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Abstract

In this paper, we propose Cluster-wise Hierarchical

Generative Model for deep amortized clustering (CHiGac).

It provides an efficient neural clustering architecture by

grouping data points in a cluster-wise view rather than

point-wise view. CHiGac simultaneously learns what makes

a cluster, how to group data points into clusters, and how

to adaptively control the number of clusters. The dedicated

cluster generative process is able to sufficiently exploit pair-

wise or higher-order interactions between data points in

both inter- and intra-cluster, which is useful to sufficiently

mine the hidden structure among data. To efficiently min-

imize the generalized lower bound of CHiGac, we design

an Ergodic Amortized Inference (EAI) strategy by consider-

ing the average behavior over sequence on an inner varia-

tional parameter trajectory, which is theoretically proven

to reduce the amortization gap. A series of experiments

have been conducted on both synthetic and real-world data.

The experimental results demonstrated that CHiGac can ef-

ficiently and accurately cluster datasets in terms of both in-

ternal and external evaluation metrics (DBI and ACC).

1. Introduction

Clustering is a fundamental task in unsupervised ma-

chine learning to group similar data points into multiple

clusters. Aside from its usefulness in many downstream

tasks, clustering is an important tool for visualizing and un-

derstanding the underlying structures of datasets, as well

as a model for categorization in cognitive science. A

plethora of clustering methods have been developed and

successfully employed in various fields, including computer

vision [13, 6], natural language processing [18, 26], so-

cial network analysis [12], and medical informatics [35].

Among various clustering algorithms [47, 48], probabilistic

clustering model has been widely concerned because of its
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flexibility and interpretability.

Probabilistic generative clustering models (or equiva-

lently, mixture models) [8] are a staple of statistical mod-

eling in which a discrete latent variable is introduced for

each observation, indicating its cluster identity. These gen-

erative clustering models can be roughly divided into two

categories: finite mixture model [8] and infinite mixture

model [44]. In recent years, finite mixture models have

been increasingly applied in unsupervised learning prob-

lems with the aid of deep neural networks. The most rel-

evant research is that of deep generative clustering mod-

els [21, 31, 49], where neural networks are trained to predict

the states of latent variables given observations in a deep

generative model or probabilistic program [23, 42]. Instead

of using an arbitrary prior for the latent variable, these meth-

ods adopted finite mixture prior, such as Gaussian Mixture

Model (GMM) [21, 49]. A finite mixture model with a fixed

number of clusters may fit the given data set well, however,

it may be sub-optimal to use the same number of clusters if

more data comes under a slightly changed distribution. It

would be ideal if the clustering models can figure out the

unknown number of clusters automatically.

Alternatively, infinite mixture model is the application

of nonparametric Bayesian techniques to mixture modeling,

which allows for the automatic determination of an appro-

priate number of mixture components. The prior distribu-

tion can be specified in terms of a data point sequential pro-

cess called Dirichlet process (e.g., Chinese restaurant pro-

cess (CRP)), where the number of clusters can arbitrarily

grow to better accommodate data as needed. To approxi-

mate the corresponding infinite mixture posterior, recently,

deep amortized clustering [37, 38, 29, 39, 50] methods are

proposed in a black-box fashion [45]. Specifically, they

make use of neural networks for amortized inferring the

cluster assignments and parameters, which is flexible to de-

fine the clusters. To adaptively determine the number of

clusters, however, they have to construct the non-parametric

prior, which largely depends on the sequential data point

modeling. For large-scale dataset, this process will be time-
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consuming and difficult to converge.

In this paper, we build on these prior works and pro-

pose a Cluster-wise Hierarchical Generative model for deep

amortized clustering (CHiGac), which aims to learn non-

parametric deep Bayesian posterior in a cluster-wise view.

In other words, CHiGac targets on generating clusters rather

than generating data points (all existing generative cluster-

ing methods adopted the later). This cluster generation pro-

cess has two good facets. One is that the whole genera-

tion process is efficient, because it depends on the number

of clusters (K) rather than the number of data points (N ),

where K ≪ N . The other is that inter-cluster and intra-

cluster structure can be sufficiently exploited during the

learning process, because each cluster is generated accord-

ing to the previous clusters and the current left data points.

To efficiently approximate the non-parametric Bayesian

posterior for CHiGac, we propose an Ergodic Amortized

Inference (EAI) algorithm by considering the average be-

havior over sequence on an inner variational parameter tra-

jectory. EAI is theoretically proven to reduce the amortiza-

tion gap and provide flexible parameterization for the neu-

ral amortized inference model. To illustrate the superior of

the proposed method, we perform experiments on both syn-

thetic data and real-world data in terms of clustering perfor-

mance and inference optimization performance.

2. Related Work

Deep clustering There is a growing interest in develop-

ing clustering methods using deep networks for complex

data [21, 38, 31, 39, 49, 29, 46, 6]. The main focus of these

methods is to learn a representation of input data amenable

to clustering via deep neural networks. Learning represen-

tations and assigning data points to the clusters are usu-

ally trained alternatively. However, like the traditional clus-

tering algorithms, these methods aim to cluster particular

datasets. Since such methods typically learn a data repre-

sentation using deep neural networks, the representation is

prone to overfitting when applied to small datasets. Among

the aforementioned work, variational autoencoder (VAE)-

based clustering [21, 49] and amortized clustering [38, 39]

are most relevant to our work. These two types of clustering

methods utilize the Variational Bayes framework, where a

probabilistic generative process is constructed to model the

data points, and connect it to clustering process. Yet, our

work directly models the cluster generative process, which

is much more efficient than the previous work and has abil-

ity to exploit the structure among the previous generated

clusters during learning process.

Amortized inference The term amortized inference (AI)

refers to utilizing inferences from past computations to sup-

port future computations [14]. For Variational inference

(VI), amortized inference usually refers to inference over

local variables. Instead of approximating separate variables
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Figure 1. The clustering process for (a) point-wise sequential mod-

eling and (b) cluster-wise sequential modeling. Purple panel con-

tains unordered information and Blue panel contains ordered in-

formation. The Arrows indicate the corresponding order.

for each data point, amortized VI assumes that these la-

tent variables can be predicted by a parameterized function

of the data. Thus, once this function is estimated, the la-

tent variables can be acquired by passing new data points

through the function. Deep neural networks used in this

context are also called inference networks [23]. The amor-

tized inference is definitely fast, but the variational parame-

ters are approximated by a parametric function of the input

data, which may be too strict and cause the amortization

gap. In order to reduce amortization gap, researchers fo-

cus on blending amortized inference via a local Stochastic

Variational Inference (SVI) procedure [9, 34, 41, 22, 25].

Among them, Krishnan et al. [25] decoupled the training

of inference and generative models by introducing an inner

sub-optimization for variational parameters. To enable end-

to-end training of the inference and generative models, Kim

et al. [22] proposed to back-propagate through the SVI steps

via a finite-difference estimation of the necessary Hessian-

vector products. Alternatively, Marino et al. [34] adopts a

learning-to-learn framework where an inference model it-

eratively outputs variational parameters. Although above

methods reduce amortization gap to some extent, they can

not take advantage of the sufficient information among in-

ner sub-optimization which is helpful to find the final op-

timal point. To achieve an efficient and generalized model

inference, we propose a new optimization strategy (Ergodic

Amortized Inference, EAI) by using the average behavior

over sequence on an inner variational parameter trajectory.

3. The proposed Method

In this section, we present the cluster-wise hierarchical

deep generative clustering model and a new amortized in-

ference method for effective posterior approximation.

3.1. Notations and Problem Formulation

Let calligraphic letter (e.g., A) indicate set, capital let-

ter (e.g., A) for scalar, lower-case bold letter (e.g., a) for

vector, and capital bold letter (e.g., A) for matrix. Suppose

there are N data points, X = (xi, · · · ,xN )⊤ ∈ R
N×D
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indicates feature information over the whole dataset. Let

{c1, · · · , cN} indicate the cluster assignment of data, where

ci ∈ {1, · · · ,K} denotes the cluster index to which the data

point xi is assigned, and K is the number of clusters. Let

{C1, · · · , CK} indicate the final cluster partitions, Ck repre-

sents the set of data points belonging to the k-th cluster.

Probabilistic model for clustering is usually presented by

sequential sampling procedure to generate clusters. One of

the prototypical tools for nonparametric clustering model-

ing is the Dirichlet Process. It allows for a discrete distri-

bution of observations drawn from an arbitrary base mea-

sure over the domain in such a way as that the marginals

match draws from, while simultaneously obtaining a count-

able set of distinct data points. A useful view of the Dirich-

let Process Mixture Model [11] is the Chinese Restaurant

metaphor [15], which sequentially computes the conditional

probability of assigning the current data point to one of al-

ready constructed clusters or a new one. The cluster assign-

ment for each data point can be sampled by

ci ∼ p(ci|c1:i−1,x1:i−1)

∝ p(ci|c1:i−1, α)p(x1:i−1|c1:i−1) i = 1, · · · , n
(1)

Here ci ∈ {1, · · · ,K} encodes the cluster assignment of

the data point xi and c1:i−1 = {c1, · · · , ci−1} indicates

the existing clusters formed by already assigned data points

{x1, · · · ,xi−1}. α is hyperparameter controlling the ability

to create a new cluster.

Given N data points X = {xi}
N
i=1, it is natural to draw

independent samples to form clusters using decomposition

p(c1:N |X) = p(c1)

N
∏

i=2

p(ci|c1:i−1,x1:i−1) (2)

After all data points are assigned, the final cluster is formed

as {Ck}
K
k=1. Inference proceeds by traversing data points

and re-sampling their cluster assignments in sequence. As

we can see, above process sequentially computes the con-

ditional probability of assigning the current data point to

one of already constructed clusters or a new one, and does

not posit any particular prior on partitions, as shown in

Figure 1(a). The sequential sampling procedure makes it

impossible to parallelize handling data points with mod-

ern GPUs, which limits its scalability on large datasets (the

computational cost for full i.i.d. sampling {c1, · · · , cN} is

O(NK)) [19]. Furthermore, the clustering result is sensi-

tive to the sequential processing order. To obtain stable re-

sult, it needs a sufficient number of random samples, which

is time-consuming.

3.2. Hierarchical Generative Clustering: CHiGac

For the seek of effective cluster generative process and

preventing the effect of sequential processing order, we fo-

cus on an alternative of clustering generative process from
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(b) Inference model

Figure 2. The graphical architecture of CHiGac for (a) generative

model and (b) inference model.

the view of cluster rather tan the view of data point. Let

C = {C1, · · · , CK} indicate K clusters, we define Ck as

Ck = (C(1)k , · · · , C(i)k , · · · , C(Nk)
k ) k = 1, · · · ,K (3)

where C
(i)
k is the i-th data point of the k-th cluster. Nk is the

number of data points belonging to k-th cluster. Based on

above definition, we are interested in sampling each cluster

assignment by

Ck ∼ pθ(Ck|C1:k−1,S
k) k = 1, · · · ,K (4)

where S
k ∈ R

Mk×D indicates the available data for con-

structing the k-th cluster. Mk is the number of left data

points after generating the previous k − 1 clusters, defined

by Mk = N −
∑k−1

i=j Nj (Nj is the number of data points

belonging to j-th cluster). We generate cluster assignment

in the form of cluster-wise sequence (C1 → C2 → · · · →
CK) (as shown in Figure 1 (b)) rather than data-wise se-

quence (c1 → c2 → · · · → cN ) (as shown in Figure 1 (a)).

Given N data points X = {xi}
N
i=1, we are interested in

sampling Ck via a decomposition

pθ(C1:K |X) = pθ(C1|X)
K
∏

k=2

pθ(Ck|C1:k−1,S
k) (5)

Following (5), it is easy to model cluster sequentially, and

the arbitrary number of clusters can be adaptively deter-

mined until there is no remaining point in S
k.

Hierarchical generative processes Consequently, the key

task becomes modeling pθ(Ck|C1:k−1,S
k) which reflects the

generation of k-th cluster according to the existing clusters

C1:k−1 and unassigned data points Sk. To model it, we de-

fine a hierarchical generative process which can be broken

into three parts: (1) selecting the pioneer data point Ik; (2)

generating the cluster representation z
k and (3) making the

cluster assignments hk. Specifically, the generative process

can be formularized as follows

Ik ∼ pθ(I
k|C1:k−1,S

k) z
k ∼ pθ(z

k|Ik, C1:k−1,S
k)

hki ∼ pθ(h
k
i |z

k, Ik, C1:k−1,S
k) i = 1, · · · ,Mk − 1.

(6)
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Here Ik indicates the index of the first data point (called

as pioneer data point) for the k-th cluster selected from S
k.

Denote by z
k ∈ R

D1 the cluster representation of the k-

th cluster, we are interested in capturing the cluster repre-

sentation to indicate a group of data points related to k-

th cluster. Conditioned on {zk, Ik, C1:k−1,S
k}, a binary

vector h
k = (hk

1 , · · · , h
k
Mk−1) ∈ R

Mk−1 can be sam-

pled to indicate whether each left data point is affiliated

with the k-th cluster. After obtaining h
k, the cluster re-

sult Ck will be explicit. The whole generative process is

shown in Figure 2(a). We will describe later the implemen-

tation details of pθ(I
k|C1:k−1,S

k), pθ(z
k|Ik, C1:k−1,S

k)
and pθ(h

k
i |z

k, Ik, C1:k−1,S
k). Note that pθ(I

k|C1:k−1,S
k)

requires careful design to prevent mode collapse, i.e., the

degenerate case where almost all data points have the same

potential to be the pioneer data point. Considering the

equivalence of Ck and h
k, we have pθ(Ck|C1:k−1,S

k) ,

pθ(h
k|C1:k−1,S

k).

Joint modeling The generative processes are iterated until

there is no available data point left. For convenience, we

denote {Ik, C1:k−1,S
k} by SIk . Consequently, the joint dis-

tribution over all latent variables is given by

pθ(h
k, zk, Ik|C1:k−1,S

k)

=

Mk−1
∏

i=1

pθ(h
k
i |z

k,SIk )pθ(z
k|SIk )pθ(I

k|C1:k−1,S
k)

(7)

Crucially, the distribution of {hk
i }

Mk−1
i=1 are conditionally

independent. Therefore, once obtaining pθ(z
k|SIk), hk

i can

be sampled in parallel along all left data points, which is

extremely efficient than sequential process in equation (2).

Amortized Variational Inference Following the condi-

tional variational auto-encoder (CVAE) paradigm [42], θ
and φ can be optimized by maximizing a low bound of

Ep(X,C1:K) log pθ(C1:K |X), i.e.,

Lθ,φ =

Ep(X,C1:K)

K
∑

k=1

Eqφ(zk,Ik|C1:k,S
k) log

[

pθ(h
k, zk, Ik|C1:k−1,S

k)

qφ(zk, Ik|C1:k,Sk)

]

(8)

Here qφ(z
k, Ik|C1:k,S

k) is amortized inference model

which can be factorized by introducing a factorized vari-

ational posterior distribution, as shown in Figure 2(b)

qφ(z
k, Ik|C1:k,S

k) = qφ(z
k|hk,SIk )qφ(I

k|C1:k,S
k) (9)

This operation will encourage cluster inference pro-

cess from Ik to z
k, which will be presented in imple-

mentation. The two expectations, i.e., Ep(X,C1:K)[·] and

Eqφ(zk,Ik|C1:k,Sk)[·], are intractable, and can be estimated

by the Gumbel-Softmax trick [20, 33] and the Gaussian re-

parameterization trick [23], respectively. Once the training

procedure is finished, the cluster assignment can be esti-

mated by

p(hk|Sk) ≈
1

L

L
∑

l=1

pθ(h
k|(zk)l,SIk ) (zk)l ∼ pθ(z

k|SIk )

(10)

Here L is the number of Monte Carlo samples.

3.3. Implementation

In this section, we describe the implementa-

tion of pθ(I
k|C1:k−1,S

k), pθ(z
k|Ik, C1:k−1,S

k) and

pθ(h
k
i |z

k, Ik, C1:k−1,S
k), which are related to the de-

coder, and qφ(I
k|C1:k−1,S

k) and qφ(z
k|hk,SIk ) related to

the encoder. Furthermore, an efficient strategy is proposed

to combat mode collapse. The parameters {θ, φ} include:

N data point embedding {ei}
N
i=1 ∈ R

N×D, K pioneer data

point indices {Ik}Kk=1 ∈ {1, · · · , N}
K related to each clus-

ter, K cluster prototypes {mk}Kk=1 ∈ R
K×D1 and cluster

representations {zk}Kk=1 ∈ R
K×D1 , K cluster assignments

{hk}Kk=1, and the parameters of neural networks. We

optimize {θ, φ} to maximize the training objective (8).

Prototype-based pioneer point selection A straightfor-

ward approach would be to assume pθ(I
k|C1:k−1,S

k) follow

a uniform distribution related to random sampling or cate-

gorical distribution with its own set of Mk − 1 parameters.

As we all known, uniform distribution is too simple to con-

tain any prior, and complex categorical distribution would

result in over-parameterization and low sample efficiency.

We instead propose a prototype-based implementation. To

be specific, we introduce K cluster prototypes {mk}Kk=1

and make use of the data point representations to draw the

one-hot vector ok following categorical distribution:

o
k ∼ CATEGORICAL

(

SOFTMAX([s
(k)
1 , · · · , s(k)j , · · · , s(k)Mk

])
)

s
(k)
j =

COSINE(e
(k)
j ,mk)

τ
−

1

k − 1

k−1
∑

l=1

COSINE(ml,mk)

τ

(11)

Then, the index of pioneer data point can be obtained

by Ik = index(max(ok)). e
(k)
j is the representation of

the j-th data points in S
k. Here the cosine similarity,

Cosine(a,b) = (a⊤b)/(||a||2||b||2), instead of the inner

product similarity adopted by most existing deep learning

methods [32], is used to evaluate the correlation between

data point and cluster and prevent mode collapse. In fact,

with inner product, the majority of the available data points

are highly like to be selected as the first data point for the

k-th cluster, which will result in improper data assignment

to cluster. Moreover, cosine similarity can be taken as Eu-

clidean distance on the unit hypersphere, which is more

suitable for inferring the cluster structure than inner prod-

uct [36]. The hyper-parameter τ scales the similarity from
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[−1, 1] to [−1/τ, 1/τ ], which is set as τ = 0.1 to obtain

a more skewed distribution. The first term in s
(k)
j aims to

capture the similarity between data point and the current

cluster, which can be taken as intra-cluster correlation. The

second term tries to evaluate the difference between the cur-

rent cluster and the existing clusters, which can be taken

as inter-cluster separateness. Thus, the proposed learning

process is expected to effectively mine the hidden cluster

structure.

Prior and Decoder The prior pθ(z
k|Ik, C1:k−1,S

k) ,

pθ(z
k|SIk ) targets to capture the relation between existing

clusters, when given the first selected data point xIk , ex-

isting clusters C1:K−1 and the unsigned data points S
k.

For convenience, z
k is assumed following a multivariate

Gaussian distribution with diagonal covariance matrix and

sampled via pθ(z
k|SIk ) = N

(

z
k|µ(k)

θ , [diag(σ
(k)
θ )]2

)

where

mean µθ(·) and variance σθ(·) are parameterized by neural

networks fθ(·):

w
(k)
θ = e

(k)

Ik
+ f

(

k−1
∑

i=1

MHA(e
(k)

Ik
,Vi), MHA(e

(k)

Ik
,Uk)

)

(µ
(k)
θ ,σ

(k)
θ ) = fθ(w

(k)
θ + f(w

(k)
θ ))

(12)

here e
(k)

Ik
∈ R

D is the representation of xIk , Vi ∈

R
Ni×D indicates data belonging to the i-th cluster and

Uk ∈ R
(Mk−1)×D represents the unassigned data points.

MHA(A,B) indicates multi-head attention for capturing the

relation between A and B, which is able to exploit pair-

wise or higher-order interactions between data points in

both inter- and intra-cluster [28, 29]. f(·) and fθ are feed-

forward layers with layer normalization [3].

The decoder predicts which data points out of Mk ones

are mostly to be selected to form the k-th cluster, i.e.,

pθ(h
k
i |z

k,SIk ) = Sigmoid(gθ,i(SIk )), where we introduce

neural network parameterized by gθ,i(·) defined in terms of

s
(k)
i = COSINE(e

(k)
i , zk)/τ

w
(k)
i = e

(k)
i + f

(

k−1
∑

i=1

MHA(e
(k)
i ,Vi), MHA(e

(k)
i ,Uk)

)

gθ,i(SIk ) = gθ,i(s
(k)
i ,w

(k)
i + f(w

(k)
i ))

(13)

here e
(k)
i is the representation of i-th data point in S

k.

The neural network gθ,i(·) captures the nonlinear struc-

ture among Mk − 1 data points. In our cluster-wise gen-

erative process, the cluster affiliation of these remaining

data points for the k-th cluster (i.e., hk) are condition-

ally independent, thus, they be sampled in parallel, i.e.,

pθ(h
k|zk,SIk ) =

∏Mk−1
i=1 pθ(h

k
i |z

k,SIk ).

Encoder The encoder contains two parts: qφ(I
k|C1:k,S

k)

and qφ(z
k|hk,SIk ). For Ik, the variational distribution has

the same architecture as generative distribution. Difference

is that generative model focuses on selecting Ik from S
k

and inference model aims to select Ik from Ck.

Similarly, z
k is sampled via a multivari-

able Gaussian distribution, i.e., qφ(z
k|hk,SIk ) =

N (zk|µ(k)
φ , [diag(σ

(k)
φ )]2), here mean and standard de-

viation are parameterized by a neural network fφ(·):

(a
(k)
φ ,b

(k)
φ ) = fφ





∑Nk
i=1 h

k
i · e

(k)
i

√

∑Nk
i=1(h

k
i )

2

,

k
∑

i=1

MHA(e
(k)

Ik
,Vi)





µ
(k)
φ =

a
(k)
φ

||a(k)
φ ||2

σ
(k)
φ ← σ0 · exp

(

−
1

2
b
(k)
φ

)

(14)

where hk
Ik = 1. We normalize the mean to be consistent

with the use of cosine similarity which projects the repre-

sentations onto a unit hypersphere. Note that σ0 should be

set to a small value, e.g., around 0.1, since the learned rep-

resentations are well normalized.

3.4. Ergodic Amortized Inference

A straightforward Inference is to optimize {θ, φ} by

maximizing the training objective Lθ,φ (see Eq.(8)). Actu-

ally, the lower bound that we want to maximize is given by

an amortized model qφ(z
k, Ik|C1:k,S

k), which learns an ef-

ficient mapping from samples to proposal distributions and

reduces the cost of variational inference. The task focuses

on optimizing variational parameters ψ(k) = {µ(k)
φ ,σ

(k)
φ }

for the k-th cluster, where ψk is the output of amortized

inference model. However, this procedure introduces an

amortization gap [9] in which the less flexible parameter-

ization of the amortized inference model replace the origi-

nal instance-specific variational distribution, e.g., Stochas-

tic Variational Inference [17].

The amortized inference has fast inference, but having

the variational parameters be a parametric function of the

input may be too strict of a restriction. In order to reduce

amortization gap, researchers focus on blending amortized

inference with a local SVI procedure [9, 34, 41, 22, 25]. SVI

allows fine-tuning the initial proposal distribution ψ
(k)
0 via

an amortized inference model. However, the fine-tuned SVI

procedure requires several iterative optimization for ψ(k).

Suppose the optimal variational parameter ψ
(k)
M is obtained

with M iterations. The training of the inference and gener-

ative models can be decoupled with the initial one ψ
(k)
0 and

the optimal one ψ
(k)
M .

Actually, to get the optimal ψ
(k)
M , SVI procedure

generates a sequence of variational parameters Ψ(k) =

{ψ(k)
0 , · · · ,ψ(k)

M }, where each one can be taken as one

reasonable approximations of the posterior. It is poten-

tially wasteful to discard their corresponding contributions.

Inspired by Importance weighted Autoencoder [5] and
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ergodic theorem in stochastic programming models[24],

we define a new lower bound for parameter θ in the

generative model. For convenience, let w
(k)
m denote

pθ(h
k,zkm,I

k|C1:k−1,S
k)

qφ(zkm,I
k|C1:k,S

k)
, the objectives related to θ and φ via

different strategies can be formalized as follow.

Lφ = L△
φ = L∗

φ = Ep(X,C1:K)

K
∑

k=1

Eqφ(zk0 ,I
k|C1:k,S

k) logw
(k)
0

Lθ = Ep(X,C1:K)

K
∑

k=1

Eqφ(zk0 ,I
k|C1:k,S

k) logw
(k)
0

L△
θ = Ep(X,C1:K)

K
∑

k=1

Eqφ(zk
M
,Ik|C1:k,S

k) logw
(k)
M

L∗
θ = Ep(X,C1:K)

K
∑

k=1

E
qφ(z

(k)
(0:M)

,Ik|C1:k,S
k)

log
M
∑

m=0

πmw(k)
m

Among them, Lφ and Lθ are original objectives, L△
φ and

L△
θ are SVI-based objectives, and L∗

φ and L∗
θ are proposed

amortized inference objectives. To keep preceding varia-

tional parameters along the entire local procedure, we use

the average of {w(k)
m }

M
m=0 to define the objective for opti-

mizing θ. For simplicity, πm is set to a uniform weight

(e.g., πm = 1/(M + 1)). z
(k)

(0:M) indicates {z(k)0 , · · · , z(k)M }.

This strategy considers average behavior over sequence

on an inner variational parameter trajectory, thus we call

this procedure as Ergodic Amortized Inference (EAI). As

shown in line 4 − 10 of Algorithm 1, the local procedure

generates a series of local variational parameters Ψ(k) =

{ψ(k)
0 , · · · ,ψ(k)

M }. Then, φ and θ can be updated to optimize

the amortized ELBO objective (as shown in line 14 − 15
of Algorithm 1). Among it, θ is trained to approximately

optimize the weighted form with the aid of variational pa-

rameters trajectory. Note that M in the inner optimization

process is predefined as a small value, e.g., M = 10.

We theoretically demonstrate that the proposed EAI ob-

jective L∗
θ,φ is a valid lower bound to the log-likelihood

Ep(X,C1:K) log pθ(C1:K |X), and it is tighter than the original

amortized objective Lθ,φ and SVI-based amortized infer-

ence objective L△
θ,φ [9, 34, 41, 22, 25]. See supplementary

material for more details.

4. Experiments

4.1. Experimental Setup

Datasets: A series of experiments have been conducted

on four real-world datasets, MNIST, STL-10, Reuters, and

HHAR. Specifically, MNIST [27] and STL-10 [7] are image

datasets. Reuters [30] is a textual dataset where each doc-

ument is represented as a word vector with their TF-IDF

values. HHAR [2] is a sensor signal dataset. We flatten

each image in MNIST to a 784-dimensional vector and sub-

tract features for STL-10 by a pretrained ResNet-50 [16].

Algorithm 1 Learning with Ergodic Amortized Inference

(EAI) for CHiGac

Input: X = (xi, · · · ,xN )⊤ with N data points. Randomly ini-

tialize θ, φ. Ψ(k) = ∅.

1: while not new cluster is generated do

2: Sample a batch of data points D
3: for all xi ∈ D do

4: ψ
(k)
0 = {µ(k)

φ ,σ
(k)
φ } ← fφ(h

k,SIk )

5: Ψ(k) ← {ψ(k)
0 } ∪Ψ(k)

6: Compute zk via reparametrization trick

7: for τ = 1, · · · ,M do

8: ψ
(k)

(τ) ← ψ
(k)

(τ−1) + ηψ∇ψL
∗
φ

9: Ψ(k) ← {ψ(k)

(τ)} ∪Ψ(k)

10: end for

11: Compute noisy gradients∇φL
∗
φ and∇θL

∗
θ

12: end for

13: Average noisy gradients from batch

14: Update φ: φt+1 ← φt + ηφ∇φL
∗
φ

15: Update θ: θt+1 ← θt + ηθ∇θL
∗
θ

16: end while

After preprocessing, the MNIST contains 10 classes of 784-

dimensional training samples and each class has 7000 sam-

ples. STL-10 contains 10 classes of 2048-dimensional train-

ing samples, where each class has 1300 samples. Reuters

has 4 classes containing 10000 samples with 2000 dimen-

sionality, and the HHAR contains 10200 samples belong-

ing to 6 classes, and each sample is represented as a 561-

dimensional vector.

Baselines: Three kinds of methods are adopted as base-

lines, including traditional methods: MCMC [1] and

VI [4]; the state-of-art VAE based deep clustering methods:

VaDE [21], LTVAE [31] and DGG [49] (where DGG con-

siders local structure by pre-constructing the nearest neigh-

bor graph for input data points); nonparametric deep amor-

tized clustering methods: DAC [29], NCP [39].

Evaluation Metrics: Two evaluation metrics are

adopted. One is internal evaluation, Davies-Bouldin Index

(DBI) [10]: DBI = 1
K

∑K

k=1 maxj 6=k ((ak + aj)/d(ck, cj))

where ck is the centroid of the k-th cluster, ak is the aver-

age distance of all elements in cluster k to centroid ck. d(·)
is cosine similarity. Smaller DBI value indicates better per-

formance. The other is external evaluation, clustering accu-

racy (ACC): ACC = maxm∈M
1
N
✶{yi = m(ŷ(xi))} where

N is the total number of data samples, yi is the ground-truth

label that corresponds to that xi sample, ŷ(xi) is the cluster

assignment obtained by the model, and m ranges over the

set M of all possible one-to-one mappings between cluster

assignments and labels. Larger ACC value indicates better

performance.

Parameters: The encoder-decoder structure is used for

the data generation-based VAE methods (VaDE, LTVAE,

DGG).Each encoder network uses five dense layers with
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Table 1. Clustering performance on synthetic 2D MoG
Metrics MCMC VI DAC NCP CHiGa

s1

DBI 0.0313 0.0426 0.0367 0.0551 0.0218

ACC 0.9566 0.9432 0.9623 0.9531 0.9698

Time[s] 0.053 0.033 0.012 0.034 0.006

s2

DBI 0.0554 0.0827 0.0761 0.0759 0.0512

ACC 0.9331 0.9244 0.9421 0.9233 0.9426

Time[s] 0.095 0.036 0.015 0.036 0.006

Training time[s] 5.223 2.116 2.423 4.644 2.214

(a) Ground-

truth

(b) Epoch 5 (c) Epoch 13 (d) Epoch

16

(e) Epoch 21

Figure 3. The cluster generative process of CHiGac on 2D MoG.

size D − 500 − 500 − 2000 − K and each decoder uses

five dense layers with sizes K − 2000 − 500 − 500 − D.

For DAC and NCP, the structure of network is the same as

the original paper. For CHiGac, we use a 1-D ConvNet as

feature extractor for datasets MNIST and STL-10 and multi-

layer perceptron for Reuters and HHAR. The ConvNet uses

a ResNet architecture [16] with 4 residual blocks. The size

of cluster representation (zk and m
k is set as D1 = 100.

The neural networks f(·), fθ(·) and gθ,i(·) are multilayer

perceptrons.

4.2. Clustering Performance on Synthetic Data

The first experiment was conducted on synthetic data

with arbitrary number of clusters. Thus, four existing

methods handling variable number of clusters, MCMC, VI,

DAC, and NCP, are used as baselines. The synthetic data

is generated via a 2D mixture of Gaussian (MoG). Among

them, the training set contains 200 samples belonging to 4

clusters. Two testing scenarios (s1 and s2) are constructed

to evaluate the effectiveness of the proposed method. The

testing set in s1 has the same configuration (200 samples

and 4 clusters) as training set, while s2 contains different

numbers of samples and clusters (400 samples and 6 clus-

ters) in order to verify whether the clustering method can

generalize to the unseen clusters.

Table 1 summarizes the results.As expected, the pro-

posed CHiGac consistently outperforms baselines on both

s1 and s2. Although s2 is more challenging, CHiGac can

capture cluster uncertainty and obtain the best results. For

training stage, optimization-based (VI, DAC, CHiGa) meth-

ods are obviously faster than the sampling based methods

(MCMC, NCP). In testing stage, the amortized clustering

methods (DAC, NCP, CHiGac) are superior to the tradi-

tional methods (MCMC, VI). Further, we demonstrate the

cluster-wise generation process by plotting the clustering

results in the corresponding epochs. As shown in Fig-

ure 3, CHiGac has ability to automatically determine the

true number of clusters without any prior.

4.3. Clustering Performance on Real­world Data

In Table 2, we depict the quantitative clustering results

over four real-world benchmarks, compared to five popular

deep clustering methods with state-of-the-art performance.

The best and second results are marked in bold and under-

lined. The average clustering results are recorded over 10

training sessions with different random parameter initial-

ization. It can be seen that our CHiGac outperforms all

baselines in terms of both internal and external evaluation

metrics. The main reason, we believe, is that CHiGac not

only exploits amortized properties between data points in

both inter- and intra-clusters, but also has flexible generative

process, which simultaneously emphasizes the superiority

of variational generative framework (VaDE, LTVAE, DGG)

and amortized inference (DAC, NCP). The baseline, DGG,

achieves a competitive performance since it exploits the ad-

ditional local graph information and is trained in a self-

supervised manner, which is time-consuming because lo-

cal graph among all points has to be pre-computed. For the

propsed CHiGac, it has ability to mine both local and global

interactions with the aid of dedicated cluster generative pro-

cess, thus it outperforms DGG even without extral informa-

tion. DAC and CHiGac outperform other methods on com-

putational time by a large margin, because DAC identifies

each cluster after one forward pass and CHiGac generates

clusters rather points. However, DAC is pretty worse than

the proposed CHiGac on clustering performance.

Among amortized clustering methods, DAC, NCP and

CHiGac are able to process arbitrary number of clusters.

A digit subset from MNIST testing set is randomly sam-

pled. To illustrate how the clustering models capture the

shape ambiguity of some of the digits, we plot the ground-

truth digit clusters and clustering results (obtained by DAC,

NCP and CHiGac respectively) in Figure 4. Comparing

with DAC and NCP, our method can get the most accu-

rate results. For example, DAC assigns the digit 7 (with

similar appearance to 9) to cluster 9, and NCP generates a

new cluster for it. Fortunately, CHiGac correctly assigns

it to cluster 7. Furthermore, we demonstrate the selected

pioneer data points of each cluster for MNIST and STL-10

datasets in Figure 5. It can be seen that these selected points

have unique characteristics of their corresponding clusters,

which will further leverage the cluster generation process.

4.4. Inference Optimization Analysis

In order to investigate the convergence property of the

proposed ergodic amortized inference (EAI) method, we

compare it with several popular amortized inference meth-

ods on constructing the CHiGac model, including amor-

tized inference (AI) [23], semi-amortized inference (Semi-

AI) [22], iterative amortized inference (IAI) [34], stochas-

tic variational inference-amortized inference (SVI-AI) [25]
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Table 2. Comparing clustering performance (DBI and ACC) on four real-world datasets.

MNIST STL-10 Reuters HHAR

Method DBI ACC Time[s] DBI ACC Time[s] DBI ACC Time[s] DBI ACC Time[s]

VaDE 0.4354 0.9446 43.62 1.2306 0.8545 36.33 1.1630 0.7984 26.44 1.6921 0.8446 17.33

LTVAE 1.5946 0.8630 56.33 0.4412 0.9006 52.34 1.1046 0.8096 35.67 1.5522 0.8500 23.46

DGG 0.2394 0.9758 63.46 0.4728 0.9059 57.34 1.0613 0.8230 39.56 0.3602 0.8904 24.56

DAC 0.2578 0.9596 24.33 0.8474 0.8822 23.56 1.1063 0.8033 16.37 1.7163 0.8452 13.44

NCP 0.2525 0.9633 73.34 0.8160 0.8959 77.35 1.2740 0.8069 45.81 1.6806 0.8441 36.79

CHiGac 0.2327 0.9796 22.56 0.4364 0.9123 21.66 1.0582 0.8285 17.44 0.3487 0.9076 15.33

The standard deviations (stds) of DBI are around 0.01 or 0.02 for all methods and stds of ACC are around 0.1.

Figure 4. Clustering results on MNIST datasets. The first line is ground-truth dataset and clusters are separated by boxes. The results

obtained by DAC, NCP and CHiGac are listed from the second line to forth line.

(a) MNIST (b) STL-10

Figure 5. Illustration of the selected pioneer points for each cluster

of MNIST and STL-10.

Table 3. Clustering performance comparisons among amortized

inference methods on CHiGac for MNIST and STL-10 datasets.
MNIST STL-10

Method DBI ACC DBI ACC

AI 0.2357 0.9769 0.4406 0.9102

Semi-AI 0.2389 0.9773 0.4412 0.9114

IAI 0.2347 0.9773 0.4388 0.9116

SVI-AI 0.2377 0.9767 0.4374 0.9109

EAI 0.2327 0.9796 0.4364 0.9123

and our ergodic amortized inference (EAI). Table 3 lists the

clustering results on two image datasets. Obviously, im-

proved amortized inference methods work better than the

traditional amortized inference (AI). As expected, the pro-

posed EAI obtains the best performance. This is because it

considers the whole variational parameter trajectory which

contains more optimization information.

Table 4 shows the optimal Log-likelihood, evidence

lower-bound (ELBO), and Reconstruction error of CHi-

Gac with different strategies (AI, Semi-AI, IAI, SVI-AI)

on MNIST dataset. Obviously, EAI performs best because

it iteratively refines the proposal distribution during amor-

tized inference process. Meanwhile, Figure 6 demonstrates

the Log-likelihood versus iterations, which further confirms

that EAI method has ability to obtain a tighter bound for

log-likelihood than other amortized inference methods.

Table 4. Comparing inference optimization performance for CHi-

Gac model on MNIST dataset.
Method Log-likelihood ELBO Reconstruction

AI -2253.54 -2267.45 2266.76

Semi-AI -2051.21 -2065.34 2063.45

IAI -1998.44 -2005.47 2004.44

SVI-AI -1985.66 -1996.33 1992.33

EAI -1933.27 -1945.92 1923.55
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Figure 6. Comparing Log-likelihood of CHiGac versus iterations

on MNIST dataset.

5. Conclusions
In this paper, we proposed Cluster-wise Hierarchical

Generative Model for deep amortized clustering (CHiGac).

It targets on learning to cluster from data without specify-

ing the number of clusters. The proposed ergodic amortized

inference method brings a tighter bound for CHiGac gener-

ative model and achieves more accurate clustering results.
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