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Abstract

Glass surfaces appear everywhere. Their existence can

however pose a serious problem to computer vision tasks.

Recently, a method is proposed to detect glass surfaces by

learning multi-scale contextual information. However, as it

is only based on a general context integration operation and

does not consider any specific glass surface properties, it

gets confused when the images contain objects that are sim-

ilar to glass surfaces and degenerates in challenging scenes

with insufficient contexts. We observe that humans often

rely on identifying reflections in order to sense the existence

of glass and on locating the boundary in order to deter-

mine the extent of the glass. Hence, we propose a model for

glass surface detection, which consists of two novel mod-

ules: (1) a rich context aggregation module (RCAM) to ex-

tract multi-scale boundary features from rich context fea-

tures for locating glass surface boundaries of different sizes

and shapes, and (2) a reflection-based refinement module

(RRM) to detect reflection and then incorporate it so as to

differentiate glass regions from non-glass regions. In ad-

dition, we also propose a challenging dataset consisting of

4,012 glass images with annotations for glass surface detec-

tion. Our experiments demonstrate that the proposed model

outperforms state-of-the-art methods from relevant fields.

1. Introduction

Glass surfaces are large glass regions such as windows,

glass doors and glass walls. They are very popular and

appear almost everywhere in our daily life. Although they

are very useful in many ways, their existence can pose a

serious problem to computer vision tasks. For example, if

we are unable to detect the presence of glass surfaces, a

robot or a drone may easily crash into glass surfaces. Thus,

it is of vital importance to detect and separate glass surfaces

from other objects for better scene understanding.

There have been some works focusing on the transpar-

ent object detection problem. As transparent objects tend

to have certain shapes or thicker boundaries for defract-

ing light, most existing methods are based on detecting

shapes [24] or boundaries via polarization [13] and explicit
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Figure 1: Two popular scenarios where existing meth-

ods [20, 30] fail. GDNet [20] is based on extract-

ing/integrating abundant context features for glass surface

detection. As it does not consider any specific glass proper-

ties, it tends to fail in scenes with insufficient contexts (e.g.,

top row where the glass surface covers almost the whole im-

age) or with glass-lookalike regions (e.g., bottom row where

the center region is not covered by glass). TransLab [30] is

based on a boundary-guided network for transparent object

detection. It also fails to detect glass surfaces correctly. Our

method, which considers reflections and boundaries, can ac-

curately detect the glass surfaces in these complex scenes.

edge supervision [30]. However, as glass surfaces typically

do not process these properties, these methods developed

for detecting transparent objects cannot be easily adopted

to address the glass surface detection problem. Recently,

Mei et al. [20] make the first attempt to develop the GDNet

model for glass surface detection by integrating multi-level

context information. While GDNet has a simple structure,

it does not consider any specific properties of glass surfaces

and its performance gain is mainly coming from a general

context integrating structure based on dilation convolutions.

Figure 1 shows two common but challenging scenarios.

As the top image does not provide sufficient boundary con-

text, GDNet fails to recognize the glass surface. As the mid-

dle region of the bottom image is not a glass surface but

looks like one, GDNet gets confused and mis-recognizes it

as a glass surface. TransLab [30] also fails to detect the

glass surface in the top row as the glass boundary is not ob-

vious, and mis-recognizes the non-glass region in the bot-

tom image as a glass surface.
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In this paper, we aim to address this challenging glass

surface detection problem. Our observations are that hu-

mans often rely on the identification of reflections in order

to be aware of the presence of glass, and the localization of

the boundary in order to determine the extent of the glass

surface. These two observations motivate us to explore two

visual cues, i.e., glass reflections and boundaries, for glass

surface detection. Based on these two observations, we pro-

pose a new model for glass surface detection with two novel

modules. We propose a Rich Context Aggregation Module

(RCAM) for multi-scale boundary feature extraction, and

a Reflection-based Refinement Module (RRM) for detect-

ing glass reflections to help determine glass regions. Note

that unlike TransLab [30], which requires explicit boundary

maps for guiding their network training, our RRM aims to

exploit context contrasted features to flexibly locate glass

boundaries at different sizes and shapes in different context

levels. Figure 1 demonstrates the superiority of the pro-

posed model. Even though the glass surface boundary in

the first image is not obvious, our model can detect the glass

region fairly accurate. It can also accurately detect the two

glass doors but not the middle non-glass region.

In addition, we note that although a glass dataset (GDD)

is proposed by Mei et al. [20], the images in it are collected

from limited scenes and captured mainly based on close-up

shots. This can significantly limit the generalization per-

formance of the trained model. To address this limitation,

we propose a challenging glass surface dataset that contains

close-up, normal and long shots, from diverse scenes with

glass surfaces. Our dataset contains a total of 4,012 glass

images with corresponding glass surface masks. It covers a

diversity of indoor and outdoor scenes. We have conducted

extensive experiments to evaluate our model and show that

the proposed model outperforms state-of-the-art methods

on both GDD and our proposed dataset.

Our main contributions can be summarized as follows:

• We propose a novel model that consists of a Rich

Context Aggregation Module (RCAM) for multi-scale

boundary features extraction and a Reflection-based

Refinement Module (RRM) to extract glass reflections

for glass surface detection.

• We have constructed a challenging glass surface

dataset, which consists of 4,012 real-world images

with glass surface masks, from diverse scenes.

• Our extensive experiments demonstrate the superior-

ity of the proposed model over state-of-the-art methods

from relevant fields.

2. Related Work

In this section, we mainly discuss various types of detec-

tion works that are relevant to our problem.

2.1. Glass Surface Detection

Recently, Mei et al. [20] propose the first computational

method and the GDNet model for glass surface detection.

It uses a large-field contextual feature integration module

to capture low-level and high-level contexts. Although this

module is shown to be useful, it does not consider any spe-

cific glass properties in the detection. As a result, it can be

easily confused by regions that look like glass surface, e.g.,

an opened window.

To address the limitation of this work, we propose in this

paper to incorporate two important properties of glass sur-

faces to address the glass surface detection problem. We

first learn glass surface boundaries and then detect reflec-

tions within them in order to guide the prediction.

2.2. Transparent Object Detection

There has been some research interest in recent years

in addressing a related problem to glass surface detection,

transparent object detection. Early works [8, 9] try to de-

tect specific transparent objects, e.g., wine glass and glass

bottles, using specially designed transparent local patch fea-

tures or image gradients. [33, 10] focus on general transpar-

ent object detection with the help of light-field or RGB-D

cameras. Recently, Kalra et al. [13] combine polarization

with deep learning and propose a polarized CNN for trans-

parent object detection. Comparing with previous methods

that require additional input data, Xie et al. [30] propose a

boundary-guided network to detect transparent objects from

a single RGB image, and a transparent object dataset for

training.

In short, most methods for transparent object detection

leverage multi-modal data and achieve good results based

on detecting the shape and boundary of transparent objects.

However, unlike transparent objects, glass surfaces usually

do not have well-defined shapes and their boundaries are of-

ten ambiguous, resulting in the glass surface detection prob-

lem being very challenging.

2.3. Salient Object Detection.

Salient object detection aims to detect objects that are

most salient to humans. While early methods depend heav-

ily on hand-crafted features and saliency priors [34, 42],

recent methods mostly use CNNs to enhance feature ex-

traction and aggregation [11, 38, 25]. He et al. [11] pro-

poses a CNN to extract contrast information from superpix-

els. Wang et al. [25] propose a novel pyramid pooling mod-

ule as well as a multi-stage refinement mechanism to cap-

ture detailed spatial information. Zhang et al. [38] propose

a progressive attention based network for adaptive multi-

scale context integration. More recently, BASNet [23] and

PAGE-Net [26] leverage boundaries of salient objects to en-

courage a finer segmentation. Pang et al. [22] propose a
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multi-scale aggregation interaction module to utilize multi-

scale features in adjacent levels for salient object detection.

While these methods may perform well in the salient ob-

ject detection problem, they are not suitable for addressing

the glass surface detection problem as the content within a

glass surface may not necessarily be salient.

3. Glass Surface Detection Dataset

Although Mei et al. [20] propose a glass dataset (GDD)

for the glass surface detection problem, it contains primar-

ily close-up shots. Figure 2(a) shows some of these im-

ages. To address the limitations of GDD, we have con-

structed a large-scale glass surface dataset, named GSD,

which includes 4,012 real images with glass surfaces and

corresponding masks. Our proposed dataset contains close-

up, medium and long shots from diverse scenes.

Dataset construction. To compile our glass surface

dataset, we have collected about half of the images from

existing datasets [29, 40, 5, 17] as well as from the Internet

(which are under the Creative Commons licenses). The rest

are captured by ourselves using several smartphones. The

images in our dataset cover diverse scenes, including bath-

rooms, sitting rooms, shops, classrooms, museums, streets

and entrances. After collecting all the images, we then use

Labelme2 to manually create the glass surface masks. Fig-

ure 2(b) shows some example glass surface images and the

corresponding masks from our dataset. Note that although

existing semantic segmentation datasets [40, 21, 5, 2] have

fine annotations of various objects, we are not able to use

them for two reasons. First, existing datasets seldom explic-

itly consider the glass surface category. Second, although

some of them may contain some related categories, e.g.,

windows and screen doors, we cannot use their annotations

as they are rather coarse and mixed with non-glass parts like

handles and window frames.

To split the dataset into training set and test set, We ran-

domly split them into a training set with 3,202 images and

a test set with 810 images.

Dataset analysis. To give a better understanding of our

glass dataset, we conduct statistical analyses on GSD as:

• Area Distribution. It is defined as the ratio of the glass

area over the image area. As shown in Figure 3(a), our

dataset contains glass covering a wide range of area

ratios. In general, images that fall in the range of [0,

0.3] contain glass that is relatively far away from the

camera. These images tend to provide more context

information, as more surrounding objects can be seen.

Images that fall in the range of [0.7, 1] contain glass

that is relatively close to the camera. These images

provide very little context information, and are more

challenging for glass surface detection.

2https://github.com/wkentaro/labelme

• Contrast Distribution. Due to the intrinsic trans-

parency property of glass, the content within a glass

surface shares very similar semantics as the content be-

hind the glass, and sometimes also the content around

it. Here, we analyze the contrasts between glass re-

gions and non-glass regions by computing χ2 distance

between their RGB histograms, similar to [15]. We

also compare the distribution with GDD [20], as shown

in Figure 3(b). In general, GSD has more images with

low color contrasts (< 0.4), and less images with high

color contrasts (> 0.4), compared with GDD. This

means that our dataset has lower global color contrasts,

making it more challenging to detect.

• Perceptual Similarity. Perceptual similarity can af-

fect the quality of the dataset [16]. Normally, im-

ages with higher perceptual similarity may have sim-

ilar contexts. When these images are used for net-

work training, it would reduce the robustness of the

trained model. Table 1 shows that our dataset has a

lower average learned perceptual image patch similar-

ity (LPIPS) [36], compared with GDD [20].

• Shape Complexity. Objects with complex topology

can be challenging to detection [26, 28]. Table 1 shows

that shapes of the glass surfaces in our GSD dataset are

more complex than those from GDD [20].

Table 1: Perceptual similarity and shape complexity analy-

sis of our proposed GSD dataset, compared with GDD [20].

Dataset Num. LPIPS [36] Shape Complexity [19]

GDD [20] 3900 0.76582 1.3420

Ours (GSD) 4102 0.75870 1.9577

4. The Proposed Method

Our method is based on two observations. We observe

that humans often try to identify reflections in order to sense

of the existence of glass surfaces, and to localize the bound-

ary (e.g., window frames) in order to determine the extent

of the glass surface. These observations motivate us to ex-

plore two visual cues, i.e., glass reflection and boundary, in

designing our model for glass surface detection. Figure 4

shows the pipeline of our proposed model. It takes a single

image as input and outputs a binary glass mask.

In our model, we first feed the input image to a back-

bone network [31] to extract multi-scale backbone features.

Specifically, we use the outputs of five stages of the net-

work, i.e., conv1, res2c, res3b3, res4b22 and res5c, as our

backbone features. The deepest features from the final stage

(i.e., res5c) are first fed into the proposed rich context ag-

gregation module (RCAM) to capture multi-scale bound-

ary features, which are then fed into a decoder to generate
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(a) GDD (b) GSD

Figure 2: Comparison between GDD [20] and GSD. While GDD mainly includes close-up shots (a), GSD contains close-up,

medium and long shots. GSD also covers a diversity of daily-life scenes with glass surfaces of complex shapes (b).

(a) glass area distribution (b) color contrast distribution

Figure 3: Statistics of our GSD dataset.

a coarse binary mask indicating the location of glass sur-

faces. This coarse mask serves as an attention map to the

previous stage (i.e., res4b22) to guide the refinement of the

glass mask. In this way, the glass mask as well as the glass

boundary can be progressively refined by integrating with

the earlier backbone features.

After obtaining the finest glass mask, we finally feed tit

to the proposed reflection-based refinement module (RRM).

This RRM takes as input the concatenation of the backbone

features from the first stage, i.e., conv1, the input image,

and the finest glass mask from the first stage. It detects re-

flections in the input image and then leverages the detected

results to refine the input glass mask to produce an output

glass surface mask.

4.1. Rich Context Aggregation Module (RCAM)

To localize the glass surface boundaries, we propose the

RCAM, which aims to extract the boundary features of

glass surfaces using contrasted features from multi-scale

contexts. The multi-scale processing is to handle glass

boundaries of different scales. Figure 5 shows the struc-

ture of the RCAM. It is built upon the basic CCF block,

in a way similar to [35], to learn contextual contrasted fea-

tures (CCF) with different dilation rates ri and rj , where ri
<rj . However, unlike [35] which focuses on learning the

contrasts between inside and outside of mirrors for mirror

detection, we concentrate on extracting information around

the glass surface boundaries.

Our RCAM consists of two cascaded stages:

• Pairing. Given the input features, we first obtain

the corresponding multi-scale contextual features us-

ing multi-rate atrous convolutions, which share some

similarity with ASPP [4]. However, instead of directly

fusing the features with concatenation as in [4], we first

separately compute the contrasted features by subtract-

ing contextual features at different scales of all per-

muted pairs of the multi-scale contextual features. All

contrasted features are then concatenated together and

fed to the selection stage.

• Selection. Since different channels of the features con-

vey different degrees of semantics and different scales

of the contrasted features contribute differently de-

pending on the actual size of the glass surface, we em-

ploy a two-level attention mechanism in our selection

stage to highlight different channels of contrasted fea-

tures. Unlike the SENet [12], which allocates weights

across channels without explicitly considering the se-

mantic similarities among the channels, we decouple

the allocation process in a top-down way by grouping

channels based on the scales of contrasted contexts. To

this end, we employ two independent sub-networks to

adaptively enhance the features with context-wise at-

tention and channel-wise attention.

Our proposed RCAM structure takes advantage of all

permutations of context contrasted features to segment glass

surfaces of any sizes and scales. To cover different scales,

we set the dilation rate to 1, 2, 4, and 8, such that we have

a total of
(

n
2

)

CCFs. Combining with the original multi-

scale contextual features, we can obtain rich contextual con-

trasted features (RCCF) for selection.

Formally, given the input feature F ∈ RC×H×W , we can

extract a series of context contrasted features, CCF(ri,rj),

corresponding to atrous convolutions with dilate rates ri and

rj , and then concatenate them with the original multi-scale

contextual features to obtain rich contextual contrasted fea-

tures, RCCF. For each RCCFi, we compute its context-
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Figure 4: The pipeline of our proposed method. We first use ResNeXt-101 [31] as a backbone to extract multi-scale represen-

tations (gray blocks). We then embed a novel RCAM (yellow blocks) in different layers of the backbone to learn multi-scale

glass boundary information by extracting corresponding rich context features. Finally, we use a novel RRM (blue block) to

extract reflection information to guide the prediction of the output glass surface mask.

Pairing Selection

Input
features

Conv 3x3
r=1

Conv 3x3
r=2

Conv 3x3
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r=4

⊕
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Output
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channel-wise attention

context-wise attention

⊖
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: element-wise subtraction
: concatenation
: channel-wise multiplication

Figure 5: The structure of our proposed RCAM. We first use a series of atrous convolutions with increasing dilation rates

to extract multi-scale context features. We then compute contrasted features from all permuted pairs of different context

scales, allowing the detection of glass boundary of any size. (Note that different scales of contrasted features are denoted by

different colors.) We also propose to use a two-level attention mechanism to explicitly highlight context-wise and channel-

wise attentions.

wise attention, αi ∈ [0, 1], which is shared across all chan-

nels within the same context, and its corresponding channel-

wise attention, βi ∈ [0, 1]C . The resulting attentive R̃CCF

is obtained by re-scaling with two levels of attention as:

R̃CCFi = αi · (RCCFi ⊙ βi), (1)

where ⊙ denotes channel-wise multiplication.

Note that our proposed RCAM is different from the orig-

inal CCL [6] and from the CCFE [35]. The CCL block in [6]

only employs one scale context contrast to produce multi-

level CCL features in a chained form, while we use multiple

atrous convolutions with increasing dilation rates in parallel

to capture multi-scale context contrast features in a single

level. The CCFE block in [35] consists of four indepen-

dent branches to focus on contrasts between local and con-

text features. Instead, we emphasize more on the contrasts

among multi-scale contexts by considering all permutations

using a two-level attention mechanism, which allows us to

effectively detect glass boundaries of any scales.

4.2. Reflection­based Refinement Module (RRM)

Only using contextual information for glass surface de-

tection is insufficient especially when the glass surface

boundaries are missing or ambiguous. Thus, it is necessary

to utilize an additional strong cue to facilitate glass surface

detection. Due to the intrinsic reflective property of glass,

reflections can often be observed when light is reflected off

a glass surface. In consideration of this reflection cue, we

propose a novel reflection-based refinement module (RRM)

to refine the glass mask guided by the detected reflection.

Due to the lack of ground-truth reflection inside the glass

surface, we generate a reflection map from each glass sur-

face using an existing reflection separation model [37] in

combination with our ground-truth glass mask G.

Specifically, given an input image, we first detect the
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reflection Rglobal within the glass surface using [37]. We

then force the RRM to learn the reflection Rglass given the

ground-truth glass mask G, during training process. The

details of training RRM are introduced in Section 4.3. The

RRM has an encoder-decoder architecture. We add skip

connections between the counterpart layers of the encoder

and decoder to facilitate the training process. It takes as in-

put the concatenation of the input RGB image, backbone

features and the predicted glass mask from the first stage

(i.e., conv1), and outputs a refined mask.

In contrast with the reflection separation model [37] and

the reflection removal model [27], which mainly deal with

global reflections (i.e., the whole input image is expected

to be covered by glass), the RRM aims to locate where the

glass surfaces are through detecting local reflections.

4.3. Loss Functions

Our proposed network can be trained to simultaneously

predict glass surface reflections and a glass segmentation

mask in an end-to-end manner. For the glass surface reflec-

tion prediction, we use Mean-Square-Error (MSE) to opti-

mize our RRM. For the glass mask prediction, we choose

the lovász-hinge loss [3] for our glass surface detection to

directly optimize the mean intersection-over-union (mIoU).

In addition, deep supervision [32] is also introduced in our

training process as:

Loss = λ ‖Rglobal ⊗G−Rglass ⊗G‖
2
+

N
∑

i=1

wiLi, (2)

where Rglass denotes the predicted reflection map. Rglobal

is the ground-truth global reflection map. G is the ground-

truth glass surface mask. Li is the lovász-hinge loss on the

i-th stage of the predicted glass mask and N refers to the

five stages of the backbones. λ and wi are weight parame-

ters. ⊗ is an element-wise multiplication operation.

5. Experiments

Implementation Details. We use the ResNeXt-101 [31]

pre-trained on ImageNet as our backbone, and the remain-

ing layers are initialized randomly with the default setting in

PyTorch. We use stochastic gradient descent (SGD) as the

optimizer with a momentum of 0.9 and a weight decay of

5 × 10−4. We adopt the “Poly” decay strategy [18], where

the current learning rate is the base learning rate multiplied

by (1− currentiter
maxiter

)
Power

. The base learning rate is 0.001

and Power is 0.9. The batch size is 6. We run 80 epochs

for training. To prevent the over-fitting problem, input im-

ages are first resized to 400 × 400 and randomly cropped

to 384 × 384 patches for training. Randomly horizontal

flipping is also considered in our experiments. Our model

takes about 10 hours to converge, and runs at ∼ 37fps on

a RTX 2080Ti GPU card. During inference, the test images

are also first resized to 384 × 384 before feeding into the

network. The outputs from our network are further refined

using CRF [14], by exploring spatial pixel coherence.

Evaluation Datasets. We evaluate our proposed method

on two glass surface detection datasets: GDD [20] with 936

test images and our proposed dataset GSD with 813 test im-

ages. We also select 2,047 training images and 1771 test-

ing images with transparent surfaces from the transparent

object detection dataset Trans10K [30] for evaluation. All

methods are trained and tested on the training/testing splits

from the same dataset.

Evaluation Metrics. We consider the intersection over

union (IoU), Mean Absolute Error (MAE), maximum F-

measure (Fβ), and balance error rate (BER) as evaluation

metrics, which are widely used in computer vision tasks.

MAE is the average pixel-wise error between the predicted

mask and ground truth as:

MAE =
1

HW

H
∑

i=1

W
∑

j=1

|P (i, j)−G(i, j)|, (3)

where P is the predicted mask and G is ground truth. H and

W are the width and height of the input image. Fβ is used

to evaluate the overall performance with a trade-off between

precision and recall, and is defined as:

Fβ =
1 + β2(Precision×Recall)

β2Precision+Recall
, (4)

where β is set to 0.3 as suggested in [1].

To quantitatively evaluate the performance of glass sur-

face segmentation, we also report the BER score as:

BER = 1− 0.5× (
Ntp

Np

+
Ntn

Nn

), (5)

where Ntp, Np, Ntn, Nn are the numbers of true positives,

true negatives, glass and non-glass pixels, respectively.

5.1. Comparison to the State­of­the­art Methods

We compare our proposed methods with the state-of-

the-art methods from relevant fields, including BASNet

[23] and MINet [22] for saliency object detection, BDRAR

[41] for shadow detection; PSPNet [40] from semantic

segmentation, SINet [7] for camouflaged object detection,

TransLab [30] for transparent object segmentation, and

GDNet [20] for glass surface detection. For PSPNet [40],

we restrict it to output binary classification (i.e., glass or

non-glass regions). We use the publicly available codes of

these models with default configurations. Table 2 shows the

comparison on four metrics: intersection over union (IoU),

F-measure (Fβ), mean absolute error (MAE), and balance

error rate (BER). We can see that our method outperforms

all existing state-of-the-art methods by a large margin.
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Table 2: Quantitative results. We compare our model with relevant state-of-the-art models: BASNet [23] and MINet [22] for

salient object detection, BDRAR [41] for shadow detection, PSPNet [40] for semantic segmentation, SINet [7] for camou-

flaged object detection, TransLab [30] for transparent object segmentation, and GDNet [20] for glass surface detection. We

use their publicly available codes with default configurations. All methods are trained and tested on the training/testing splits

from the same dataset. We can see that our dataset is more challenging than GDD. Best results are shown in bold.

Methods
Trans10K (ECCV 20’) GDD (CVPR 20’) GSD (Ours)

IoU↑ Fβ ↑ MAE↓ BER↓ IoU↑ Fβ ↑ MAE↓ BER↓ IoU↑ Fβ ↑ MAE↓ BER↓
PSPNet [39] 67.83 0.904 0.084 15.40 79.16 0.875 0.132 11.51 70.26 0.834 0.110 10.66

BDRAR [41] 57.34 0.640 0.188 16.71 80.01 0.908 0.098 9.87 75.91 0.860 0.081 8.61

BASNet [23] 80.63 0.899 0.087 10.07 80.78 0.891 0.106 9.37 69.79 0.808 0.106 13.54

MINet [22] 75.84 0.924 0.064 10.11 84.35 0.919 0.077 7.40 77.29 0.879 0.077 9.54

SINet [7] 83.53 0.906 0.066 8.15 83.27 0.912 0.101 8.35 77.04 0.875 0.077 9.25

GDNet [20] 84.46 0.916 0.068 6.50 81.42 0.909 0.097 8.83 79.01 0.869 0.069 7.72

TransLab [30] 86.13 0.916 0.055 5.86 82.93 0.891 0.091 8.87 74.05 0.837 0.088 11.35

Ours 89.16 0.937 0.043 4.50 88.07 0.932 0.059 5.71 83.64 0.903 0.055 6.12

Input PSPNet [39] BDRAR [41] BASNet [23] MINet [22] SINet [7] TransLab [30] GDNet [20] Ours Ground truth

Figure 6: Visual comparisons of our method to state-of-the-art methods on some example images.
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Figure 6 shows visual comparisons on some challenging

images. We can see that the state-of-the-art methods may

under-detect the glass regions in some images (e.g., some

windows in the 1st row and various parts of the window

in the 2rd row) but over-detect the glass regions in other

images (e.g., the non-glass region of the shower room in

the 4th row, the green wall in the 5th row, and the center

region of the last row). In contrast, our method can effec-

tively detect the glass regions of different sizes and shapes,

and can differentiate some ambiguous non-glass regions in

some challenging images (e.g., 3rd to 9th rows). We at-

tribute the superior performances of our method on these

challenging examples to the use of reflection by the RRM.

5.2. Ablation Study

To verify the effectiveness of RCAM and RRM, we

first implement a baseline with only the original back-

bone network [31] (“basic”), and then three alternative

approaches built on the baseline. The first one includes

RCAM but not the proposed two-level attention mechanism

(“basic + PCM”). The second one includes RCAM (“basic +

RCAM”). Note that these two alternatives do not include the

RRM. The third one includes the RRM but not the RCAM

(“basic + RRM”).

Table 3 shows the experimental results. We observe that

using only the backbone network for glass surface detec-

tion performs the worst among all ablated models. We

may also observe that adding the two-level attention mecha-

nism (i.e., “basic + RCAM”) performs better than the other

two alternatives (i.e., “basic + PCM” and “basic + RRM”).

While “basic + RCAM” performing better than “basic +

PCM” demonstrates the importance of the two-level atten-

tion mechanism, “basic + RCAM” performing better than

“basic + RRM” is mainly because some of the glass surfaces

in our GSD dataset may not contain obvious reflections.

The full model, on the other hand, performs the best among

all the ablated models, demonstrating that both RCAM and

RRM can benefit each other in the glass surface detection

task. Figure 7 shows a visual example where the RRM can

play an important role in resolving an ambiguous scene.

(a)
Input

(b)
Ours w/o

RRM

(c)
Ours

(d)
Our reflection

(e)
Ground truth

Figure 7: A visual example of the ablation study. Without

RRM, the model under-detects the glass region in (b). RRM

helps detect various degrees of reflection in the glass in (c).

By including the RRM, our proposed model can correctly

detect the glass region.

Table 3: Component analysis, trained and tested on

GSD. “Basic” denotes the original backbone network, with

RCAM and RRM removed. “RCAM” is the rich context

aggregation module. “PCM” is the “RCAM” without the

two-level attention mechanism. “RRM” is the reflection-

based refinement module. Our final model includes both

RCAM and RRM. Best results are shown in bold.

Methods IoU ↑ Fβ ↑ MAE ↓ BER ↓
basic 80.12 0.881 0.073 8.11

basic + PCM 81.56 0.878 0.073 7.93

basic + RCAM 82.36 0.898 0.062 7.19

basic + RRM 81.11 0.889 0.071 7.84

Ours 83.64 0.903 0.055 6.12

6. Conclusion and Future Work

In this paper, we have investigated the glass surface de-

tection problem. To this end, we have made the following

contributions. First, we have constructed a large-scale glass

dataset, which contains 4,012 glass images. This dataset

covers a wide range of daily scenes and includes manually

annotated glass surface masks. Second, we have proposed a

model for glass surface detection, which includes two novel

modules: the Rich Context Aggregation Module (RCAM)

for extracting multi-scale boundary features to locate glass

surface boundaries of different scales and shapes, and the

reflection-based refinement module (RRM) to detect reflec-

tion for helping differentiate glass from non-glass surfaces.

Finally, we have conducted extensive experiments to evalu-

ate the performance of the proposed model against the state-

of-the-art methods. Our results demonstrate the superiority

of the proposed model on the glass surface detection task.

Our work also has limitations. If the reflection on the

glass surface is too weak to be detected by our RRM, our

model may not be able to detect the glass surface correctly,

as shown in Figure 8. We note that in this case, it is difficult

even for humans to correctly identify where the glass sur-

faces are. As a future work, we are currently investigating

ways to learn a stronger reflection detector to help detect

very weak reflections.

Input Ours Ground truth

Figure 8: Failure cases. Our method may fail to detect glass

in some very challenging scenes, where there is a lack of re-

flection for the model to correctly detect the glass surfaces.
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