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Abstract

In this paper, we propose Cluster-wise Hierarchical
Generative Model for deep amortized clustering (CHiGac).
It provides an efficient neural clustering architecture by
grouping data points in a cluster-wise view rather than
point-wise view. CHiGac simultaneously learns what makes
a cluster, how to group data points into clusters, and how
to adaptively control the number of clusters. The dedicated
cluster generative process is able to sufficiently exploit pair-
wise or higher-order interactions between data points in
both inter- and intra-cluster, which is useful to sufficiently
mine the hidden structure among data. To efficiently min-
imize the generalized lower bound of CHiGac, we design
an Ergodic Amortized Inference (EAI) strategy by consider-
ing the average behavior over sequence on an inner varia-
tional parameter trajectory, which is theoretically proven
to reduce the amortization gap. A series of experiments
have been conducted on both synthetic and real-world data.
The experimental results demonstrated that CHiGac can ef-
ficiently and accurately cluster datasets in terms of both in-
ternal and external evaluation metrics (DBI and ACC).

1. Introduction

Clustering is a fundamental task in unsupervised ma-
chine learning to group similar data points into multiple
clusters. Aside from its usefulness in many downstream
tasks, clustering is an important tool for visualizing and un-
derstanding the underlying structures of datasets, as well
as a model for categorization in cognitive science. A
plethora of clustering methods have been developed and
successfully employed in various fields, including computer
vision [13, 6], natural language processing [18, 26], so-
cial network analysis [12], and medical informatics [35].
Among various clustering algorithms [47, 48], probabilistic
clustering model has been widely concerned because of its
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flexibility and interpretability.

Probabilistic generative clustering models (or equiva-
lently, mixture models) [8] are a staple of statistical mod-
eling in which a discrete latent variable is introduced for
each observation, indicating its cluster identity. These gen-
erative clustering models can be roughly divided into two
categories: finite mixture model [8] and infinite mixture
model [44]. In recent years, finite mixture models have
been increasingly applied in unsupervised learning prob-
lems with the aid of deep neural networks. The most rel-
evant research is that of deep generative clustering mod-
els [21, 31, 49], where neural networks are trained to predict
the states of latent variables given observations in a deep
generative model or probabilistic program [23, 42]. Instead
of using an arbitrary prior for the latent variable, these meth-
ods adopted finite mixture prior, such as Gaussian Mixture
Model (GMM) [21, 49]. A finite mixture model with a fixed
number of clusters may fit the given data set well, however,
it may be sub-optimal to use the same number of clusters if
more data comes under a slightly changed distribution. It
would be ideal if the clustering models can figure out the
unknown number of clusters automatically.

Alternatively, infinite mixture model is the application
of nonparametric Bayesian techniques to mixture modeling,
which allows for the automatic determination of an appro-
priate number of mixture components. The prior distribu-
tion can be specified in terms of a data point sequential pro-
cess called Dirichlet process (e.g., Chinese restaurant pro-
cess (CRP)), where the number of clusters can arbitrarily
grow to better accommodate data as needed. To approxi-
mate the corresponding infinite mixture posterior, recently,
deep amortized clustering [37, 38, 29, 39, 50] methods are
proposed in a black-box fashion [45]. Specifically, they
make use of neural networks for amortized inferring the
cluster assignments and parameters, which is flexible to de-
fine the clusters. To adaptively determine the number of
clusters, however, they have to construct the non-parametric
prior, which largely depends on the sequential data point
modeling. For large-scale dataset, this process will be time-
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consuming and difficult to converge.

In this paper, we build on these prior works and pro-
pose a Cluster-wise Hierarchical Generative model for deep
amortized clustering (CHiGac), which aims to learn non-
parametric deep Bayesian posterior in a cluster-wise view.
In other words, CHiGac targets on generating clusters rather
than generating data points (all existing generative cluster-
ing methods adopted the later). This cluster generation pro-
cess has two good facets. One is that the whole genera-
tion process is efficient, because it depends on the number
of clusters (/) rather than the number of data points (/V),
where K < N. The other is that inter-cluster and intra-
cluster structure can be sufficiently exploited during the
learning process, because each cluster is generated accord-
ing to the previous clusters and the current left data points.
To efficiently approximate the non-parametric Bayesian
posterior for CHiGac, we propose an Ergodic Amortized
Inference (EAI) algorithm by considering the average be-
havior over sequence on an inner variational parameter tra-
jectory. EAl is theoretically proven to reduce the amortiza-
tion gap and provide flexible parameterization for the neu-
ral amortized inference model. To illustrate the superior of
the proposed method, we perform experiments on both syn-
thetic data and real-world data in terms of clustering perfor-
mance and inference optimization performance.

2. Related Work

Deep clustering There is a growing interest in develop-
ing clustering methods using deep networks for complex
data [21, 38, 31, 39, 49, 29, 46, 6]. The main focus of these
methods is to learn a representation of input data amenable
to clustering via deep neural networks. Learning represen-
tations and assigning data points to the clusters are usu-
ally trained alternatively. However, like the traditional clus-
tering algorithms, these methods aim to cluster particular
datasets. Since such methods typically learn a data repre-
sentation using deep neural networks, the representation is
prone to overfitting when applied to small datasets. Among
the aforementioned work, variational autoencoder (VAE)-
based clustering [21, 49] and amortized clustering [38, 39]
are most relevant to our work. These two types of clustering
methods utilize the Variational Bayes framework, where a
probabilistic generative process is constructed to model the
data points, and connect it to clustering process. Yet, our
work directly models the cluster generative process, which
is much more efficient than the previous work and has abil-
ity to exploit the structure among the previous generated
clusters during learning process.

Amortized inference The term amortized inference (Al)
refers to utilizing inferences from past computations to sup-
port future computations [14]. For Variational inference
(VI), amortized inference usually refers to inference over
local variables. Instead of approximating separate variables

(a) Point-wise sequence

(b) Cluster-wise sequence
Figure 1. The clustering process for (a) point-wise sequential mod-
eling and (b) cluster-wise sequential modeling. Purple panel con-
tains unordered information and Blue panel contains ordered in-
formation. The Arrows indicate the corresponding order.

for each data point, amortized VI assumes that these la-
tent variables can be predicted by a parameterized function
of the data. Thus, once this function is estimated, the la-
tent variables can be acquired by passing new data points
through the function. Deep neural networks used in this
context are also called inference networks [23]. The amor-
tized inference is definitely fast, but the variational parame-
ters are approximated by a parametric function of the input
data, which may be too strict and cause the amortization
gap. In order to reduce amortization gap, researchers fo-
cus on blending amortized inference via a local Stochastic
Variational Inference (SVI) procedure [9, 34, 41, 22, 25].
Among them, Krishnan et al. [25] decoupled the training
of inference and generative models by introducing an inner
sub-optimization for variational parameters. To enable end-
to-end training of the inference and generative models, Kim
etal. [22] proposed to back-propagate through the SVI steps
via a finite-difference estimation of the necessary Hessian-
vector products. Alternatively, Marino et al. [34] adopts a
learning-to-learn framework where an inference model it-
eratively outputs variational parameters. Although above
methods reduce amortization gap to some extent, they can
not take advantage of the sufficient information among in-
ner sub-optimization which is helpful to find the final op-
timal point. To achieve an efficient and generalized model
inference, we propose a new optimization strategy (Ergodic
Amortized Inference, EAI) by using the average behavior
over sequence on an inner variational parameter trajectory.

3. The proposed Method

In this section, we present the cluster-wise hierarchical
deep generative clustering model and a new amortized in-
ference method for effective posterior approximation.

3.1. Notations and Problem Formulation

Let calligraphic letter (e.g., A) indicate set, capital let-
ter (e.g., A) for scalar, lower-case bold letter (e.g., a) for
vector, and capital bold letter (e.g., A) for matrix. Suppose
there are N data points, X = (x;,---,xy) € RNXD
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indicates feature information over the whole dataset. Let
{c1, -+, ey} indicate the cluster assignment of data, where
¢i € {1,- -+, K} denotes the cluster index to which the data
point x; is assigned, and K is the number of clusters. Let
{Cy, -+ ,Ck} indicate the final cluster partitions, Cy, repre-
sents the set of data points belonging to the k-th cluster.

Probabilistic model for clustering is usually presented by
sequential sampling procedure to generate clusters. One of
the prototypical tools for nonparametric clustering model-
ing is the Dirichlet Process. It allows for a discrete distri-
bution of observations drawn from an arbitrary base mea-
sure over the domain in such a way as that the marginals
match draws from, while simultaneously obtaining a count-
able set of distinct data points. A useful view of the Dirich-
let Process Mixture Model [11] is the Chinese Restaurant
metaphor [ | 5], which sequentially computes the conditional
probability of assigning the current data point to one of al-
ready constructed clusters or a new one. The cluster assign-
ment for each data point can be sampled by

(& Np(Ci‘Cl:i—l,Xu—l) (1)

x p(cileriimt, @)p(X1ii—1|cic1) i=1,---,n

Here ¢; € {1,---, K} encodes the cluster assignment of
the data point x; and ¢;.,—1 = {c1,-++,¢;—1} indicates
the existing clusters formed by already assigned data points
{x1,+ ,X;-1}. ais hyperparameter controlling the ability
to create a new cluster.

Given N data points X = {x;} ., it is natural to draw
independent samples to form clusters using decomposition

N
p(c1:n|X) = p(er) Hp(ci|61:i—17 X1:—1) (2)
i=2

After all data points are assigned, the final cluster is formed
as {Ck.},[f:l. Inference proceeds by traversing data points
and re-sampling their cluster assignments in sequence. As
we can see, above process sequentially computes the con-
ditional probability of assigning the current data point to
one of already constructed clusters or a new one, and does
not posit any particular prior on partitions, as shown in
Figure 1(a). The sequential sampling procedure makes it
impossible to parallelize handling data points with mod-
ern GPUs, which limits its scalability on large datasets (the
computational cost for full i.i.d. sampling {c1, - ,en}is
O(NK)) [19]. Furthermore, the clustering result is sensi-
tive to the sequential processing order. To obtain stable re-
sult, it needs a sufficient number of random samples, which
is time-consuming.

3.2. Hierarchical Generative Clustering: CHiGac

For the seek of effective cluster generative process and
preventing the effect of sequential processing order, we fo-
cus on an alternative of clustering generative process from

po (I*[C141, %) 45 I*|C1y %)

o (0|25, 1%, €1y s, S*)

(a) Generative model (b) Inference model

Figure 2. The graphical architecture of CHiGac for (a) generative
model and (b) inference model.

the view of cluster rather tan the view of data point. Let

C ={Cy,- -+ ,Ck} indicate K clusters, we define Cy, as
where C ,(j) is the ¢-th data point of the k-th cluster. Ny, is the

number of data points belonging to k-th cluster. Based on
above definition, we are interested in sampling each cluster
assignment by

Ck ~ po(C|Crk-1,8%) k=1, K @
where S* ¢ RM+*P indicates the available data for con-
structing the k-th cluster. Mj is the number of left data
points after generating the previous k — 1 clusters, defined
by My = N — Zk ! N; (N; is the number of data points
belonging to j-th cluster) We generate cluster assignment
in the form of cluster-wise sequence (C; — Co — -+ —
Ck) (as shown in Figure 1 (b)) rather than data-wise se-
quence (c; — cg — - -+ — cy) (as shown in Figure 1 (a)).

Given N data points X = {x;},, we are interested in
sampling Cj, via a decomposition

K
Po(Cr.x|X) = po(C1]X) H (CklCrx-1,8") (5

Following (5), it is easy to model cluster sequentially, and
the arbitrary number of clusters can be adaptively deter-
mined until there is no remaining point in S¥.
Hierarchical generative processes Consequently, the key
task becomes modeling p(Cx|C1.x—1,S") which reflects the
generation of k-th cluster according to the existing clusters
C;.x—1 and unassigned data points S*. To model it, we de-
fine a hierarchical generative process which can be broken
into three parts: (1) selecting the pioneer data point I¥; (2)
generating the cluster representation z* and (3) making the
cluster assignments h*. Specifically, the generative process
can be formularized as follows

I* ~ po(I*|Crin—1,S") 2" ~ po(z"|1*,C1.—1,8%)

(6)
hf ~p9(hf|zk71k,clzk,1,sk) 1= ].,~ . 7Mk — 1.
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Here I* indicates the index of the first data point (called
as pioneer data point) for the k-th cluster selected from S¥.
Denote by z¥ € RP* the cluster representation of the k-
th cluster, we are interested in capturing the cluster repre-
sentation to indicate a group of data points related to k-
th cluster. Conditioned on {z*,I* C;.;_1,S*}, a binary
vector h* = (hf,--- Ak, ) € RM*~! can be sam-
pled to indicate whether each left data point is affiliated
with the k-th cluster. After obtaining h”, the cluster re-
sult C;, will be explicit. The whole generative process is
shown in Figure 2(a). We will describe later the implemen-
tation details of pg(I*|Cy.r—1,S¥), pe(2*|I¥,C1.1—1,S¥)
and pg(h¥|z", I* C1.x_1,S*). Note that pe(I¥|Cy.;—1, S¥)
requires careful design to prevent mode collapse, i.e., the
degenerate case where almost all data points have the same
potential to be the pioneer data point. Considering the
equivalence of Cj and h*, we have ps(Ci|Ci.x—1,S*) 2
po(h*|Ci—1,8%).

Joint modeling The generative processes are iterated until
there is no available data point left. For convenience, we
denote {I* C1.x_1,8"} by S;». Consequently, the joint dis-
tribution over all latent variables is given by

po(h*, 2", I¥|Cr.—1, %)

M —1 (7)
11 po(hilz", S )po(2"|S 1k )po(T¥|Cr—1,8")

i=1

Crucially, the distribution of {h¥}M%~1 are conditionally
independent. Therefore, once obtaining py(z*|S;« ), h¥ can
be sampled in parallel along all left data points, which is
extremely efficient than sequential process in equation (2).
Amortized Variational Inference Following the condi-
tional variational auto-encoder (CVAE) paradigm [42], 6
and ¢ can be optimized by maximizing a low bound of
EP(chl:K) logpg(CLK‘X), i.e.,

Lop =

= po(h*, 2% I*(Crh—1,S%)

Ep(x,cr) O Bqy(ah,1¥]c1 4.5%) 108

=1 Q¢(Zk7lk‘clzkask)

(3

Here g4 (2", I*|Cy.r,S*) is amortized inference model
which can be factorized by introducing a factorized vari-
ational posterior distribution, as shown in Figure 2(b)

46 (2", 1°|Crik, S%) = (2" 0", S ;1) g6 (I°[Crix, 8%)  (9)

This operation will encourage cluster inference pro-
cess from I* to z¥, which will be presented in imple-
mentation. The two expectations, i.e., E,x ¢, )[-] and
]E%(szHCl:k,sk)L], are intractable, and can be estimated
by the Gumbel-Softmax trick [20, 33] and the Gaussian re-

parameterization trick [23], respectively. Once the training

procedure is finished, the cluster assignment can be esti-
mated by

p(h[s*) zi “0,Spk) (@) ~ pa(2IS )
- (10)
Here L is the number of Monte Carlo samples.
3.3. Implementation
In this section, we describe the implementa-

tion of pg(I’“\Cl;k,l,S’“), pg(zk|1’“,61;k,1,s’“) and
po(h¥|z*, I* Cy.;—1,S¥), which are related to the de-
coder, and q(I*|C1.5-1,S*) and q4(2"|h*, S;+) related to
the encoder. Furthermore, an efficient strategy is proposed
to combat mode collapse. The parameters {6, ¢} include:
N data point embedding {e;}/L, € R¥*P K pioneer data
point indices {I*}f~, € {1,--- ,N}* related to each clus-
ter, K cluster prototypes {m*}f_, € R¥*P1 and cluster
representations {z*}% , € RE¥*P1 | K cluster assignments
{h*}X_ |, and the parameters of neural networks. We
optimize {6, ¢} to maximize the training objective (8).
Prototype-based pioneer point selection A straightfor-
ward approach would be to assume po(7*|C1.—1,S*) follow
a uniform distribution related to random sampling or cate-
gorical distribution with its own set of M}, — 1 parameters.
As we all known, uniform distribution is too simple to con-
tain any prior, and complex categorical distribution would
result in over-parameterization and low sample efficiency.
We instead propose a prototype-based implementation. To
be specific, we introduce K cluster prototypes {m*}X
and make use of the data point representations to draw the
one-hot vector o” following categorical distribution:

o" ~ CATEGORICAL (SOFTMAX([sgk), EEIN Ek), T 5\21))
0 _ Cosve(e!”, m m") 1 S CosINE(m',m")
i T k—1 T
=1
(11

Then, the index of pioneer data point can be obtained
by I* = index(max(o*)). e!" is the representation of
the j-th data points in S¥. Here the cosine similarity,
Cosine(a,b) = (a'b)/(||al|2||b||2), instead of the inner
product similarity adopted by most existing deep learning
methods [32], is used to evaluate the correlation between
data point and cluster and prevent mode collapse. In fact,
with inner product, the majority of the available data points
are highly like to be selected as the first data point for the
k-th cluster, which will result in improper data assignment
to cluster. Moreover, cosine similarity can be taken as Eu-
clidean distance on the unit hypersphere, which is more
suitable for inferring the cluster structure than inner prod-
uct [36]. The hyper-parameter 7 scales the similarity from
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[—1,1] to [-1/7,1/7], which is set as 7 = 0.1 to obtain
a more skewed distribution. The first term in s;k) aims to
capture the similarity between data point and the current
cluster, which can be taken as intra-cluster correlation. The
second term tries to evaluate the difference between the cur-
rent cluster and the existing clusters, which can be taken
as inter-cluster separateness. Thus, the proposed learning
process is expected to effectively mine the hidden cluster
structure.

Prior and Decoder The prior py(z*|I*,Ci.r_1,S%)
po(2z”|S;) targets to capture the relation between existing
clusters, when given the first selected data point x;x, ex-
isting clusters Cy.x—1 and the unsigned data points Sk,
For convenience, z* is assumed following a multivariate
Gaussian distribution with diagonal covariance matrix and
sampled via pe(z"|S;r) = N (z’“|u8k) [diag(o{*))? ) where
mean g (-) and variance o(-) are parameterized by neural
networks fy():

L

wi) =el) + 1 (Z MHA(e'}, Vy), MHA(e(I]Z),Uk)>

k k
(o 05" =

fo(wg® + f(wy™))

12)
k) ¢ RP is the representation of x;r, V,; €
mdlcates data belonging to the ¢-th cluster and
U, € RMe=1xD represents the unassigned data points.
MHA (A, B) indicates multi-head attention for capturing the
relation between A and B, which is able to exploit pair-
wise or higher-order interactions between data points in
both inter- and intra-cluster [28, 29]. f(-) and fp are feed-
forward layers with layer normalization [3].

The decoder predicts which data points out of M}, ones
are mostly to be selected to form the k-th cluster, i.e.,
po(h¥|z",S;1) = Sigmoid(ge,:(S;+)), where we introduce
neural network parameterized by gy ;(-) defined in terms of

here e,
RN xX D

s$) = cosine(el™, z") /7

k—1
w§k> = egk) +f (Z MHA(eEk),Vi),MHA(eEk),Uk))
i=1

90.1(S1,) = go.i(s(", wi™ + f(wi)

13)
here el(-k) is the representation of i-th data point in S*.
The neural network gg;(-) captures the nonlinear struc-
ture among M} — 1 data points. In our cluster-wise gen-
erative process, the cluster affiliation of these remaining
data points for the k-th cluster (i.e., h¥) are condition-
ally independent, thus, they be sampled in parallel, i.e.,
p9(hk‘zk7 SIk) = H?iﬁilpg(hﬂzkv SIk)'
Encoder The encoder contains two parts: q,(1*|Ci.x, S*)
and q4(z*|h*, S ;). For I*, the variational distribution has

the same architecture as generative distribution. Difference
is that generative model focuses on selecting I* from S¥
and inference model aims to select I* from Cy,.
Similarly, 2z is sampled via a multivari-
able Gaussian distribution, i.e., g¢s(z"|h*,S;) =
N(z "|u<k) [diag(o W)] ), here mean and standard de-
viation are parameterized by a neural network fy(-):

SN ko)

@y, %) = fs ;Y MuA(el, Vi)
ik (hF)? =
(k) _ a<(i>) (k) Lo
SRR (-3)
(14)

where h’;k = 1. We normalize the mean to be consistent

with the use of cosine similarity which projects the repre-
sentations onto a unit hypersphere. Note that oy should be
set to a small value, e.g., around 0.1, since the learned rep-
resentations are well normalized.

3.4. Ergodic Amortized Inference

A straightforward Inference is to optimize {6, ¢} by
maximizing the training objective Lg 4 (see Eq.(8)). Actu-
ally, the lower bound that we want to maximize is given by
an amortized model g, (z*, I¥|Cy.1,, S*), which learns an ef-
ficient mapping from samples to proposal distributions and
reduces the cost of variational inference. The task focuses
on optimizing variational parameters *) = {u<k) fﬁk)}
for the k-th cluster, where v, is the output of amortized
inference model. However, this procedure introduces an
amortization gap [9] in which the less flexible parameter-
ization of the amortized inference model replace the origi-
nal instance-specific variational distribution, e.g., Stochas-
tic Variational Inference [17].

The amortized inference has fast inference, but having
the variational parameters be a parametric function of the
input may be too strict of a restriction. In order to reduce
amortization gap, researchers focus on blending amortized
inference with a local SVI procedure [9, 34, 41,22, 25]. SVI
allows fine-tuning the initial proposal distribution d)(()k) via
an amortized inference model. However, the fine-tuned SVI
procedure requires several iterative optimization for 4)(¥)
Suppose the optimal variational parameter ng’;) is obtained
with M iterations. The training of the inference and gener-
ative models can be decoupled with the initial one zp(()k) and
the optimal one 1/11(@)

Actually, to get the optimal wx;), SVI procedure
generates a sequence of variational parameters ¥(®) =
{9}, where each one can be taken as one
reasonable approximations of the posterior. It is poten-
tially wasteful to discard their corresponding contributions.
Inspired by Importance weighted Autoencoder [5] and
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ergodic theorem in stochastic programming models[24],
we define a new lower bound for parameter 6 in the

generative model.  For convenience, let w( ) denote
po(hF 28 1¥|cy_q,8%)
q4(2k, , IF|Cy.y,SF)

different strategies can be formalized as follow.

, the objectives related to 6 and ¢ via

K

VAN *
Ly = £¢ = £¢ = EP(X,CLK) ZE%(

k=1

lo w(k)
zf 1% |Cy,,8F) 108 Wo

lo w(k)
2k, I%|Cy.,,8%) 108 Wo

K
Lo =Epxcrpe) 2 Eqyq

A (k)
Ly =Epx.ci.x) Zqub(z’;u,Ik\cl:k,sk) log wy,

k=1

Ly =E (xclK)Z 262

M

(k
1*|Cy.1,SF) log Z Tm W

m=0

)

(o JM)’

Among them, £, and Ly are original objectives, Ef and
Ly are SVI-based objectives, and LY, and Lj are proposed
amortized inference objectives. To keep preceding varia-
tional parameters along the entire local procedure, we use
the average of {w(k)}f\,/f:o to define the objective for opti-
mizing 6. For simplicity, 7, is set to a uniform weight
(e.g., mm = 1/(M + 1)). zéﬁ?M) indicates {z<k) cee 5(})}
This strategy considers average behavior over sequence
on an inner variational parameter trajectory, thus we call
this procedure as Ergodic Amortized Inference (EAI). As
shown in line 4 — 10 of Algorithm 1, the local procedure
generates a series of local variational parameters ¥*) =
{11:(()'“), e (k>} Then, ¢ and 0 can be updated to optimize
the amortlzed ELBO objective (as shown in line 14 — 15
of Algorithm 1). Among it, 6 is trained to approximately
optimize the weighted form with the aid of variational pa-
rameters trajectory. Note that M in the inner optimization
process is predefined as a small value, e.g., M = 10.

We theoretically demonstrate that the proposed EAI ob-
Jective Ly , is a valid lower bound to the log-likelihood
Epx,c;.5) log po(C1:x|X), and it is tighter than the original
amortized objective Ly 4 and SVI-based amortized infer-
ence objective ££¢[ , 34, 41, 22,
material for more details.

]. See supplementary

4. Experiments
4.1. Experimental Setup

Datasets: A series of experiments have been conducted
on four real-world datasets, MNIST, STL-10, Reuters, and
HHAR. Specifically, MNIST [27] and STL-10 [7] are image
datasets. Reuters [30] is a textual dataset where each doc-
ument is represented as a word vector with their TF-IDF
values. HHAR [2] is a sensor signal dataset. We flatten
each image in MNIST to a 784-dimensional vector and sub-
tract features for STL-10 by a pretrained ResNet-50 [16].

Algorithm 1 Learning with Ergodic Amortized Inference
(EAI) for CHiGac

Input: X = (x;,-- ,xy) ' with N data points. Randomly ini-
tialize 6, ¢. UF) = g,
: while not new cluster is generated do
Sample a batch of data points D

for all x; € D do
(k) 7{ (k)

1
2
3
4 ol — fo(hF,S0)
5: \1/<k> “ {¢gk>} U w®
6 Compute zj, via reparametrization trick
7 forr=1,---, M do
8 P ¢<’:> b+ Vel
9: x11<k> - {¢§’j§} uw®
10: end for
11: Compute noisy gradients VL7 and Vg Lj
12:  end for
13:  Average noisy gradients from batch
14:  Update ¢: ¢'T" < ¢' + 1y V4L
15:  Update 6: 61 < 0* +1oVo L}
16: end while

After preprocessing, the MNIST contains 10 classes of 784-
dimensional training samples and each class has 7000 sam-
ples. STL-10 contains 10 classes of 2048-dimensional train-
ing samples, where each class has 1300 samples. Reuters
has 4 classes containing 10000 samples with 2000 dimen-
sionality, and the HHAR contains 10200 samples belong-
ing to 6 classes, and each sample is represented as a 561-
dimensional vector.

Baselines: Three kinds of methods are adopted as base-
lines, including traditional methods: MCMC [I] and
VI [4]; the state-of-art VAE based deep clustering methods:
VaDE [21], LTVAE [31] and DGG [49] (where DGG con-
siders local structure by pre-constructing the nearest neigh-
bor graph for input data points); nonparametric deep amor-
tized clustering methods: DAC [29], NCP [39].
Evaluation Metrics: Two evaluation metrics are
adopted. One is internal evaluation, Davies-Bouldin Index
(DBI) [10]: DBI = = 3% max;z, ((ar + a;)/d(ck, c;))
where c¢;, is the centroid of the k-th cluster, a;, is the aver-
age distance of all elements in cluster & to centroid cy. d(-)
is cosine similarity. Smaller DBI value indicates better per-
formance. The other is external evaluation, clustering accu-
racy (ACC): ACC = maxmem %]l{yi = m(y(x:))} where
N is the total number of data samples, y; is the ground-truth
label that corresponds to that x; sample, §(x;) is the cluster
assignment obtained by the model, and m ranges over the
set M of all possible one-to-one mappings between cluster
assignments and labels. Larger ACC value indicates better
performance.

Parameters: The encoder-decoder structure is used for
the data generation-based VAE methods (VaDE, LTVAE,
DGG).Each encoder network uses five dense layers with
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Table 1. Clustering performance on synthetic 2D MoG

Metrics MCMC VI DAC NCP  CHiGa

DBI 0.0313  0.0426 0.0367 0.0551 0.0218

sl ACC 0.9566  0.9432 0.9623 0.9531 0.9698
Time[s] 0.053 0.033 0.012 0.034 0.006

DBI 0.0554 0.0827 0.0761 0.0759  0.0512

52 ACC 09331 0.9244 0.9421 0.9233  0.9426
Time[s] 0.095 0.036 0.015 0.036 0.006
Training time[s] 5.223 2.116 2.423 4.644 2214

(a) Ground- (b) Epoch 5 (c) Epoch 13 (d)  Epoch (e) Epoch 21
truth 16
Figure 3. The cluster generative process of CHiGac on 2D MoG.

size D — 500 — 500 — 2000 — K and each decoder uses
five dense layers with sizes K — 2000 — 500 — 500 — D.
For DAC and NCP, the structure of network is the same as
the original paper. For CHiGac, we use a 1-D ConvNet as
feature extractor for datasets MNIST and STL-10 and multi-
layer perceptron for Reuters and HHAR. The ConvNet uses
a ResNet architecture [16] with 4 residual blocks. The size
of cluster representation (z* and m” is set as D; = 100.
The neural networks f(-), fo(-) and gg ;(-) are multilayer
perceptrons.

4.2. Clustering Performance on Synthetic Data

The first experiment was conducted on synthetic data
with arbitrary number of clusters. Thus, four existing
methods handling variable number of clusters, MCMC, VI,
DAC, and NCP, are used as baselines. The synthetic data
is generated via a 2D mixture of Gaussian (MoG). Among
them, the training set contains 200 samples belonging to 4
clusters. Two testing scenarios (s/ and s2) are constructed
to evaluate the effectiveness of the proposed method. The
testing set in s/ has the same configuration (200 samples
and 4 clusters) as training set, while s2 contains different
numbers of samples and clusters (400 samples and 6 clus-
ters) in order to verify whether the clustering method can
generalize to the unseen clusters.

Table 1 summarizes the results.As expected, the pro-
posed CHiGac consistently outperforms baselines on both
s and s2. Although s2 is more challenging, CHiGac can
capture cluster uncertainty and obtain the best results. For
training stage, optimization-based (VI, DAC, CHiGa) meth-
ods are obviously faster than the sampling based methods
(MCMC, NCP). In testing stage, the amortized clustering
methods (DAC, NCP, CHiGac) are superior to the tradi-
tional methods (MCMC, VI). Further, we demonstrate the
cluster-wise generation process by plotting the clustering
results in the corresponding epochs. As shown in Fig-
ure 3, CHiGac has ability to automatically determine the

true number of clusters without any prior.
4.3. Clustering Performance on Real-world Data

In Table 2, we depict the quantitative clustering results
over four real-world benchmarks, compared to five popular
deep clustering methods with state-of-the-art performance.
The best and second results are marked in bold and under-
lined. The average clustering results are recorded over 10
training sessions with different random parameter initial-
ization. It can be seen that our CHiGac outperforms all
baselines in terms of both internal and external evaluation
metrics. The main reason, we believe, is that CHiGac not
only exploits amortized properties between data points in
both inter- and intra-clusters, but also has flexible generative
process, which simultaneously emphasizes the superiority
of variational generative framework (VaDE, LTVAE, DGG)
and amortized inference (DAC, NCP). The baseline, DGG,
achieves a competitive performance since it exploits the ad-
ditional local graph information and is trained in a self-
supervised manner, which is time-consuming because lo-
cal graph among all points has to be pre-computed. For the
propsed CHiGac, it has ability to mine both local and global
interactions with the aid of dedicated cluster generative pro-
cess, thus it outperforms DGG even without extral informa-
tion. DAC and CHiGac outperform other methods on com-
putational time by a large margin, because DAC identifies
each cluster after one forward pass and CHiGac generates
clusters rather points. However, DAC is pretty worse than
the proposed CHiGac on clustering performance.

Among amortized clustering methods, DAC, NCP and
CHiGac are able to process arbitrary number of clusters.
A digit subset from MNIST testing set is randomly sam-
pled. To illustrate how the clustering models capture the
shape ambiguity of some of the digits, we plot the ground-
truth digit clusters and clustering results (obtained by DAC,
NCP and CHiGac respectively) in Figure 4. Comparing
with DAC and NCP, our method can get the most accu-
rate results. For example, DAC assigns the digit 7 (with
similar appearance to 9) to cluster 9, and NCP generates a
new cluster for it. Fortunately, CHiGac correctly assigns
it to cluster 7. Furthermore, we demonstrate the selected
pioneer data points of each cluster for MNIST and STL-10
datasets in Figure 5. It can be seen that these selected points
have unique characteristics of their corresponding clusters,
which will further leverage the cluster generation process.
4.4. Inference Optimization Analysis

In order to investigate the convergence property of the
proposed ergodic amortized inference (EAI) method, we
compare it with several popular amortized inference meth-
ods on constructing the CHiGac model, including amor-
tized inference (AI) [23], semi-amortized inference (Semi-
AI) [22], iterative amortized inference (IAI) [34], stochas-
tic variational inference-amortized inference (SVI-AI) [25]
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Table 2. Comparing clustering performance (DBI and ACC) on four real-world datasets.

MNIST STL-10 Reuters HHAR
Method DBI ACC Time[s] DBI ACC Time[s] DBI ACC Time[s] DBI ACC Time[s]
VaDE 0.4354  0.9446 43.62 1.2306  0.8545 36.33 1.1630 0.7984 26.44 1.6921 0.8446 17.33
LTVAE | 1.5946 0.8630 56.33 0.4412  0.9006 52.34 1.1046  0.8096 35.67 1.5522  0.8500 23.46
DGG 0.2394  0.9758 63.46 0.4728 0.9059 57.34 1.0613  0.8230 39.56 0.3602  0.8904 24.56
DAC 0.2578  0.9596 24.33 0.8474  0.8822 23.56 1.1063  0.8033 16.37 1.7163  0.8452 13.44
NCP 0.2525 0.9633 73.34 0.8160 0.8959 77.35 1.2740  0.8069 45.81 1.6806 0.8441 36.79
CHiGac | 0.2327 0.9796 22.56 0.4364 0.9123 21.66 1.0582 0.8285 17.44 0.3487 0.9076 15.33

The standard deviations (stds) of DBI are around 0.01 or 0.02 for all methods and stds of ACC are around 0.1.

LRI D ICEEEEEEE A LT E RN EE NG IR
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Figure 4. Clustering results on MNIST datasets. The first line is ground-truth dataset and clusters are separated by boxes. The results
obtained by DAC, NCP and CHiGac are listed from the second line to forth line.

ol 1]2]2]4mespieel 1
BOAHBA EREEE

Table 4. Comparing inference optimization performance for CHi-

Gac model on MNIST dataset.

Method | Log-likelihood ELBO Reconstruction
Al -2253.54 -2267.45 2266.76
(a) MNIST (b) STL-10 Semi-Al -2051.21 -2065.34 2063.45
Figure 5. Illustration of the selected pioneer points for each cluster IAI -1998.44 -2005.47 2004.44
of MNIST and STL-10. SVI-AI -1985.66 -1996.33 1992.33
EAI -1933.27 -1945.92 1923.55
Table 3. Clustering performance comparisons among amortized Ierations
inference methods on CHiGac for MNIST and STL-10 datasets. oo AR IR AR AR AR RS
MNIST STL-10 o
Method | DBl  ACC | DBI  ACC
Al 0.2357 09769 | 0.4406 0.9102 oo
Semi-AI | 0.2389 0.9773 | 0.4412 09114 000 S
IAI 0.2347 0.9773 | 0.4388 09116 2500
SVI-AI | 0.2377 09767 | 04374 0.9109 oA e T e =
EAI 0.2327 09796 | 0.4364 0.9123 Figure 6. Comparing Log-likelihood of CHiGac versus iterations

and our ergodic amortized inference (EAI). Table 3 lists the
clustering results on two image datasets. Obviously, im-
proved amortized inference methods work better than the
traditional amortized inference (Al). As expected, the pro-
posed EAI obtains the best performance. This is because it
considers the whole variational parameter trajectory which
contains more optimization information.

Table 4 shows the optimal Log-likelihood, evidence
lower-bound (ELBO), and Reconstruction error of CHi-
Gac with different strategies (Al, Semi-Al, IAI, SVI-AI)
on MNIST dataset. Obviously, EAI performs best because
it iteratively refines the proposal distribution during amor-
tized inference process. Meanwhile, Figure 6 demonstrates
the Log-likelihood versus iterations, which further confirms
that EAI method has ability to obtain a tighter bound for
log-likelihood than other amortized inference methods.

on MNIST dataset.

5. Conclusions

In this paper, we proposed Cluster-wise Hierarchical
Generative Model for deep amortized clustering (CHiGac).
It targets on learning to cluster from data without specify-
ing the number of clusters. The proposed ergodic amortized
inference method brings a tighter bound for CHiGac gener-
ative model and achieves more accurate clustering results.
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