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Abstract

Temporal action localization is an important yet chal-

lenging task in video understanding. Typically, such a task

aims at inferring both the action category and localization

of the start and end frame for each action instance in

a long, untrimmed video. While most current models

achieve good results by using pre-defined anchors and

numerous actionness, such methods could be bothered

with both large number of outputs and heavy tuning of

locations and sizes corresponding to different anchors.

Instead, anchor-free methods is lighter, getting rid of

redundant hyper-parameters, but gains few attention.

In this paper, we propose the first purely anchor-free

temporal localization method, which is both efficient

and effective. Our model includes (i) an end-to-end

trainable basic predictor, (ii) a saliency-based refinement

module to gather more valuable boundary features for

each proposal with a novel boundary pooling, and (iii)

several consistency constraints to make sure our model

can find the accurate boundary given arbitrary propos-

als. Extensive experiments show that our method beats

all anchor-based and actionness-guided methods with

a remarkable margin on THUMOS14, achieving state-

of-the-art results, and comparable ones on ActivityNet

v1.3. Code is available at https://github.com/

TencentYoutuResearch / ActionDetection -

AFSD.

1. Introduction

Recently, with the progress of technology, a dramatically

increasing number of videos have been stored and acces-

sible from various daily activities. Temporal Action Lo-
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author.
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Figure 1. Compared with actionness and anchor-based methods,

anchor-free method is more efficient and flexible to produce fewer

proposals without any extra classifier and pre-defined anchors.

calization (TAL), as a fundamental aspect of video under-

standing, thus plays an important role in real life, extending

in several practical applications such as video analysis and

summarization, human interaction, etc. Compared with ac-

tion recognition that takes medium-range videos as input

and only requires class labels as prediction, TAL is aimed

at not only classifying every activity instance in each video,

but also looking for the accurate temporal locations of them.

Current TAL models mainly focus on learning action-

ness of each frame [20, 18, 17, 26, 27, 24] or adjustment of

pre-defined anchors [38, 23, 22], named actionness-guided

methods and anchor-based methods, as shown in Fig. 1.

In spite of reasonable good results on benchmark datasets,

such methods are still limited to the following points: (1)

Both methods will produce a bunch of redundant proposals.

For example, given a video with T frames, we have to pro-

duce O(T 2) andC ·T proposals for the “actionness-guided”

BSN [20], and “anchor-based” R-C3D [38], individually.

Here C is the number of pre-defined anchors. These pro-

posals lead to prohibitive computational cost in both calcu-
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lating the training loss and post-processing for testing. (2)

Actionness-guided methods can solely provide predictions

of temporal boundary, while they have to rely on the extra

model such as S-CNN [33] and P-GCN [41] for classifica-

tion. Nevertheless, the models of two stages are isolated and

thus incapable of sharing information for the end-to-end up-

date. (3) Typically, anchor-based methods are very sensitive

to some critical hyper-parameters, such as the number and

size of pre-defined anchors; and it is very non-trivial to tune

these hyper-parameters in the real-world applications.

Alternatively, an efficient recipe for localization is to re-

sort to the anchor-free method, which does not require pre-

defined anchors. Typically, this type of method only gener-

ates one proposal for each temporal location in the form of

a pair of values representing the distance between the start

and end moments to the current location, individually.

In contrast to the existed methods, anchor-free model

saves huge amount of pre-defined anchors, while assem-

bling both boundary regression and classification in one

model, thus being productive. Furthermore, even though

some pilot studies, e.g., Yang et. al. [40] observed rela-

tively weak results for anchor-free methods, the supporting

evidence in object detection [42] shows that such methods

with well designed network structure and training strategy

should, in principle, be comparable with anchor-based ones.

To this end, in this paper we propose a novel purely

anchor-free TAL framework dubbed Anchor-Free Saliency-

based Detector (AFSD). Essentially, we first build a naive

anchor-free predictor containing an end-to-end trainable

backbone network, a feature pyramid network and a sim-

ple prediction network which outputs the action class and

the temporal distance of the start and end from each loca-

tion. To learn a more accurate boundary, we refer to former

TAL methods [20, 18] indicating the importance of bound-

ary or context feature. These works obtain such features

mainly by merging the neighbor of start and end moments

with convolutions or mean pooling. However, we claim that

in fact moment-level feature is more valuable than region-

level feature for distinguishing whether an action starts or

ends. As shown in Fig. 2, the background regions near the

start and end moments are showing other irrelevant scenes,

while regions inside the action are almost the same, which

cannot provide any information for judging if the action

starts or ends. Such an example indicates the importance

of a moment-level feature.

Therefore, we propose a novel boundary pooling which,

instead of aggregating the whole region, tries to find the

most salient moment-level feature for both start and end re-

gions. We further equip the boundary pooling with a newly

proposed Boundary Consistency Learning (BCL) strategy

to regularize the pooling operation to provide the correct

boundary features for each action. In detail, we employ a

modified ground truth signal indicating start and end mo-

start moment

cliff diving back groundback ground

end moment

Figure 2. An action instance of cliff diving. Note that the start

and end moments of the movement are more salient than others,

which can bring us significant information to judge the boundary

and completeness of the action.

ments to guide the model. Then, we rearrange the video

clips to help model discriminate background and action fea-

tures by self-supervised contrastive learning. We conduct

extensive experiments on THUMOS14 and ActivityNet1.3.

On THUMOS14 our model attains 3.7% improvement on

mAP@0.5 against the state-of-the-art methods. The results

on ActivityNet1.3 are also comparable.

In summary, our paper has the following contributions:

1. We, for the first time, propose a purely anchor-free

temporal action localization model. This model enjoys

not only less hyper-parameter to tune and less outputs

to process, but also better performance, thus making

the best of both worlds.

2. To make full use of the anchor-free framework, we

discuss the impact of boundary features and pro-

pose novel boundary pooling method whose output is

used along with the coarse proposals to generate fine-

grained predictions. Moreover, we introduce a novel

Boundary Consistency Learning strategy which can

constrain the model to learn better boundary feature.

2. Related Work

Anchor-based Localization Anchor-based localiza-

tion models rely on adjusting the pre-defined anchors.

TURN [10] aggregates features from basic video unit for

clip-level features, which are used to classify the activity

and regress the temporal boundary. R-C3D [38] takes

the inspiration from faster-RCNN [31], which utilizes a

streamline including proposal generation, proposal-wise

pooling and final prediction. GTAN [23] modifies the pool-

ing procedure, adopting a weighted average via a learnable

Gaussian kernel for each proposal. Due to the fixed

pre-defined anchors, such methods are not flexible when it

comes to various action classes. Different from them, our

model does not require tuning extra hyper-parameters for

anchors, thus more efficient.

Actionness-guided Localization Unlike anchor-based

methods, actionness-guided methods mainly focus on eval-

uating ‘actionness’, which indicates the probability of a po-

tential action, for each frame or clip in a video. The action-

ness is afterwards post-processed to generate action propos-

als. Zhao et. al. designed SSN [44] in which course pro-

posals are first divided into three semantic parts, learned
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respectively. Next probability of activity and complete-

ness is predicted and used to merge different proposals.

Lin et. al. proposed BSN [20] which learns to predict

start, end and actionness of each temporal location. The

proposals are generated by gathering locations with high

start and end probabilities, with low confidence ones fur-

ther abandoned by an evaluation module. They later im-

proved this framework to BMN [18], which additionally

generates a Boundary-Matching confidence map to help

get better proposals. While no pre-defined anchors are re-

quired for actionness-guided methods, such methods are

more like enumeration methods where all possible combi-

nations of temporal locations are considered, thus totally

different from anchor-free localization where boundaries

are directly predicted for each time step.

Anchor-Free Object Detection Analogous to TAL, there

is a surge of the usage of anchor-free methods in object de-

tection. YOLO [30] is the most well-known anchor-free

method, in which a neural network model is directly used

to predict coordinates of bounding boxes from raw images.

Such framework is too simple, thus suffering from poor

performance. Following works mainly focus on improving

performance via setting different prediction targets and us-

ing more detailed features. CornerNet [16] lets the model

learn to predict top-left and bottom-right keypoints of each

bounding box. FCOS [35] aims to learn the distance to

boundaries of each spatial location and utilizes feature pyra-

mid for objects with diverse scales. BorderDet [28] modi-

fies the RoI pooling into BorderAlign to get more power-

ful proposal-level feature. We take inspiration from these

methods to design a basic anchor-free localizer, along with

making full use of the temporal insights of videos to pro-

pose novel refinement strategy and consistency learning.

Contrastive Learning There has been an increasing inter-

est in contrastive learning used in unsupervised learning.

Compared with the application of contrastive learning in

image understanding [8, 13], fewer contributions of con-

trastive learning have been made in video understanding.

Guillaume et. al. [25] proposed a temporal contrastive train-

ing strategy for action recognition, in which an autoregres-

sive model is used to predict future video segment given

enough information, and then compare the prediction with

ground truth. Gong et. al. [12] adopted a contrastive scor-

ing method to evaluate action proposals in unsupervised

temporal localization in the inference phase. Compared

with these works, we make further trial into leveraging con-

trastive learning to help train a supervised temporal local-

ization model, which has never been studied before.

3. Method

Denote a video dataset as T = {T train, T test}, each

data instance {X,ΨX} contains a video X = {xt}
T
t=1

with T RGB frames or optical flows. The corresponding

annotation ΨX can be depicted as tuples {(φm, ym)}MX

m=1

where MX is the number of action instances in X , φm =
(ψm, ξm) denotes the start time, end time and ym indicates

the action category. Our goal is to train a model to predict

proposals with class scores which could have high recall

and precision with the ground truth on the test set T test.

Overview We propose a purely anchor-free architecture

named AFSD shown in Fig. 3. Concretely, given a video

X , we first process the video with a backbone network

and a feature pyramid network. Take RGB frames as ex-

ample, for each video X , we use a Kinetics pre-trained

I3D [6] model to extract a 3D feature F ∈ R
T

′

×C
′

×H
′

×W
′

,

where T
′

, C
′

, H
′

,W
′

denote the time step, channel, height

and width individually. This feature is afterwards flattened

along the last three dimensions to a 1D feature sequence.

Such a sequence can contain the temporal and spatial in-

formation of whole video. We then exert a feature pyramid

network including several temporal convolutions, of which

the details are shown in our supplement, to merge the spatial

dimension and temporal dimension in different levels. The

pyramid features are further utilized to generate a coarse

proposal sequence {(ψ̂i, ξ̂i, ŷ
C
i )} with a basic anchor-free

prediction module (Sec. 3.1), which includes a simple re-

gressor and classifier. Then for each proposal, the predicted

temporal regions are employed to get the salient boundary

features with the boundary pooling (Sec. 3.2). The bound-

ary features are exploited together with the feature pyra-

mid to output a fine-grained prediction {(∆ψ̂i,∆ξ̂i, ŷ
R
i )}

for both temporal regression and action classification.

3.1. Basic Prediction Module

We first build a basic anchor-free prediction module to

get coarse temporal boundaries. For instance, for the fea-

ture of the l-th FPN level f l ∈ R
Tl×C , we first project it to

features f lloc and f lcls embedded in two latent space corre-

sponding to localization and classification by two branches

with two temporal convolutions respectively. Both of these

two features f lloc and f lcls are processed with one layer of

temporal convolution shared among all FPN layers to get

coarse start and end boundary distances (d̂si , d̂
e
i ) and class

score ŷi for each location i. Next we can get start and end

time for i-th time step in l-th level as follow:

ψ̂i = i ∗ 2l − d̂si ,

ξ̂i = i ∗ 2l + d̂ei .
(1)

Tl proposals are generated for l-th FPN layer in all. This

simple framework can already detect actions in a anchor-

free manner, which enjoys merits including no requirement

for pre-defined anchors and less but more accurate predic-

tions as discussed in Sec. 1. In the following sections, we

focus on designing appropriate modules and training strat-

egy for anchor-free TAL methods with better performance.
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Figure 3. The overview of our approach. Given an input video X , we employ I3D model to extract feature and construct 1D temporal

pyramid features. Next, each pyramid feature is utilized to generate coarse proposals via basic prediction module. Finally, our saliency-

based refinement module will adjust the class score, start and end boundaries and predict the corresponding quality score for each coarse

proposal. Note that our model is a fully end-to-end method and trained with I3D feature extraction network without any preprocessing.
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Figure 4. (a) Saliency-based Refinement Module: utilize coarse

boundaries, FPN feature and frame-level feature to construct

salient boundary feature. (b) Boundary Pooling: search salient

moment features in the boundary regions of the input feature.

3.2. Saliency­based Refinement Module

As mentioned in Sec. 1, several existing works have

shown the importance of boundary feature in TAL, espe-

cially for predicting the temporal distance. However, since

different action instances could have various lengths, it is

hard to attain these boundary information for all propos-

als via several simple temporal convolutions because of the

limited receptive field. Therefore, we propose a saliency-

based refinement module which is illustrated in Fig. 4(a),

where we utilize the FPN features along with the coarse

proposals to help our model gather boundary features to re-

fine the predictions. For simplicity, we omit the subscript

standing for FPN layers in the following detail. Take the

localization feature floc for example, first we project it into

two latent spaces sensitive to start and end activities respec-

tively via convolutional layers:

fs = σ(GN(Conv1(floc))) ∈ R
Tl×C ,

fe = σ(GN(Conv2(floc))) ∈ R
Tl×C ,

(2)

where σ and GN denote ReLU and Group Normaliza-

tion [37]. With the projection, the model can learn start and

end sensitive signals separately, thus leaving less learning

load to the FPN features for better training.

Then, given the coarse boundary results {(ψ̂k, ξ̂k)}
Tl

k=1

of the corresponding l-th FPN level, the k-th start and end

regions T k
s , T k

e are constructed as:

T k
s =

[

ψ̂k −
ŵk

δa
, ψ̂k +

ŵk

δb

]

,

T k
e =

[

ξ̂k −
ŵk

δb
, ξ̂k +

ŵk

δa

]

,

(3)

where ŵk = ψ̂k − ξ̂k means the length of proposal, δa, δb
are hyper-parameters controlling the proportion of selected

regions outside and inside the proposal.

Next, an aggregation function A is applied to fs and

fe in start and end regions respectively to collect the rel-

evant boundary features. Despite a lot of instantiations of

A in former works, such as mean pooling [10], Gaussian

weighted average [23] and directly gathering and concate-

nating [17], these methods would introduce useless knowl-

edge from frames not representing the action boundaries,

thus blocking the model from precise predictions. Hence

we propose a novel boundary pooling method to get the

moment-level boundary feature f̂s, f̂e ∈ R
Tl×C as shown

in Fig. 4(b). The boundary pooling works as following:

f̂s(k, i) = max
j∈Tk

s

fs(j, i) i = 1, · · · , C,

f̂e(k, i) = max
j∈Tk

e

fe(j, i) i = 1, · · · , C.
(4)

Maximization is utilized aiming to select the largest acti-

vated cell, i.e., the most salient moment, for each channel

along the temporal region. Note that as FPN goes deeper,

3323



the temporal dimension decreases to be too small for bound-

ary pooling to find the appropriate boundary. Therefore, we

add a shared frame-level feature fframe by applying up-

sample and several convolutions to the bottom FPN feature,

from which start and end frame-level features f̃s, f̃e are ex-

tracted for each proposal with the same projection and pool-

ing procedure as in Eq. 2 and Eq. 4.

After boundary pooling, the refined features are built by

concatenating original features and all boundary features. A

temporal convolution is applied to reduce channels:

f̂ = Conv(f ||f̂s||f̂e||f̃s||f̃e), (5)

where ·||· denotes channel-wise concatenation. These fea-

tures are again employed as input of a simple network

with temporal convolution to predict offsets of regression

(∆ψ̂,∆ξ̂), which can be added to the coarse predictions to

get a fine-grained ones (ψ̃, ξ̃), and refined class score ŷR.

3.3. Boundary Consistency Learning

Although the boundary pooling can extract the most

salient features, it cannot guarantee that the pooled fea-

tures represent the true action boundary. Such a property is

pivotal since if boundary pooling focuses on a background

frame, the model cannot have enough useful information,

and thus being misled to wrong results. To regularize our

boundary pooling, we further propose Boundary Consis-

tency Learning (BCL), which has two components: Activa-

tion Guided Learning and Boundary Contrastive Learning.

Activation Guided Learning Specifically, we re-scale the

sensitive features fs and fe and take channel-wise mean:

g̃s = mean(tanh(fs)), g̃e = mean(tanh(fe)). (6)

These two features can be seen as confidence revealing the

probability of occurrence of start or end moment. We can

obtain the ground truth gs, ge ∈ R
T by following definition:

gs(i) = I(i ∈ B(ψm) for ∀m ∈ [1,MX ]),

ge(i) = I(i ∈ B(ξm) for ∀m ∈ [1,MX ]),
(7)

where B(·) denotes the neighbor and I(·) is the indicator

function. After that we can calculate the Cross Entropy:

ℓact = BCE(gs, g̃s) + BCE(ge, g̃e), (8)

where BCE denotes the binary cross entropy. With gs and

ge as guidance, we can constrain the feature to have high

activation at the occurrence and closure of each action.

Boundary Contrastive Learning Consider a videoX con-

taining an action instance A and other background. If we

split the action and fill in a random part of background,

we will have two incomplete action fragments A1, A2 and

background Bg between them. Applying boundary pool-

ing to these three regions leads to three pairs of features

(fsA1
, feA1

), (fsA2
, feA2

), (fsBg, f
e
Bg). In general, since A1

and A2 are continuous, the sensitive features feA1
and fsA2

should be similar to each other and distant to fsBg and feBg

if we restrict boundary pooling to only make use of few

frames inside the actions (i.e., a large δb in Eq. 3). How-

ever, this property could be broken when model is learnt

to take high activations on background. In such situation,

feA1
would be close to fsBg and fsA2

would be close to feBg .

Therefore, a good way to guarantee appropriate features is

to apply the contrastive learning on these features, enlarging

the distance between the sensitive features of action frag-

ments and background. Formally, it can be realized by uti-

lizing the following triplet objective function:

ℓtrip = max(‖feA1
− fsA2

‖2 − ‖feA1
− fBg‖

2 + 1, 0), (9)

where fBg ∈
{

fsBg, f
e
Bg

}

. In practice, we first count the

minimal action length wmin in one video. Next if the video

has an action instance whose length is larger than 2 · wmin

and a background clip with length wmin, we include this

video into our contrastive learning pool and implement the

above splitting procedure. In this way, both split action

and background are long enough to be distinguished. In

together, our Boundary Consistency Learning can be sum-

marized into the following form:

ℓcon = ℓact + ℓtrip. (10)

3.4. Training and Inference

Label Assignment For coarse prediction, we assign each

location i as a positive sample to ground truth j when

ψj ≤ i ≤ ξj is satisfied. For refined prediction, we cal-

culate the temporal IoU (tIoU) between each coarse bound-

ary prediction and the corresponding ground truth. A loca-

tion i is regarded as positive if its tIoU score is greater than

0.5. Denote NC , NR as the number of positive samples for

coarse and refined predictions individually.

Training Once having both the coarse and refined predic-

tion of temporal boundary and class label, we can optimize

the model with the following objective function:

L = ℓCcls + λℓCloc + ℓRcls + λℓRloc + γℓq, (11)

where λ, γ are hyper-parameters, ℓCcls, ℓ
R
cls are softmax fo-

cal loss ℓfocal [21] between both classification prediction
{

ŷC , ŷR
}

and ground truth labels y:

ℓcls({ŷi}) =
1

N

∑

i

ℓfocal(ŷi, yi), (12)

where N ∈ {NC , NR}. ℓCloc is a tIoU loss between coarse

boundaries φ̂i = (ψ̂i, ξ̂i) and the corresponding ground

truth φi = (ψi, ξi). ℓ
R
loc is a L1 loss between the predicted

3324



offset ∆̂i = (∆ψ̂i,∆ξ̂i) and the corresponding offset label

∆i = (∆ψi,∆ξi):

ℓCloc({φ̂i}) =
1

NC

∑

i

I(yi ≥ 1)(1−
|φ̂i ∩ φi|

|φ̂i ∪ φi|
),

ℓRloc({∆̂i}) =
1

NR

∑

i

I(yi ≥ 1)(|∆̂i −∆i|).

(13)

ℓq is a quality loss used to suppress the proposals with low

quality. As a counterpart in the object detection, FCOS [35]

proposes the centerness of each spatial location as the qual-

ity target. However, such definition of centerness for actions

is vague since it is hard to decide the exact frame being a

start or end signal of an action, and thus it is inappropriate

to directly use centerness in TAL. To better predict quality

of proposals, we utilize tIoU between boundary prediction

φ̃ and the location labels as the learning target of quality

confidence η generated from refined feature f̂ :

ℓq({ηi}) =
1

NR

∑

i

I(yi ≥ 1)BCE(ηi,
|φ̃i ∩ φi|

|φ̃i ∪ φi|
). (14)

For each batch in training, we first optimize the model with

L. Then we seek the data available for BCL in Sec. 3.3 and

train the model with ℓcon in Eq. 10.

Inference For the i-th temporal location in l-th FPN layer,

the final predictions are formalized through all outputs from

our model, including coarse predictions ψ̂l,i, ξ̂l,i, ŷ
C
l,i and re-

fined ones ∆ψ̂l,i,∆ξ̂l,i, ŷ
R
l,i, ηl,i, in the following form:

ŵl,i = ξ̂l,i − ψ̂l,i,

ψ̃l,i = ψ̂l,i +
1

2
ŵl,i∆ψ̂l,i,

ξ̃l,i = ξ̂l,i +
1

2
ŵl,i∆ξ̂l,i,

ŷl,i =
1

2
(ŷCl,i + ŷRl,i)ηl,i.

(15)

We then assemble all predictions and process them with

Soft-NMS [3] to suppress redundant proposals.

4. Experiments

4.1. Datasets and Settings

Datasets To validate the efficacy of our model, we con-

duct extensive experiments on commonly-used benchmark

THUMOS14 [14] and ActivityNet1.3 [5]. THUMOS14 is

composed of 200 validation videos and 212 testing videos

from 20 categories labeled for temporal localization. Ac-

tivityNet1.3 has 19,994 videos with 200 action classes. We

follow the former setting [20] to split this dataset into train-

ing, validation and testing subset by 2:1:1.

Implementation Details On THUMOS14, we sample both

RGB and optical flow frames at 10 frames per second (fps)

and split video into clips. The length of each clip T is set

as 256 frames. Adjacent clips have a temporal overlap of

m frames and m is set to 30 in training and 128 in test-

ing. On ActivityNet1.3, we sample frames using different

fps and ensure the number of video frames is 768 for each

video. Thus, each video has only one clip with 768 frames.

On both datasets, the frame spatial size is set to 96 × 96.

Random crop, horizontal flipping are used as data augmen-

tation in training. To extract features of clips, we finetune a

I3D [6] model pre-trained on Kinetics.

Our model is trained for 16 epoches using Adam [15]

with learning rate of 10−5, weight decay of 10−3. Batch

size is set to 1. We set δa to 4 and δb to 100 for ℓcon and

δb to 10 for other loss terms. The weight of loss λ is set to

10 on THUMOS14 and 1 on ActivityNet1.3 and γ is set to

1 empirically. In the testing phase, the results of RGB and

optical flow frames are averaged to obtain final locations

and class scores. The tIoU threshold in Soft-NMS is set to

0.5 for THUMOS14 and 0.85 for ActivityNet1.3.

Metrics We report mean Average Precision (mAP) in all

experiments. The thresholds are [0.3 : 0.1 : 0.7] for THU-

MOS14 and [0.5 : 0.05 : 0.95] for ActivityNet1.3.

4.2. Main Results

We compare our model with state-of-the-art methods in

Tab. 1 and report the backbone used by each method, in-

cluding TS [34], C3D [36], P3D [29] and I3D [6]. On

THUMOS14, our AFSD outperforms the strongest com-

petitor A2Net and G-TAD on all thresholds by large mar-

gin, especially 7.7% on mAP@0.6. The remarkable im-

provement comes along with high efficiency, thus making

our model more practical for real TAL scenarios. Note that

while A2Net also has an anchor-free module, the perfor-

mance of their merged model is far worse than ours, not to

mention the sole anchor-free branch, which proves the su-

periority of our architecture for anchor-free methods.

On ActivityNet1.3, the results are still comparable. Our

model receives the best mAP@0.75 and average mAP com-

pared to the strongest competitor GTAN. It is notewor-

thy that while all of the actionness-guided methods have

less average mAP than ours, most of them enjoy a higher

mAP@0.95. One possible reason is that they can enumer-

ate all potential proposals, thus the ground truth proposals

are already contained in the alternative prediction set. With

such an enumeration strategy the actionness-based methods

would be better when dealing with harder datasets like Ac-

tivityNet1.3. Compared with actionness-guided methods,

our model is more efficacious in the sense of producing less

proposals and attaining better overall performance when

considering multiple thresholds. Additionally, compared

with THUMOS14, ActivityNet is less well annotated as ex-

plained by official report [1] showing ‘it is hard to agree

about the temporal boundaries’, which partially attributes
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Type Model Backbone
THUMOS14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Anchor-based

SSAD [19] TS 43.0 35.0 24.6 — — — — — — —

TURN [10] C3D 44.1 34.9 25.6 — — — — — — —

R-C3D [38] C3D 44.8 35.6 28.9 — — — 26.8 — — —

CBR [11] TS 50.1 41.3 31.0 19.1 9.9 30.3 — — — —

TAL [7] I3D 53.2 48.5 42.8 33.8 20.8 39.8 38.2 18.3 1.3 20.2

GTAN [23] P3D 57.8 47.2 38.8 — — — 52.6 34.1 8.9 34.3

Actionness

CDC [32] — 40.1 29.4 23.3 13.1 7.9 22.8 45.3 26.0 0.2 23.8

SSN [44] TS 51.0 41.0 29.8 — — — 43.2 28.7 5.6 28.3

BSN [20] TS 53.5 45.0 36.9 28.4 20.0 36.8 46.5 30.0 8.0 30.0

BMN [18] TS 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

DBG [17] TS 57.8 49.4 42.8 33.8 21.7 41.1 — — — —

G-TAD [39] TS 54.5 47.6 40.2 30.8 23.4 39.3 50.4 34.6 9.0 34.1

BU-TAL [43] I3D 53.9 50.7 45.4 38.0 28.5 43.3 43.5 33.9 9.2 30.1

BC-GNN [2] TS 57.1 49.1 40.4 31.2 23.1 40.2 50.6 34.8 9.4 34.3

Other

A2Net [40] I3D 58.6 54.1 45.5 32.5 17.2 41.6 43.6 28.7 3.7 27.8

G-TAD+PGCN [41] I3D 66.4 60.4 51.6 37.6 22.9 47.8 — — — —

Anchor-free Ours I3D 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4

Table 1. Performance comparison with state-of-the-art methods on THUMOS14 and ActivityNet1.3, measured by mAP at different IoU

thresholds, and average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 and [0.5 : 0.05 : 0.95] on ActivityNet1.3.

to the slight improvement.

4.3. Ablation Study

To further verify the efficacy of our contributions, we

conduct several ablation studies on THUMOS14 for the

RGB model, focusing on submodules and hyper-parameters

Effectiveness of Quality Confidence We first compare the

basic prediction module introduced in Sec. 3.1 trained and

inferred with and without the proposed quality confidence

in Tab. 2(a). Besides, we add an extra model using the cen-

terness proposed in FCOS. The results show that centerness

leads to 1.3% drop on mAP@0.7, doing no help for training

TAL model. In contrast, model with quality loss ℓq (Eq. 14)

can have 1.0% average mAP improvement, which supports

our claim that the definition of centerness is somehow in-

appropriate in TAL, thus cannot be directly applied. Com-

pared with that, our quality loss ℓq is a more suitable objec-

tive function for suppressing low-quality action proposals.

Choice of Signal Normalization In Action Guided Learn-

ing introduced in Sec. 3.3, we adopt a tanh function to nor-

malize the feature vector. We compare this one with another

two instantiations. One is a hard clipping between [0, 1].
The other is to use simple standardization in the following

form, which is denoted as 0-1 norm in Tab. 2(b):

f(i) =
f(i)−minTi=1

f(i)

maxTi=1
f(i)−minTi=1

f(i)
. (16)

The results show that using tanh can have 0.9% and 0.6%

average mAP advantage against two alternatives.

Choice of Boundary Region In Tab. 2(c) we assess choices

of the boundary region used for pooling boundary features,

which is composed of (1) a symmetric area with the coarse

boundary as center point, denoted as δa = δb. (2, 3) two

asymmetric regions either focusing on background or ac-

tion. Through the results we can safely say that it is better

to keep a larger proportion of region inside the coarse action

than the background. The possible reason is that our naive

predictor can already produce a relatively accurate predic-

tion. As shown in Tab. 2(a), the performance of baseline can

beat most of the competitors in Tab. 1 even if the competi-

tors fuse RGB and optical flow models for final prediction

and our baseline only utilizes RGB frames as input.

Effectiveness of Boundary Refinement In Tab. 2(d) we

compare four forms of boundary refinement, including: (1)

Naive: Only several temporal convolutions are directly ap-

plied to floc, fcls to get another prediction. In this way, the

information disposed for refinement is the stacked neigh-

bor introduced by the convolutions. (2) Self: The saliency-

based refinement module is utilized without fframe, and

thus the consistency learning only calculates losses corre-

sponding to the FPN feature. (3) Frame-level: only fframe

is adopted in temporal refinement and FPN features are

abandoned. (4) All: All usable features are included, which

is our final model. The results demonstrate that: (1) Bound-

ary information is more valuable for refinement than that

from neighborhood of each temporal location. (2) Frame-

level feature can only be taken as a complement of FPN fea-

tures. Using only frame-level feature would result in 1.1%

average mAP drop against the naive refinement model.

Instantiation of Boundary Pooling We compare our pro-

posed boundary pooling with the following three instantia-

tions: (1) Mean: The max operation is replaced with mean.

(2) Conv: We sample three temporal positions for each re-

gion, and a 1-layer temporal convolution is applied to ag-
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Model 0.5 0.6 0.7 Avg.

baseline 43.1 31.0 19.0 40.4

+centerness 43.3 31.6 17.7 40.2

+quality 44.0 32.0 19.8 41.4

Model 0.5 0.6 0.7 Avg.

0-1 clip 45.3 34.6 22.4 42.6

0-1 norm 45.4 34.9 21.6 42.9

tanh 45.9 35.0 23.4 43.5

Model 0.5 0.6 0.7 Avg.

δa = δb 45.0 33.4 21.2 42.3

δa > δb 45.3 34.7 21.8 42.6

δa < δb 45.9 35.0 23.4 43.5

(a) Training strategy: we compare

our quality confidence with center-

ness loss proposed in FCOS.

(b) Feature normalization: we com-

pare different choice of feature nor-

malization in constraint.

(c) Boundary feature extraction:

we compare different choice of

boundary regions.

Model 0.5 0.6 0.7 Avg.

naive 44.9 32.5 19.9 41.6

self 44.6 33.9 22.3 42.4

frame 42.9 31.9 20.2 40.5

all 45.9 35.0 23.4 43.5

Model 0.5 0.6 0.7 Avg.

mean 45.1 34.6 22.1 42.7

conv 44.8 34.4 22.3 42.6

stack 44.9 33.6 22.3 42.9

max 45.9 35.0 23.4 43.5

Model 0.5 0.6 0.7 Avg.

w/o BCL 44.3 34.1 21.2 42.0

ℓact 45.6 34.4 22.3 42.7

ℓtrip 45.5 34.8 22.4 42.7

ℓact + ℓtrip 45.9 35.0 23.4 43.5

(d) Refinement: we compare differ-

ent sources of information for refine-

ment.

(e) Instantiations: we compare dif-

ferent forms of boundary feature ex-

traction.

(f) Consistency learning: we com-

pare models varied with Boundary

Consistency Learning.

Table 2. Ablation studies of RGB model on THUMOS14, measured by mAP at 0.5, 0.6 and 0.7, and average mAP in [0.3 : 0.1 : 0.7].

Model GPU FPS

S-CNN [33] — 60

DAP [9] — 134

CDC [32] TITAN Xm 500

SS-TAD [4] TITAN Xm 701

R-C3D [38] TITAN Xm 569

R-C3D [38] TITAN Xp 1030

Ours 1080 Ti 3259

Ours V100 4057

Table 3. Comparison of inference speed on THUMOS14.

gregate them. (3) Stack: Similar to (2), while instead of

using convolution, we directly concatenate these three fea-

tures into one boundary feature. Note that all models are

trained with our boundary consistency learning. The re-

sults are presented in Tab. 2(e). Among all instantiations,

pooling with max receives the best performance, showing

0.8%, 0.9% and 0.6% advantage of average mAP against

mean, conv and stack respectively. It is noteworthy that the

improvement of our model over others is larger than 1.0%

on mAP@0.7, which indicates that moment-level boundary

feature helps the model generate more accurate proposals.

Effectiveness of Boundary Consistency Learning We ver-

ify the proposed BCL by comparing our full model with that

trained only with L (Eq. 11) and without ℓcon (Eq. 10). Re-

sults in Tab. 2(f) suggest that when trained without any con-

sistency guarantee, the model cannot learn good represen-

tations for boundary pooling. Therefore lack of useful in-

formation in refinement leads to worse performance. More-

over, each loss term brings 0.7% improvement on average

mAP and by assembling ℓact (Eq. 8) and ℓtrip (Eq. 9) to-

gether, our model finally achieves the best performance. To

further validate the efficacy of BCL, we obtain the learned

frame-level feature fframe of an action instance and its

neighboring background, each half part of which could rep-

resent the start and end signals in hypothesis.

Comparison on Inference Time As discussed, the pro-

posed AFSD is highly efficient. To verify this claim we

report the inference speed on THUMOS14 in terms if fps

among different models in Tab. 3. Thus results show that

our model is much more faster than the existing methods.

The main reasons is that after features are extracted we can

employ both a lighter predictor and a lighter refinement

module composed of 1D convolution due the the help of

anchor-free mechanism. Moreover, the number of propos-

als produced by our model is less than that of these methods,

which also helps speed our model.

5. Conclusion

In this paper we explore the possibility of a novel form of

temporal action localization model — anchor-free method.

We discuss the merits over anchor-based methods, and

actionness-guided methods and design a dedicated anchor-

free model. Our model includes an end-to-end trainable ba-

sic predictor and a temporal refinement module. For the

refinement module, we analyze the drawbacks of existing

means to extract boundary features, and propose a novel

boundary pooling together with a Boundary Consistency

Learning strategy. We achieve remarkable results on THU-

MOS14 and comparable ones on ActivityNet1.3. The re-

sults indicate the strength of anchor-free model as a promis-

ing choice for solving temporal action localization.
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