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Abstract

Generative adversarial networks (GANs), e.g., Style-

GAN2, play a vital role in various image generation and

synthesis tasks, yet their notoriously high computational

cost hinders their efficient deployment on edge devices.

Directly applying generic compression approaches yields

poor results on GANs, which motivates a number of re-

cent GAN compression works. While prior works mainly

accelerate conditional GANs, e.g., pix2pix and Cycle-

GAN, compressing state-of-the-art unconditional GANs has

rarely been explored and is more challenging. In this pa-

per, we propose novel approaches for unconditional GAN

compression. We first introduce effective channel pruning

and knowledge distillation schemes specialized for uncon-

ditional GANs. We then propose a novel content-aware

method to guide the processes of both pruning and distil-

lation. With content-awareness, we can effectively prune

channels that are unimportant to the contents of interest,

e.g., human faces, and focus our distillation on these re-

gions, which significantly enhances the distillation qual-

ity. On StyleGAN2 and SN-GAN, we achieve a substantial

improvement over the state-of-the-art compression method.

Notably, we reduce the FLOPs of StyleGAN2 by 11× with

visually negligible image quality loss compared to the full-

size model. More interestingly, when applied to various

image manipulation tasks, our compressed model forms a

smoother and better disentangled latent manifold, making

it more effective for image editing.

1. Introduction

Generative adversarial networks (GANs) [16] are the

leading model for several crucial computer vision tasks like

image generation [7, 30] and image editing [3, 4, 18, 47].

Due to their growing popularity and convincing perfor-

mance, there is an increasing interest in deploying them

on edge devices like mobile phones. However, state-of-the-

art GANs often require large storage space, high computa-

tional cost, and great memory utility, which disallows them

for efficient deployment. For example, StyleGAN2 [30] re-

quires 45.1B/74.3B FLOPs to generate a 256px/1024px im-

age, around 150×/250× more than MobileNet [43].

A number of network compression techniques have been

developed for classification models, including weight quan-

tization [12, 26], network pruning [17, 24, 34, 55], and

knowledge distillation [22, 41]. Nonetheless, these meth-

ods are not directly applicable for GANs. For example, al-

though removing channels with low activations [24] is ef-

fective for classifier compression, we find it not better than

training a smaller GAN from scratch (Tab. 1).

As such, several specialized GAN compression mecha-

nisms are introduced to learn efficient GAN models with

the techniques of channel pruning and knowledge distilla-

tion [45, 10, 48, 8, 35]. For example, Wang et al. [48] pro-

pose GAN-Slimming (GS), which unifies losses of channel

pruning and knowledge distillation and achieves the state-

of-the-art compression results. However, these methods

mainly target on conditional GANs (pix2pix [25], Cycle-

GAN [58], etc.) compression, and there is little study to

compress unconditional GANs (StyleGAN2, etc.). While

conditional GANs normally have paired training data and

perform translation from images to images, unconditional

GANs are trained under completely unpaired setting and

have much different source domains (white noises), which

adds extra challenges for the compression. Therefore,

a redesign of channel pruning and knowledge distillation

schemes is required for effective unconditional GAN com-

pression. In addition, these works also miss a significant

trait of GANs that the output of GANs are images with

strong spatial correlation and meaningful semantic con-

tents. While they prune channels by weights norm or scal-

ing factors and distill images over all spatial locations, they

pay no attention on the generated contents and just treat out-

put images as normal 3D tensors.

To combat these issues, we propose novel approaches to

effectively compress unconditional GANs. We first develop

an effective pruning metric to remove redundant channels

and explore several distillation losses for unconditional

GANs compression. Different from prior works [10, 8, 35,

48] where either a norm-based loss or a perceptual loss is

used for knowledge distillation, we find that a combination
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Figure 1: We demonstrate the advantage of our compression approach on StyleGAN2 over two baseline methods: (1)

a conventional classification compression (Class. Comp.) approach with low activation based channel pruning [24] and

norm-based knowledge distillation [41]. (2) the state-of-the-art GAN compression method, GAN-Slimming [48] (GS). Left:

Images generated by full-size model and three compression approaches. Our results show the least artifacts and the best

distillation quality. Right: Model statistics for three compression schemes. Our model achieves the best FID performance

with the highest FLOPs acceleration ratio from the full-size model compared to two baseline methods.

of these losses improves GAN compression results. With

our new pruning and distillation scheme, we achieve a ma-

jor improvement in quantitative measurements over GS.

We then make the first attempt of leveraging the seman-

tic contents in the generated images to guide the GAN com-

pression process of both pruning and distillation. Specif-

ically, we leverage a content-parsing network to identify

contents of interest (COI), a set of spatial locations with

salient semantic concepts, within the generated images. We

design a content-aware pruning metric to remove channels

that are least sensitive to COI in the generated images. For

knowledge distillation, we focus our distillation region only

to COI of the teacher’s outputs which further enhances tar-

get contents’ distillation. The advantage of the content-

aware scheme over conventional method is not only demon-

strated by a clear improvement in numerical statistics, but

also visually explained in Fig. 7 and 9. Compared to a clas-

sification compression approach and GS, our compressed

model enjoys better generation quality and higher computa-

tional acceleration, as shown in Fig. 1.

Our contributions are four-fold: (1) We develop a

new framework of channel pruning and knowledge dis-

tillation for unconditional GANs compression, which

achieves a clear improvement over prior methods quanti-

tatively. (2) We propose a novel content-aware compres-

sion paradigm, which leverages generated contents to guide

the process of pruning and distillation. Such a scheme fur-

ther enhances both visual quality and numerical statistics

of the compressed generators. (3) Compared to the state-

of-the-art GAN compression method, GAN-Slimming [48],

our method shows a major advancement in image gen-

eration, embedding, and editing on SN-GAN and Style-

GAN2. (4) We find that our compressed generators not only

have a better resource-performance tradeoff, but also own

a smoother latent space manifold compared to the uncom-

pressed model, which is beneficial to image editing tasks.

2. Related Work

Network Compression. To accelerate a classification

network, researchers have developed techniques of weight

quantization [12, 40], tensor factorization [27, 33], and net-

work pruning [17, 34, 24, 38, 19, 55, 50, 20]. Among the

network pruning approaches, a common method is to re-

move channels with lower activations [24] or smaller in-

coming weights [34, 19]. For instance, [24] removes chan-

nels with low activations by averaging their percentage of

zeros, and [34, 19] use the ℓ1-norm of channels’ incoming

weights as saliency metric. However, simply applying [24]

for GANs pruning would achieve merely the same perfor-

mance as training from scratch. Therefore, a more specific

approach to identify redundancy in GANs is needed.

Knowledge Distillation. The idea of knowledge dis-

tillation is pioneered by Hinton et al. [22] to allow a stu-

dent classifier to mimic the output of its teacher. Romero et

al. [41] later propose FitNets which additionally learns from

teacher model’s intermediate representation. While norm-

based distillation scheme is widely used in distilling recog-

nition models [51, 9, 36, 11] and has been tried on small

GANs [5], applying it on the state-of-the-art unconditional

GAN would result in an inferior distillation performance.

Thus, a better design of knowledge distillation is required.

Content Awareness. In addition to model compres-

sion, our work is also related to image saliency/content

detection [57, 44, 23, 49, 56] and semantic segmenta-

tion [6, 52, 15], which use deep networks to extract spatial

information in images. Zhou et al. [57] propose a class acti-

vation mapping (CAM) mechanism, enabling a network to

localize class-specific image regions. This method is gen-

eralized in [44] to more network structures and more visual

tasks. Yu et al. [52] introduce BiSeNet for image segmen-

tation and is adopted for human face parsing1.

1https://github.com/zllrunning/face-parsing.PyTorch
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While the notion of content awareness has been applied

for image/video compression [59, 13], it was rarely used

under the context of network compression. Zagoruyko et

al. [53] propose an attention transfer scheme to distill the

hidden layers of a student classification network. How-

ever, rather than doing a more focused distillation solely

on the generated contents as in our proposal, they just

treat the attention map as an additional feature map and

ask the student to match this map in all spatial locations.

While their method is only applied on classifiers’ distilla-

tion, our content-aware scheme is designed for more chal-

lenging generative models and uses the image contents to

guide both processes of pruning and distillation.

GAN Compression. A number of GAN compression

works [45, 8, 10, 35, 48, 48] have been developed to address

the issue of efficient GAN deployment, mainly by prun-

ing and distillation. While [45] only uses channel pruning

and [8, 10] use knowledge distillation singly, [35, 48] com-

bine both techniques to enhance compression efficacy. In

particular, Li et al. [35] select channels with large incom-

ing weights and distill knowledge with a norm-based loss.

Wang et al. [48] propose a novel GAN-Slimming (GS) ap-

proach, where they impose sparsity constraint on scaling

factors for pruning and leverage a style transfer loss [28]

for distillation together, with a quantization option.

Although GS achieves state-of-the-art performance on

conditional GAN compression, directly applying it to un-

conditional GANs, such as StyleGAN2, shows sub-optimal

results (Tab. 4). Hence, we propose a different pruning

metric as in [35, 48] and a different knowledge distilla-

tion scheme, which leverages both norm-based loss and

perceptual loss for distillation, rather than using a single

loss [35, 48]. With them, we advance GS on several com-

pression tasks. We then initiate a novel content-aware com-

pression strategy for both pruning and distillation, which

further improves model’s quantitative measurement. Not

surprisingly, this enhances the visual quality of both gen-

erated and edited images, especially for the contents of in-

terest region. To the best of our knowledge, we are the first

one to leverage content awareness in GAN compression.

3. Methodology

An unconditional noise-to-image GAN G maps random

noises from domain Z to the real world images, I. We aim

to learn a compact and efficient generator G′ such that: (1)

their generated images {G(z), z ∈ Z} and {G′(z), z ∈ Z}
have similar visual quality; (2) their embeddings of the real

world images {Proj(G, I), I ∈ I}, {Proj(G′, I), I ∈ I}
are similar. Specifically, we leverage the techniques of

channel pruning and knowledge distillation, where we in-

corporate content awareness into both processes.

Figure 2: The content-aware pruning metric with a forward

and backward path to identify informative channels.

3.1. Channel Pruning

3.1.1 Weight-Based Pruning

Let W ∈ R
nin×nout×h×w denote the convolutional kernel

of a layer in G and we aim to quantitate the importance of

the ith channel, Ci. Unlike Li et al. [35] which uses ℓ1-

norm of Ci’s incoming weights, we find that ℓ1-norm of

Ci’s outgoing weights is a better saliency indicator (shown

in Fig. 7 and 8), and denote the quantity as ℓ1-out:

ℓ1-out(Ci) = ||Wi||1,Wi ∈ R
nout×h×w (1)

The channels with a high ℓ1-out are more informative, while

the ones with lower values are redundant.

3.1.2 Content-Aware Pruning

To make the pruned model retain more information on the

content of interest, we further develop a content-aware ver-

sion of ℓ1-out (named CA-ℓ1-out), which is shown in Fig. 2

with a forward path and a backward path.

In the forward path, we first feedforward a latent vari-

able z ∈ Z to G and obtain the generated image G(z) ∈
R

H×W×3. We then run a content-parsing neural net-

work Netp on G(z), which returns a content-mask m ∈
R

H×W ,mh,w ∈ {0, 1}, where COI = {(h,w)|mh,w = 1}
denotes the content of interest in the generated image G(z).

For the backward path, we first add a random image

noise N only on COI of G(z) to obtain a COI-noisy

images GN (z). A differentiable loss LCA(G(z), GN (z))
is then constructed between the original image G(z) and

the COI-noisy images GN (z). We then back-propagate

LCA(G(z), GN (z)) to the network’s convolution kernel W

and get its gradient ∇g ∈ R
nin×nout×h×w.

Such a forward-backward procedure is iterated with mul-

tiple samples z to derive the expectation of the content-

aware gradient E[∇g]. Finally, we measure the ℓ1-norm

of each channel’s outgoing filters’ gradient as the saliency

indicator and denote it as CA-ℓ1-out:

CA-ℓ1-out(Ci) = ||E[∇g]i||1, E[∇g]i ∈ R
nout×h×w

(2)
Intuitively, channels with larger CA-ℓ1-out are more sensi-

tive to COI of the generated images and shall be kept in the
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Figure 3: Our content-aware knowledge distillation (CA-

KD) scheme, where the minmax GAN loss is applied on

the pruned model’s generated images while the knowledge

distillation loss is imposed on the content-masked images

from the full-size teacher and pruned student.

pruning process. Such a content-aware metric selects more

informative channels, as shown in Fig. 7 and 8.

3.2. Knowledge Distillation

3.2.1 Pixel-Level Distillation

Intuitively, we can impose losses to reduce the norm-

difference between the activations and outputs of G′ and G.

Based on where the distillation losses are inserted, we can

categorize the norm-based distillation loss into two types:

output only distillation and intermediate distillation. For

output only distillation, we construct our loss as:

Lnorm
KD = Ez∈Z [||G(z), G′(z)||1] (3)

We can also do intermediate distillation as:

Lnorm
KD =

T∑

t=1

Ez∈Z [||Gt(z), ft(G
′
t(z))||1], (4)

where Gt(z) /G′
t(z) are the intermediate activations of layer

t and GT (z)/G
′
T (z) are the output images. ft is a linear

transform to match the depth dimension of the activations.

3.2.2 Image-Level Distillation

Apart from learning low-level details from the teacher, we

also want the student to generate perceptually similar out-

puts. To achieve this, we adopt neural network based per-

ceptual metrics. Unlike GAN-Slimming [48], which uses

a style transfer loss [28] for distillation, we propose to use

LPIPS [54] as our perceptual distillation loss, which mea-

sures the perceptual distance between output images from

two generators:

Lper
KD = Ez∈Z [LPIPS(G(z), G′(z))] (5)

In our experiments, we find that LPIPS is a better than [28]

for unconditional GAN compression.

3.2.3 Content-Aware Distillation

Similar to pruning, we introduce content-awareness to

knowledge distillation as shown in Fig. 3, where we focus

our distillation on specific contents. We first feedforward a

latent variable z to obtain both networks’ generated images,

G(z) and G′(z). Then, we run the content-parsing network

Netp on G(z) and get its content mask m. Based on COI

of m, we compute two masked images, G(z)m = G(z)⊙m

and G′(z)m = G′(z) ⊙ m, where ⊙ denotes the element-

wise multiplication in images’ spatial domain. Under this

scheme, LGAN will be imposed on the unmasked gener-

ated image of the pruned network, G′(z), while the distil-

lation loss for the output images are measured between the

masked images G(z)m and G′(z)m. Such a content-aware

scheme allows a more attentive distillation for the generated

contents, as evidenced in Fig. 9.

3.2.4 Training Objectives

In summary, our training loss for the pruned generator G′

can finally be formulated as:

L = LGAN + λLnorm
KD + γLper

KD (6)

where LGAN is the minmax objective for GAN training,

and λ and γ are the weights for the knowledge distillation

losses. Unlike prior works [35, 48] singly uses either pixel-

level distillation loss Lnorm
KD or image-level distillation loss

Lper
KD, we find that it is necessary to combine both of them

for an enhanced distillation performance. Moreover, apply-

ing Lnorm
KD and Lper

KD under the content-aware scheme fur-

ther improves distillation quality.

For LGAN , we derive the student generator G′ by prun-

ing G, while initializing the student discriminator D′ with

the same architecture and pre-trained weights as teacher dis-

criminator D. We fine-tune both G′ and D′ by a standard

minmax optimization scheme [16].

4. Experimental Results

We carry out compression experiments on models with

different computation budgets and datasets with diverse im-

age resolutions to show the general effectiveness of our ap-

proach. Specifically, we investigate into the following tasks:

SN-GAN [39] on CIFAR-10 [31] at 32px, StyleGAN2 [30]

on FFHQ dataset [29] at 256px and at 1024px.

4.1. Evaluation Metrics

We use the following five quantitative metrics to evaluate

the image generation and image projection performance of

a GAN: Inception Score (IS) [42], Fréchet Inception Dis-

tance (FID) [21], Perceptual Path Length (PPL) [29], and

PSNR/LPIPS between real and projected images.

Inception Score.2 IS is proposed to measure the clas-

sification quality of the generated images. Specifically, it

awards high scores to a generator whose generated images

2We use https://github.com/tsc2017/Inception-Score
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Figure 4: Image projection evaluation. We measure the

PSNR/LPIPS for the pair of real and projected images, as

well as their content-aware masked images.

could be classified by an inception classifier [46] with high

confidence while having a diverse label distribution.

Fréchet Inception Distance.3 FID quantitates the sim-

ilarity between the synthetic images from a generator and

the real-world images. It is computed by feed-forwarding

two sets of images to an inception network followed by

a Fréchet Distance [14] measurement between their corre-

sponding activation features.

Perceptual Path Length. PPL is proposed to measure

the smoothness of a StyleGAN’s latent space [29]. It is de-

rived by calculating the LPIPS distance between two images

generated by a pair of little-perturbed latent codes. Our PPL

implementation has two slight modifications from [29]: (1)

instead of using a reimplemented LPIPS in TensorFlow [2],

we use the original LPIPS implementation4; (2) we fix the

perturbation factor ǫ = 10−4, and drop the scaling term 1

ǫ2

to make the score more intuitive.

Image Projection. Our image projection evaluation

method is shown in Fig. 4. We sample 55 real human

face images from Helen [32] (not appeared in any training

dataset) with various lighting conditions, genders, ethnici-

ties, and ages, and name the dataset as Helen-Set55, shown

in the Supplementary. We run an L-BFGS optimizer [37]

with 200 iterations to find a real image’s latent code in a

StyleGAN2. We feed-forward this latent code and obtain a

projected image. We average LPIPS and PSNR for all pairs

of Helen-Set55 images and projected images.

Moreover, in many image editing applications [1], we

mostly care about the projection quality of the content of

interest region. Thus, we further propose a content-aware

projection evaluation scheme, where we measure the PSNR

and LPIPS between the content-aware masked real and pro-

jected images, denoted as CA-PSNR and CA-LPIPS.

4.2. Pruning Effectiveness

We first examine the effectiveness of our channel prun-

ing metric on a 256px StyleGAN2. Given a pretrained

generator, we uniformly remove 30% of channels from

each layer by ℓ1-out or other metrics. Three baselines

are included to show our effectiveness: (1) training from

scratch by keeping the pruned network structure while

3We use https://github.com/mseitzer/pytorch-fid
4https://github.com/richzhang/PerceptualSimilarity

Model Image Size FLOPs FID (↓)

Original Full-Size 256 45.1B 4.5

Compressed Models

Low-Act Pruning [24] 256 22.3B 7.9

Training from Scratch 256 22.3B 8.1

Random Pruning 256 22.3B 6.2

ℓ1-out Pruning 256 22.3B 5.4

Table 1: Pruning metric effectiveness investigation. We use

FID (the lower the better) to compare ℓ1-out pruning with

three other baselines.

re-initializing the weights; (2) a conventional classifica-

tion pruning method, to remove channels with low activa-

tions5 [24]; (3) random pruning. These pruned networks are

then fine-tuned by the vanilla training loss, LGAN , where

the discriminators see 2.9M real examples in total.

As shown in Tab. 1, the low-act pruned model has merely

the same FID as training from scratch, even worse than ran-

dom pruning. This indicates that directly applying classifi-

cation pruning metric can fail on GAN compression. More-

over, we find that the ℓ1-out pruned generator has an only

0.9 FID loss from the full-size model with 50% less FLOPs,

and it achieves the best FID among compared methods.

4.3. Knowledge Distillation Schemes

We then analyze the effectiveness of different knowl-

edge distillation losses under a high acceleration ratio. We

use ℓ1-out to uniformly remove 80% of channels from each

layer of a full-size StyleGAN2, resulting in an 25× FLOPs-

accelerated generator. We then retrain the pruned model

with 4.3M real examples by six combinations of distillation

losses, which are specified by λ, γ, and the type of norm-

based distillation. Moreover, we include the VGG style

transfer loss [28] used in GAN-Slimming distillation [48]

for our comparison. For intermediate distillation, we choose

the outputs of the to rgb modules to construct the loss in

Eqn. 3. As the depth dimension of to rgb outputs are al-

ways 3, we can fix ft(x) = x.

As shown in Tab. 2, the VGG style transfer loss yields

inferior results to LPIPS which suggests the need for re-

design distillation loss for unconditional GANs compres-

sion. Moreover, the output only Lnorm
KD + LPIPS Lper

KD dis-

tillation scheme achieves the best quantitative results for

both image generation projection: (1) it achieves the best

FID score of 12.5 which has an FID improvement of 2.6

over the no KD scheme. (2) it achieves the best image pro-

jection results with a PSNR of 31.03 and LPIPS of 0.170.

Such results are interesting that: (1) rather than prior work

which only adopts a single loss distillation scheme [35, 48],

we find that it is necessary to distill knowledge both at the

pixel-level and image-level for enhanced results; (2) while

5Rather than counting average percentage of zeros, we choose to mea-

sure activations’ ℓ1-norm to remove low activation maps, as the activation

function in StyleGAN2 is leaky ReLU, not ReLU.
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Model Image Size Lnorm
KD

Type λ L
per

KD
Type γ FLOPs FID (↓) PSNR (↑) LPIPS (↓)

Original Full-Size 256 - - - - 45.1B 4.5 32.02 0.113

Compressed Models

No KD 256 - - - - 1.9B 15.1 30.88 0.182

Lnorm
KD

Only 256 Output Only 3 - - 1.9B 14.2 30.79 0.186

Lnorm
KD

Only 256 Intermediate 3 - - 1.9B 14.4 30.78 0.187

L
per

KD
Only 256 - - VGG 3 1.9B 14.6 30.81 0.186

L
per

KD
Only 256 - - LPIPS 3 1.9B 13.6 30.91 0.177

Lnorm
KD

+ L
per

KD
256 Intermediate 3 LPIPS 3 1.9B 13.6 30.76 0.180

Lnorm
KD

+ L
per

KD
256 Output Only 3 LPIPS 3 1.9B 12.5 31.03 0.170

Table 2: Results of different knowledge distillation schemes.

Model Img Size FLOPs Param. IS (↑)

Ori. Full-Size 32 1.60B 4.27M 8.37±0.11

Compressed Models

GS [48] 32 1.11B 3.38M 8.01

Ours 32 0.83B 2.23M 8.36±0.12

Ours-CA 32 0.83B 2.23M 8.36±0.08

GS [48] 32 0.51B 2.19M 7.65

Ours 32 0.42B 1.20M 8.21±0.11

Ours-CA 32 0.42B 1.20M 8.31±0.08

Table 3: Comparison to the state-of-the-art method, GAN-

Slimming, with SN-GAN on CIFAR-10.

distilling the knowledge in the intermediate features im-

proves conditional GAN’s performance [35], it does not

help for the case of unconditional GAN like StyleGAN2.

We regard the output only Lnorm
KD + LPIPS Lper

KD as our

best KD loss which are used in the following experiments.

4.4. Comparison to the State of the Art

To further demonstrate the effectiveness of our approach,

we compare our scheme with the state-of-the-art GAN com-

pression method, GAN Slimming (GS) [48]. The results are

summarized in Tab. 3 and 4, where we consistently outper-

form GS in all measurements.

4.4.1 Experimental Settings

We compare compressed models by three different ap-

proaches: Ours, Ours-CA and GS.

Ours. We use ℓ1-out for channel pruning with the best

KD loss in Sec. 4.3 for fine-tuning. We set λ = 3 and γ = 3.

Ours-CA. We use CA-ℓ1-out as the pruning metric

and apply the best KD loss with content-aware distillation

(Fig. 3). On CIFAR-10, we use the class activation mapping

(CAM) [57] to detect generated images’ COI . For FFHQ,

we use a BiSetNet [52] to parse human faces. The COI is

the entire human face, i.e., excluding the clothes and the im-

age background. For CA-ℓ1-out, we use the salt-and-pepper

noise as N , and use an ℓ1-loss for LCA. For content-aware

distillation, we use the same value for λ and γ.

GS. We use the numbers reported in the original paper

for the SN-GAN comparison. As GS has not been applied

to StyleGAN2 in the previous work, we make our own im-

plementation following their three-step method: (1) fine-

tune the full-size network with a combination of a minmax

GAN loss, an ℓ1 sparsity loss on scaling factors, and a VGG

distillation loss [28]; (2) remove channels with zero scaling

factors in the tuned network; (3) fine-tune the pruned net-

work with the GAN loss and the VGG style transfer loss.

On SN-GAN, our discriminator sees 1.6M images in the

fine-tuning process. On StyleGAN2, the discriminators in

both our scheme and GS see the same number of images,

7.5M, ensuring the fairness for the comparison. Extra ex-

periment details are included in the Supplementary.

4.4.2 Results

On SN-GAN, both of our compressed models have no IS

loss at 2× acceleration with around 0.35 IS gain over GS,

as shown in Tab. 3. At 4× acceleration level, our method

is even more promising: while Ours has a 0.56 IS increase

compared to GS, Ours-CA can further improve Ours by

0.1 on IS. Such results clearly show the advantage of our

content-aware GAN compression scheme.

On 256px StyleGAN2, Ours enjoys an 11× accelera-

tion from the full-size model and achieves 3.5 FID gain

over the 9×-accelerated GS model, shown in Tab. 4. Ours-

CA further improves Ours by 1.0 on FID and advances the

projection performance, especially for the COI projection

measured by CA-PSNR/CA-LPIPS. We also note Ours-

CA achieves a much lower PPL compared to GS, and even

smaller than that of the full-size model. This indicates that

our content-aware GAN compression scheme can not only

improve model’s efficiency, but also the smoothness of its

latent space. This PPL improvement is further examplified

by visual evidence in Fig. 5 and 6.

At 1024px resolution, we can only obtain a 3.1×-

accelerated generator by GS where overpruning would not

guarantee the generator to converge in the learning process.

With 3.4× acceleration over GS, Ours/Ours-CA enjoy an

FID improvement of 2.0/2.5 and better image projection

performance. Ours-CA again achieve the best performance

in image generation and image projection.

4.5. Image Editing

We further demonstrate the benefit of our content-aware

compressed StyleGAN2 for editing tasks of style mixing,

latent space image morphing, and a recent proposed tech-
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Model Image Size FLOPs FID(↓) PPL(↓) PSNR(↑) LPIPS(↓) CA-PSNR(↑) CA-LPIPS(↓)

Original Full-Size 256 45.1B 4.5 0.162 32.02 0.113 33.03 0.076

Compressed Models

GS [48] (Our Impl.) 256 5.0B 12.4 0.313 31.02 0.177 32.39 0.117

Ours 256 4.1B 8.9 0.145 31.37 0.149 32.67 0.099

Ours-CA 256 4.1B 7.9 0.143 31.41 0.144 32.75 0.096

Original Full-Size 1024 74.3B 2.7 0.162 31.38 0.149 32.67 0.096

Compressed Models

GS [48] (Our Impl.) 1024 23.9B 10.1 0.211 30.74 0.189 32.17 0.121

Ours 1024 7.0B 8.1 0.157 30.94 0.174 32.31 0.113

Ours-CA 1024 7.0B 7.6 0.157 30.96 0.170 32.33 0.111

Table 4: Comparison to the state-of-the-art method, GAN-Slimming, with 256px/1024px StyleGAN2 on FFHQ.

Figure 5: An example typifying the effectiveness of our compressed StyleGAN2 for image style-mixing and morphing. When

we mix middle styles from B, GS produces a blurred face with uneven skin texture while the original full-size model has a

significant identity loss. In contrast, our approach better preserves the person’s identity with less artifacts. We observe that

our morphed images have a smoother expression transition compared to GS’s in mouth and teeth, and our beard transition is

even better than the full-size model, substantiating our advantage in latent space smoothness.

nique, GANSpace [18]. More results are included in the

Supplementary.

Style Mixing and Morphing. Given two real world im-

ages, we run our image projection algorithm in Sec. 4.1 to

find their W+ embedding latent codes, followed by two ma-

nipulations of these codes [29, 3]: (1) crossover the codes

at layer l ∈ [1:L] for image style-mixing; (2) interpolate the

codes with parameter β ∈ [0, 1] for image morphing.

We show an example in Fig. 5 with a 256px model where

we set l ∈ {4, 8, 11} and β ∈ {0.25, 0.5, 0.75}. While

GS yields a number of artifacts (skin texture, hair, etc.)

for style-mixing, our model performs comparatively to the

full-size model in image quality and even preserves a better

identity (in middle style mixing). We find visual evidence

for our advantage of having a smoother latent space in the

morphed images, where our expression transition is much

smoother than GS in mouth and teeth and our beard transi-

tion is even better than the full-size model. This agrees well

with the fact that our model have a lower PPL score.

GANSpace Editing. We further deploy our compressed

1024px model for GANSpace [18] editing. Specifically, we

use PCA to find principle components of the W space, and

traverse a latent code in the direction of a component to

generate a sequence of images.

We show an example in in Fig. 6, where we use the same

latent code as in the original paper [18] and traverse it in

the direction of the first principal component, u0. While it

is claimed that u0 is a direction for gender editing, we find

that the full-size model also changes person’s age along u0.

The full-size model also produces artifacts at the chin of

the generated images at large deviation. In contrast, our

compressed model only changes the person’s gender and

generates more natural images at different variation scales.

This again visually indicates that our compressed model has

a smoother and more disentangled latent manifold.

5. Ablation Study

Pruning Effectiveness. We conduct a channel selec-

tion analysis on StyleGAN2 with 5 pruning metrics: low-
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Figure 6: A demonstration of more effective GANSpace

direction discovery with our compressed model. The direc-

tion is suggested for change of gender [18], yet the full-size

model also changes the age significantly along the direction.

In contrast, our compressed model retains the age and pro-

duces less artifact at large variation (σ = 2.0). These results

suggest that our GANSpace direction is more disentangled,

which indicates our latent space is more linearly separable.

Figure 7: Effectiveness of our pruning metrics. Left: An

image generated by full-size model. Right: Images gener-

ated by 8 pruned models (without retraining) varying layer

pruning ratios (rows) and pruning metrics (columns). We

find that both of our metrics ℓ1-out and CA-ℓ1-out achieves

much better visual quality than low-act [24] and ℓ1-in [35],

while CA-ℓ1-out enjoys the best perceptual performance.

act [24], ℓ1-in [35], random, ℓ1-out, and CA-ℓ1-out. Specif-

ically, we create 20 pruned models by pruning the original

full-size generators with these 5 metrics at 4 layer remove

ratios (10%, 20%, 30%, 40%) without fine-tuning.

We randomly sample a latent variable and obtain the out-

put images from the full-size model and the pruned models

as shown in Fig. 7. We can clearly find that pruning low-

activation (Col. 1) channels would distort the output im-

ages completely, and the prior conditional GAN compres-

sion metric, ℓ1-in (Col. 2), also fails to identify informative

channels. We find that CA-ℓ1-out (Col. 4) preserves the

most informative channels for image generation. We also

plot the FID scores of these pruned models in Fig. 8, which

correlates well with our visual judgement that CA-ℓ1-out

achieves the best performance.

Distillation Effectiveness. We further demonstrate the

advantage of our content-aware knowledge distillation (CA-

KD) scheme over the all spatial locations distillation (AS-

KD) method. As shown in Fig. 9, although the gener-

ated images from AS-KD might have similar backgrounds

and clothes to the full-size model, our CA-KD scheme

generates images with closer COI features (beard, eyes,

Figure 8: FID of pruned models obtained by different prun-

ing metrics at different pruning ratios. Left: FID in log

scale with low-act [24]. Right: FID in normal scale with-

out low-act. Our CA-ℓ1-out metric best identifies informa-

tive channels quantitatively.

Figure 9: Effectiveness of content-aware distillation (CA-

KD) scheme. Compared to all spatial locations distillation

(AS-KD), the model learned by the CA-KD has better iden-

tity preservation, more similar glasses, beard and eyes in the

content of interest region as its full-size teacher.

glasses, etc.) as its teacher. Such characteristic not only

improves model’s generation quality (FID), but also ex-

plains the enhancement in model’s image embedding qual-

ity (PSNR/LPIPS), especially for the COI region (CA-

PSNR/LPIPS), where it owns a much better distillation.

6. Conclusion

In this work, we propose a novel content-aware compres-

sion pipeline to learn efficient GANs. While prior works

mainly focus on conditional GANs compression, we study

a new approach of channel pruning and knowledge distil-

lation under the context of unconditional GANs, and fur-

ther introduce a content-aware version for both compres-

sion techniques. We carry out experiments on SN-GAN

and StyleGAN2 to show the effectiveness of our scheme,

where we outperform the state-of-the-art method on all

tasks. Moreover, our compressed models not only enjoy a

better resource-performance tradeoff compared to the full-

size one, but also owns an extra advantage of smoother la-

tent space manifold by numerical and visual evidences.
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