuning, which allows us to easily

switch between quality and efficiency. To handle diverse

hardware capacities, we use evolutionary search to automat-

ically find the best sub-generator under different computa-

tional budgets, while achieving the best output consistency

w.r.t. the full-cost generator (Figure 1b).

To better maintain consistency during the image projec-

tion process, we further propose consistency-aware encoder

training and iterative optimization for image projection. We

optimize the reconstruction loss, not only for the full-cost

generator, but also for the sub-generators, which significantly

improves the consistency during both image projection and

editing steps (Figure 1c).

Our single, anycost generator can provide visually con-

sistent outputs at various computation budgets. Compared

to small generators of the same architecture or existing com-

pression methods based on distillation, our method can pro-

vide better generation quality and higher consistency w.r.t. to

the full generator. The generated outputs from generators at

different costs also share high-level visual cues, for example,

producing generated faces with consistent facial attributes

(see arXiv version). Our method provides 12.2× speed-up

on Xeon CPU and 8.5× speed up on Jetson Nano GPU for

faster preview. Combined with consistency-aware image

projection, our anycost generator maintains consistency after

various editing operations (Figure 7) and offers an efficient

and interactive image editing experience.

2. Related Work
Generative Adversarial Networks. GANs [17] have en-

abled photorealistic synthesis for many vision and graph-

ics applications [45, 11, 37, 80, 59, 31, 15]. Some recent

examples include high-resolution face synthesis [42, 43],

ImageNet-scale class-conditional generation [6], and seman-

tic photo synthesis [69, 58]. As image quality and model

capacity have increased [17, 61, 74, 41, 73, 43, 40], so have

computational costs and inference time. For example, it takes

several seconds for a single forward pass of StyleGAN2 [43]

on a desktop CPU or a tablet. While most research demos

are running on the latest GPUs, deploying them on edge

devices and laptops efficiently is critical for interactive edit-

ing applications. In this work, we tackle this problem by

learning hardware-adaptive generators that work across a

wide range of devices and latency constraints.

Model acceleration and dynamic networks. Efficient

deep networks have enabled fast inference and reduced

model sizes with a focus on image classifiers [23, 22, 77,

68, 21]. Commonly used approaches include pruning [28,

49, 55, 23, 22, 70], quantization [22, 77], knowledge distilla-

tion [30, 56, 10], efficient architecture design [12, 36, 34, 64],

and autoML-based methods [27, 33, 68, 81, 52, 9, 20, 48].

Recently, several works adopt the above ideas to com-

press generative networks with a focus on image-conditional

GANs [66, 47, 71, 67, 14], such as pix2pix [37] and Cycle-

GAN [80]. The work most related to ours is Aguinaldo et

al. [3], which adopts knowledge distillation to compress DC-

GAN [61] on low-res images of MNIST, CIFAR, and CelebA

datasets. A concurrent work [32] also explores channel re-

duction of unconditional GANs on low-resolution datasets.

Our experiments show that knowledge distillation alone is in-

sufficient to transfer the knowledge of a GAN on large-scale

datasets (Figure 5). Compared to prior work, our method

works well for large-scale, high-resolution unconditional

GANs. More importantly, our method can produce output

images with dynamic resolution and fidelity, not possible by

the prior work [3]. We also include techniques to leverage
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Figure 2: Anycost GAN for image synthesis and editing. Given an input image, we project it into the latent space with encoder

E and backward optimization. We can modify the latent code with user input to edit the image. During editing, a sub-generator

of small cost is used for fast and interactive preview; during idle time, the full cost generator renders the final, high-quality

output. The outputs from the full and sub-generators are visually consistent during projection and editing.

the anycost generator in real image editing scenarios.

Image editing via GANs. There exist two major ways of

using GANs for image editing: (1) conditional GANs [37,

80, 53, 54, 46], which learn to directly translate an input

image into a target domain, and (2) image projection [79, 7],

where the algorithm first projects a real image into the latent

space of an unconditional GAN, modifies the latent code to

achieve an edit, and synthesizes a new image accordingly.

Recently, interest in projection-based editing has been re-

vived due to the increasing quality of unconditional GANs.

Several methods have been proposed, including choosing bet-

ter or multiple layers to project and edit [1, 2, 19], fine-tuning

network weights for each image [5], modeling image corrup-

tion and transformations [4, 35], and discovering meaningful

latent directions [65, 16, 38, 24]. In this work, we aim to

learn efficient generators for downstream image projection

and editing, which offers unique challenges. Namely, we

wish the projected latent code from a sub-generator provide

a faithful “preview” of the full model. In addition, user edits

with the sub-generator should also make the corresponding

changes to the full model. We tackle these challenges using

our new consistency-aware encoder training and optimiza-

tion method.

3. Anycost GANs

We introduce the problem setting and potential challenges

in Section 3.1. We then describe our training method for

learning multi-resolution adaptive-channel generators in Sec-

tion 3.2. In Section 3.3, we describe our consistency-aware

encoder training and latent code optimization, designed for

image projection and editing.

3.1. Problem Setup

An unconditional generator G learns to synthesize an

image x ∈ RH×W×3 given a random noise z ∈ Z , where

Z is a low-dimensional latent space. In this work, we study

StyleGAN2 [43], which first learns a non-linear mapping

f : Z → W+ that produces w = f(z),w ∈ R18×512, and

then generates the image from W+ space: x = G(w) [1].

Anycost GAN enables a subsection of the generator G′

to execute independently and produce a similar output x′ =
G′(w) to the full generator G(w). We can then use G′(w)
for fast preview during interactive editing, and full G(w) to

render final high-quality outputs. The model can be deployed

on diverse hardware (e.g., GPUs, CPUs, smartphones), and

users can choose between different preview qualities.

A natural choice for enabling diverse inference cost is to

use different image resolutions, as done in StackGAN [75]

and ProGAN [41]. However, reducing resolution from

1024×1024 to 256×256 only reduces the computation by

1.7×, despite 16× fewer pixels to synthesize*. Therefore,

we need additional dimensions to further reduce the cost.

3.2. Learning Anycost Generators

We propose to learn an anycost generator to produce

proxy outputs at diverse resolutions and channel capacities.

The detailed architecture is shown in Figure 3.

Multi-resolution training. For elastic resolutions, the

architectures of the ProGAN [41] and StyleGAN fam-

ily [42, 43] already produce lower-res intermediate outputs,

although the outputs do not look natural (Figure 4a). We

can enable lower-resolution outputs by enforcing multi-scale

training objectives (Figure 4b). Our generator gradually

produces higher resolution outputs after each block gk:

x̃ = G(w) = gK ◦ gK−1 ◦ ... ◦ gk ◦ ... ◦ g2 ◦ g1(w), (1)

where K is the total number of network blocks. We use the

intermediate low-res outputs for preview, and denote:

x̃
k = Gk(w) = gk ◦ gk−1 ◦ ... ◦ g2 ◦ g1(w), k ≤ K, (2)

resulting a series of outputs in increasing resolutions

[x̃1, ..., x̃K ].

*1024-resolution StyleGAN2 has 144G MACs, while 256-resolution

model has 85G MACs.
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Figure 3: Anycost GAN synthesizes realistic images at

a wide range of resolutions and model capacities via (1)

sampling-based multi-res training, (2) adaptive-channel train-

ing, and (3) generator-conditioned discriminator.

Existing work MSG-GAN [40] trains the generator to

support different resolutions by using a discriminator tak-

ing images of all resolutions at the same time (Figure 3b).

However, such an all-resolution training mechanism leads to

lower quality results on large-scale datasets like FFHQ [43]

(as measured by Fréchet Inception Distance, FID [29]), com-

pared to training single-resolution models separately (Ta-

ble 1). To overcome the image fidelity degradation when

supporting multi-resolutions, we propose a sampling-based

training objective, where a single resolution is sampled and

trained at each iteration, both for the generator G and the

discriminator D. As shown in Figure 3c, when sampling a

lower resolution (e.g., 128×128), the translucent parts are

not executed. We use the intermediate output of G for a

lower resolution. It is passed through a fromRGB convo-

lution “readoff” layer to increase channels, and then fed to

an intermediate layer of D. Our multi-resolution training

objective is formulated as:

Lmulti-res = Ex,k[logD(xk)] + Ew,k[log(1−D(Gk(w)))].
(3)

We observe that the sampling-based training leads to better

convergence: in fact, our multi-resolution model gives better

FID at all resolutions, compared to single-resolution models

trained at corresponding resolutions, as shown in Table 1.

Adaptive-channel training. To further enable our genera-

tor to run at different costs, we train the generator to support

variable channels. For adaptive-channel training, we allow

different channel number multipliers for each layer (either a

2562128264232225621282642322

(a) vanilla StyleGAN2 (b) multi-resolution training

(c) w/o consistency loss (d) w/ consistency loss

fu
ll

 G
0
.5

x
 c

h

Figure 4: (a) Intermediate layers do not output realistic im-

ages for StyleGAN2 baseline. (b) Multi-resolution training

in our model enables photorealistic lower-resolution out-

puts at intermediate layers. (c) Without consistency loss,

running the model at full and half-channel produces incon-

sistent images. (d) Adding consistency loss maintains output

consistency (similar images per column).

uniform ratio, used across all layers or flexible ratios for each

layer). For each training iteration, we randomly sample a

channel multiplier configuration and update the correspond-

ing subset of weights (yellow part in Figure 3c). We hope

that the most “important” channels are preserved during sam-

pling to minimize any degradation. To this end, we initialize

our model using the multi-resolution generator from the pre-

vious stage and sort the channels of convolutional layers

according to the magnitude of kernels, from highest to low-

est. We always sample the most important αc ones according

to the initial sorting, where α ∈ [0.25, 0.5, 0.75, 1] and c is

the number of channels in the layer. The adaptive-channel

training objective is written as follows:

Lada-ch = Ex,k[logD(xk)] + Ew,k,C[log(1−D(Gk
C(w)))],

(4)

where C means the channel configurations for each layer.

With such a learning objective, all the sub-networks with

fewer channels can generate reasonable images. However,

these images may be visually different compared to the full

network, failing to provide an accurate “preview” (Figure 4c).

To keep the output consistent across different sub-networks,

we add the following consistency loss:

Ltotal = Lada-ch + Ew,k,C[ℓ(G
k
C(w), G(w))], (5)

where ℓ is a pre-defined distance metric. We use a combi-

nation of MSE loss and LPIPS loss [76], which empirically

gives the most visually consistent results (Figure 4d). Note

that all the sub-networks and the full network share weights

across different channels and are jointly trained.

Generator-conditioned discriminator. Unlike conven-

tional GAN training, our system trains many sub-generators

of different channels and resolutions at the same time. We
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find that one single discriminator cannot provide good super-

vision for all sub-generators of different channel configura-

tions, resulting in an inferior image fidelity/FID (Table 2).

To handle the challenge, we design the discriminator to be

conditioned on the generator architecture.

A straightforward method for generator-conditioning is

to correspondingly shrink the channels of the discriminator

with the generator. However, we find that such practice often

sacrifices the quality of smaller channel settings, due to its re-

duced capacity of the discriminator (“reduced ch” in Table 2).

Also, such a technique only supports uniform channel ratios.

Instead, we take a learning-based approach to implement the

conditioning. As shown in Figure 3c, we first encode the

channel configuration in g arch using a one-hot encoding

(for each layer, we can choose one of the four ratios, forming

a one-hot vector of length 4; we concatenate the vectors from

all layers to form g arch), which is passed through a fully

connected layer to form the per-channel modulation. The

feature map is modulated using the conditioned weight and

bias before passing to the next layer. For real images, we

randomly draw a g arch vector. To stabilize training, we

only apply the G-conditioned modulation units to the last

two blocks of the discriminator.

Searching under different budgets. By training the gen-

erator to support flexible ratios for each layer, we sup-

port an exponential number of sub-generator architectures.

At a given computation budget, selecting the proper sub-

generator configuration is important for keeping generation

quality and consistency. We use an evolutionary search

algorithm [62, 8, 20] to find an effective sub-generator ar-

chitecture under diverse resource budgets (e.g., computation,

latency). Given a certain budget, our evolutionary search

minimizes the difference between the desired sub-generator

and the full generator’s outputs, measured by a perceptual

loss. Please find more details in the arXiv version.

3.3. Image Projection with Anycost Generators

To edit an existing image x, we need to first project the

image into the latent space of a generator [79] by solving

w
∗ = argmin

w
ℓ(G(w),x), where we use a combination

of LPIPS [76] and MSE loss for ℓ. We follow [1, 2] to

project the image into the extended W+ space, rather than

the Z space due to its better expressiveness. We follow the

two-step approach, as introduced in iGAN [79]: encoder-

based initialization followed by gradient-based latent code

optimization.

Consistency-aware image projection. Encoder-based

projection directly trains an encoder E for projection by

optimizing E∗ = argminE Exℓ(G(E(x)),x) over many

training images. For a specific image sample, we can further

improve the results with optimization-based projection by

solving w∗ = argmin
w
ℓ(G(w),x) with iterative gradient

descent. While our generator can produce consistent results

across sub-generators for a randomly sampled latent code,

the predicted/optimized latent codes E(x) may not follow

the prior distribution. As a result, the sub-generators may not

produce consistent results on some optimized latent codes.

Therefore, we modify the objects to produce a latent code

that works for both the full generators as well as randomly

sampled sub-generators as follows:

E∗ = argmin
E

Ex[ℓ(G(E(x)),x) + αEk,Cℓ(G
k
C(E(x)),x)]

(6)

w∗ = argmin
w

[ℓ(G(w),x) + αEk,Cℓ(G
k
C(w,x)] (7)

We set hyper-parameter α = 1 in our experiments.

Image editing with anycost generators. After projection,

we can perform image editing by simply changing the la-

tent code and synthesize a new one using G(w + ∆w),
where ∆w is a vector that encodes a certain change. Sev-

eral methods [65, 24] have been proposed to discover such

latent directions that control certain aspects of the input

(e.g., smiling/non-smiling for faces, color, and shape for

cars). To produce a preview with low latency, we can run

Gk
C
(w +∆w). In experiments, we observe that as long as

the initial projection is consistent across the full and sub-

generators, the edited results are visually similar.

4. Experiments

4.1. Setup

We conduct experiments on both FFHQ [42] (resolution

1024) and LSUN car dataset [72] (resolution 512) due to the

large scale and high resolution. Our generators are based

on StyleGAN2 [43] (config-F). We train our models to sup-

port four resolutions from the highest (e.g., 1024, 512, 256,

128 for FFHQ), since lower resolutions are too blurry for

a high-quality preview. For dynamic channels, we support

multipliers ranging [0.25, 0.5, 0.75, 1] w.r.t. the original

channel numbers. For fast ablation studies, we train models

on 256×256 images using config-E (half channels). Please

find more experimental details in the arXiv version.

For adaptive channel support, we consider two settings:

(1) training with uniform channel ratios (i.e., using the same

channel reduction ratios for all layers); (2) training with flex-

ible channel ratios for each layer. For the latter setting, after

GAN training, we leverage evolutionary search to find the

best channel & resolution configurations under certain com-

putation budgets. Please find more details of the evolutionary

search in the arXiv version.

4.2. Ablation studies

We first show how we improve the image quality while

supporting different resolutions and channels with ablation

14990



Table 1: FID-70k on FFHQ of different multi-resolution

training techniques. Our sampling-based technique can train

one model that produces multiple resolution outputs with

higher image quality (measured by FID [29]) compared to

single resolution training. The models are trained with half

channels (Config-E) for faster ablation.

Resolution 1024 512 256 128 64 32

Single-resolution 3.25 4.17 3.76 4.04 3.32 2.41

MSG-GAN [40] - - 4.79 6.34 2.7 3.04

Ours (low res) - - 3.49 3.26 2.52 2.18

Ours (high res) 2.99 3.08 3.35 3.98 - -

Table 2: FIDs on FFHQ at different resolutions and channels.

All the settings except “vanilla” only train one generator and

evaluate it at multiple configurations. We mark a better FID

green and a worse FID red compared to multi-G baseline.

Conditioned discriminator (“conditioned”) provides the best

FID over different channel widths and resolutions. The

model is based on Config-E for faster ablation.

FID-70k↓
resolution 256 resolution 128

1× 0.75× 0.5× 0.25× 1.0× 0.75× 0.5× 0.25×

vanilla 3.80 4.64 6.20 10.39 4.04 4.99 5.78 11.15

same D 3.63 3.91 5.41 14.01 7.25 6.81 5.92 7.57

reduced ch 3.67 4.35 5.82 10.62 3.09 3.65 4.74 8.82

conditioned (Ours) 3.73 3.86 4.64 8.06 3.30 3.28 3.69 5.55

studies. The results are evaluated on FFHQ dataset.

Multi-resolution training. We compare the results of

sampling-based multi-resolution training against single-

resolution training and MSG-GAN [40] in Table 1. With

our technique, we can train one generator that generates

multi-resolution outputs at a better quality (lower FID) for

both high-resolution (1024) and lower-resolution (256) set-

tings, even compared to specialized single-resolution models.

Compared to MSG-GAN [40], which trains all resolutions

at each iteration, our method consistently gains better FIDs.

We hypothesize that feeding images of all resolutions to the

discriminator poses a stricter requirement for the generator

(all the outputs have to be realistic to fool the discrimina-

tor), breaking the balance between the generator and the

discriminator.

G-conditioned discriminators for dynamic channels.

Using one fixed discriminator is not enough to handle a set

of generators at different channel capacities and resolutions.

We use a simpler setting for ablation by only supporting four

uniform channel reduction ratios, i.e., using the same chan-

nel multiplier for all layers. As shown in Table 2, using the

same discriminator for all sub-generators (denoted as “same

D”) cannot consistently match the FIDs compared to single

generators trained for a specific resolution and channel width

(denoted as “vanilla”). It also leads to an unstable FID dis-

tribution (e.g., for resolution 128, 1.0× channel gives worse

FID compared to 0.5×, despite increased computational

resources), since a single discriminator can only provide

suitable supervisions for a small subset of sub-generators.

To improve the performance of each generator, we imple-

ment the discriminator to be conditioned on the generator

architecture. A straight-forward method is to also reduce

the channels of the discriminator using the same ratio as

the generator (denoted as “reduced ch” in Table 2). This

improves the FIDs under some conditions and makes the

FIDs monotonic as a function of computation (wider sub-

generators give better FID). However, the narrow generators

(e.g., 0.25×) have degraded FIDs due to limited discrimi-

nator capacity. This also does not work for non-uniform

channel ratio settings, where each layer can use a different

channel ratio, leading to exponential combinations. Instead,

our conditioned discriminator (denoted as “conditioned”)

uses a learned modulation according to the generator ar-

chitecture (represented as an architecture vector), without

reducing the discriminator capacity. For different channels

and resolutions, it provides consistently better FIDs com-

pared to the multi-generator baseline, and also improves over

the reduced-channel method.

Outperforming compression baselines. One baseline for

fast generation preview is to train a small model that mimics

the full generator and use the small model for interactive

image editing. However, this method does not allow flex-

ible model capacity to fit diverse hardware platforms and

latency requirements. The small models also have inferior

generation quality and consistency w.r.t. to the full generator,

compared to our anycost generator.

We compare the FID-computation trade-off with

compression-based baselines in Figure 5a. “Vanilla” means

single models trained from scratch. We compare with [3],

which uses a distillation-based method for unconditional

GAN compression (“Distill”), and also adapt a general CNN

compression method [28] to GAN (“ChannelPrune”). Since

the FID cannot be computed across different resolutions, we

provide the results for resolution 256 and 128 separately

(we can search over all resolutions and channels when opti-

mizing for consistency). For anycost GAN, we provide the

results of two settings: uniform channel ratio (denoted as

“Anycost (uniform)”) and flexible channel ratios (denoted as

“Anycost (flexible)”). Anycost GAN outperforms existing

compression methods at a wide range of computation bud-

gets, despite using only a single generator, achieving lower

FID/difference at the same computation. The “uniform” and

“evolve” settings achieve a similar trade-off curve. However,

with evolutionary search, we can support more fine-grained

computation budgets to fit more deployment scenarios.

Apart from generation quality, our sub-generators also

provide more consistent outputs w.r.t. to the full generator
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Figure 5: Anycost GAN outperforms existing compression baselines [3, 28] at various computation budgets, despite only

training a single, flexible generator across computation budgets.

Table 3: Anycost GANs achieves similar or better FIDs/path

lengths at various channel widths compared to StyleGAN2,

despite training a single, flexible generator.

FID-50k↓ Path length↓

Channels: 1.0× 0.75× 0.5× 0.25× 1.0× 0.5×

FFHQ

1024
StyleGAN2 2.84 - 3.31 - 145.0 124.5

Anycost 2.77 3.05 3.28 5.01 144.2 147.2

Car
512

StyleGAN2 2.32 - 3.19 - 415.5 471.2

Anycost 2.38 2.46 2.61 3.69 380.1 430.0

(Figure 5b). We measure the LPIPS difference [76] between

the generated images from sub-networks and the full net-

work. Compared to distillation-based training, our model

reduces the LPIPS difference by half. For models trained

from scratch, we cannot report LPIPS consistency, as the

models are independently trained.

4.3. Anycost Image Synthesis

In this section, we provide the results of Anycost

GAN trained on high-resolution images (1024 × 1024 for

FFHQ [43] and 512× 384 for LSUN Car [72]). The models

are trained with Config-F [43] for high-quality synthesis.

Qualitative results. In Figure 6, we show several sam-

ples from our anycost generators (uniform channel setting).

Despite only training a single generator, Anycost GAN main-

tains output consistency across different resolutions and dif-

ferent channel widths compared to the full generator’s out-

put, providing a fast preview when a user is exploring the

latent space or applying editing operations. The samples are

generated with truncation rate ψ = 0.5. We also provide

the visualization of the flexible-channel Anycost GAN in in

Figure 1 and more in the arXiv version.

Quantitative results. We also provide the quantitative re-

sults of the high-resolution images. The high-resolution

FIDs and path lengths [42] are shown in Table 3. We only

provide the results of uniform channel setting, since the

flexible setting shares a similar FID vs. computation trade-

off (Figure 5). Compared to StyleGAN2, Anycost GANs

achieves similar or better FIDs and path lengths at various

Table 4: Inference FPS & speed up rates on different devices.

FLOPs reduction 1× 2× 4× 6× 8× 10×

Xeon CPU FPS 0.63 1.78 5.94 6.24 7.48 7.35

speed up rate 1× 2.8× 9.5× 10.0× 11.9× 11.7×

Nano GPU FPS 0.65 1.17 2.77 3.59 4.07 4.1

speed up rate 1× 1.8× 4.2× 5.5× 6.2× 6.3×

Table 5: Consistency-aware encoder gives accurate projec-

tion results for both the full generator and sub-generators. It

largely reduces the gap between them. Here w = E(x).

ℓ(G(w),x) ℓ(G′(w),x) ℓ(G′(w), G(w))

LPIPS MSE LPIPS MSE LPIPS MSE

ALAE [60] 0.32 0.15 - - - -

IDInvert [78] 0.22 0.06 - - - -

pSp [63] 0.19 0.04 - - - -

Ours (fullG-only) 0.13 0.03 0.17 0.04 0.07 0.012

Ours (full+subG) 0.13 0.03 0.14 0.03 0.02 0.003

channel widths, despite only one generator is trained. Any-

cost GANs enjoy better flexibility for inference and also

better synthesis quality compared to the baselines.

Latency reduction. We measure the latency speed-up on

both desktop CPU (Intel Xeon Silver) and mobile GPU

(NVIDIA Jetson Nano) in Table 4. Anycost generators can

generate consistent previews at 11.9× walltime speed-up on

CPU and 8.5× speed-up on Jetson Nano. Interestingly, the

model achieves a super-linear speed-up on Intel CPU. We

hypothesize that the activation and weight sizes of the full-

cost generator exceed the cache on CPU (16.5MB), leading

to increased cache miss rate and worse inference efficiency.

4.4. Anycost Image Projection and Editing
Encoder training. We compare the encoder only opti-

mized for the full model and the one optimized for both the

full network and the sub-networks. The results on CelebA

test set are in Table 5. For generality, we used a simple

encoder architecture: we used the ResNet-50 [26] backbone

architecture and a linear layer to regress the latent code in

W+ space. We train the encoder both on real images (FFHQ

+ CelebA train set following [63]) and generated images for
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Figure 6: Anycost GAN (uniform) maintains output con-

sistency across different resolutions and channels widths.

Zoom in for better view. For faces (a), our method preserves

the prominent facial structure such as age, hair style, and

pose. Some small details such as wrinkles are omitted. For

cars (b), our method succeeds to keep the color, shape, and

pose. Some small details are omitted such as license plates.

200 epochs. We apply random horizontal flip, random color

jittering, and random grayscale as augmentation [25]. To

compare with existing literature, we measure the LPIPS loss

using AlexNet backbone instead of VGG. Apart from the re-

construction loss for the full generator, we also measure the

average reconstruction performance for all the sub-generator

architectures found by our evolutionary algorithm. Our gen-

erator has better reconstruction performance compared to an

advanced encoder design [63] that uses a Feature Pyramid

Network [50] structure.
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Figure 7: Anycost GAN maintains consistency after editing,

providing a quick preview at 8× computation reduction.

Optimization-based projection. For optimization-based

projection, we used L-BFGS solver [51] with 100 iterations.

We find that L-BFGS converges faster than Adam [44]. We

use the encoder’s prediction as the starting point to represent

a more realistic use case, which also results in better con-

vergence compared to starting from average latent w [43].

Interestingly, we find that a lower optimization loss results

in a better reconstruction, but the latent code may not be

suitable for latent space-based editing (see supplementary).

Therefore, we do not benchmark the quantitative results here.

The qualitative results are shown in Figure 1.

Image editing with anycost generators. We show that

anycost generators remain consistent after image editing.

We compute several editing directions on FFHQ dataset in

the W space following [65]. We compare the outputs of the

full generators and 8×-smaller computation sub-generators

after editing smiling, age, eye-glasses, and hair color in

the latent space. The results are shown in Figure 7 and

Figure 1 . Anycost generator gives consistent outputs under

various attribute editing. We show more projection and

editing examples in the supplementary materials.

5. Discussion

In this paper, we have proposed Anycost GAN, a scalable

training method for learning unconditional generators that

can adapt to diverse hardware and user latency requirements.

We have demonstrated its application in image projection

and editing. Several limitations still exist for our method.

First, the control over the channel numbers might be difficult

for users who are new to neural networks. In the future, we

plan to provide more intuitive controls such as synthesizing

similar color, texture, illumination, or shape as the original

model does. Second, our current model aims to approximate

every single output pixel equally well. In practice, certain

objects (e.g., face) might be more important than others (e.g.,

background). We would like to learn models that can support

spatially-varying trade-off between fidelity and latency.
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