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Abstract

Multi-frame human pose estimation in complicated sit-

uations is challenging. Although state-of-the-art human

joints detectors have demonstrated remarkable results for

static images, their performances come short when we ap-

ply these models to video sequences. Prevalent shortcom-

ings include the failure to handle motion blur, video defo-

cus, or pose occlusions, arising from the inability in cap-

turing the temporal dependency among video frames. On

the other hand, directly employing conventional recurrent

neural networks incurs empirical difficulties in modeling

spatial contexts, especially for dealing with pose occlu-

sions. In this paper, we propose a novel multi-frame human

pose estimation framework, leveraging abundant temporal

cues between video frames to facilitate keypoint detection.

Three modular components are designed in our framework.

A Pose Temporal Merger encodes keypoint spatiotemporal

context to generate effective searching scopes while a Pose

Residual Fusion module computes weighted pose residu-

als in dual directions. These are then processed via our

Pose Correction Network for efficient refining of pose esti-

mations. Our method ranks No.1 in the Multi-frame Person

Pose Estimation Challenge on the large-scale benchmark

datasets PoseTrack2017 and PoseTrack2018. We have re-

leased our code, hoping to inspire future research.

1. Introduction

Human pose estimation is a fundamental problem in

computer vision, which aims at locating anatomical key-
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points (e.g., wrist, ankle, etc.) or body parts. It has enor-

mous applications in diverse domains such as security, vio-

lence detection, crowd riot scene identification, human be-

havior understanding, and action recognition [22]. Earlier

methods [40, 38, 48, 29] adopt the probabilistic graphical

model or the pictorial structure model. Recent methods

have built upon the success of deep convolutional neural

networks (CNNs) [5, 36, 41, 12, 27, 9, 25, 23, 24], achiev-

ing outstanding performance in this task. Unfortunately,

most of the recent state-of-the-art methods are designed for

static images, with greatly diminished performance when

handling video input.

In this paper, we focus on the problem of multi-person

pose estimation in video sequences. Conventional image-

based approaches disregard the temporal dependency and

geometric consistency across video frames. Dissevering

these additional cues results in failure cases when dealing

with challenging situations that inherently occurs in video

sequences such as motion blur, video defocus, or pose oc-

clusions. Effectively leveraging the temporal information in

video sequences is of great significance to facilitate pose es-

timation and often plays an indispensable role for detecting

heavily occluded or blurry joints.

A direct and intuitive approach to tackle this issue is to

employ recurrent neural networks (RNNs) such as Long-

Short Term Memory (LSTM), Gate Recurrent Unit (GRU)

or 3DCNNs to model geometric consistency as well as tem-

poral dependency across video frames. [25] uses convolu-

tional LSTM to capture temporal and spatial cues, and di-

rectly predicts the keypoint heatmap sequences for videos.

This RNN based approach is more effective when the hu-

man subjects are spatially sparse such as single-person

scenes with minimal occlusion. However, performance
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Figure 1. An illustration of our Pose Temporal Merger (PTM) net-

work. (a): Original video sequence in the datasets, and we aim

to detect poses in the current frame Fc. (b): Each person in

the original video sequence is assembled to a cropped clip and a

single-person joints detector gives preliminary estimations of key-

point heatmaps (illustrated for right wrist). (c)-left: Merged key-

point heatmaps for the right wrist, generated by our PTM network

through encoding the keypoint spatial contexts. The color inten-

sity encodes spatial aggregation. (c)-right: Zoomed-in view of the

merged keypoint heatmaps.

is severely hindered in the case of occlusion commonly

occurring in multi-person pose estimation and even self-

occlusion in the single-person case. [39] proposes a 3DHR-

Net (extension of HRNet [33] to include a temporal di-

mension) for extracting spatial and temporal features across

video frames to estimate pose sequences. This model has

shown excellent results particularly for adequately long du-

ration single-person sequences. Another line of work con-

siders fine-tuning the primary prediction with high confi-

dence keypoints from the adjacent frames. [31, 28] pro-

pose to compute the dense optical flow between every two

frames, and leverage the additional flow based representa-

tions to align the predictions. This approach is promising

when the optical flow can be computed precisely. However

in cases involving motion blur or defocus, the poor image

qualities lead to imprecise optical flows which translates to

performance drops.

To address the shortcomings of existing methods, we

propose to incorporate consecutive frames from dual tem-

poral directions to improve pose estimation in videos. Our

framework, termed Dual Consecutive network for pose es-

timation (DCPose), first encodes the spatial-temporal key-

point context into localized search scopes, computes pose

residuals, and subsequently refines the keypoint heatmap

estimations. Specifically, we design three task-specific

modules within the DCPose pipeline. 1) As illustrated

in Fig. 1, a Pose Temporal Merger (PTM) network per-

forms keypoints aggregation over a continuous video seg-

ment (e.g., three consecutive frames) with group convolu-

tion, thereby localizing the search range for the keypoint.

2) A Pose Residual Fusion (PRF) network is introduced

to efficiently obtain the pose residuals between the current

frame and adjacent frames. PRF computes inter-frame key-

point offsets by explicitly utilizing the temporal distance.

3) Finally, a Pose Correction Network (PCN) comprising

five parallel convolution layers with different dilation rates

is proposed for resampling keypoint heatmaps in the local-

ized search range.

It is worth mentioning that the architecture of our net-

work extends the successful PoseWarper architecture [3] in

three ways. (1) PoseWarper focuses on enabling effective

label propagation between frames, while we aim to refine

the pose estimation of current frame using the motion con-

text and temporal information from unlabeled neighboring

frames. (2) Information from two directions are utilized and

we explicitly consider weighted residuals between frames.

(3) Instead of applying the learned warping operation to a

heatmap from one adjacent frame, the new network fuses

together heatmaps from the adjacent frames and the current

frame.

To summarize, our key contributions are: 1) A novel dual

consecutive pose estimation framework is proposed. DC-

Pose effectively incorporates bidirectional temporal cues

across frames to facilitate the multi-person pose estimation

task in videos. 2) We design 3 modular networks within

DCPose to effectively utilise the temporal context: i) a

novel Pose Temporal Merger network for effectively ag-

gregating keypoint across frames and identifying a search

scope, ii) a Pose Residual Fusion network to efficiently

compute weighted pose residuals across frames, and iii)

a Pose Correction Network that updates the pose estima-

tion with the refined search scope and pose residual in-

formation. 3) Our method achieves state-of-the-art results

on PoseTrack2017 and PoseTrack2018 Multi-frame Person

Pose Estimation Challenge. To facilitate future research,

our source code is released at https://github.com/

Pose-Group/DCPose.

2. Related Work

2.1. Imaged Based Multi Person Pose Estimation

Earlier image-based human pose estimation works gen-

erally fall within a pictorial structure model paradigm, in

which the human body is represented as a tree-structured

model [40, 38, 48, 29] or a forest model [34, 10]. Despite
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Figure 2. Overall pipeline of our DCPose framework. The goal is to locate the keypoint positions for the current frame Fc. First,

an individual person i is assembled into an input sequence Clip
i
(p, c, n), and a HRNet backbone predicts initial keypoint heatmaps

hi(p),hi(c),hi(n). Our Pose Temporal Merger (PTM) and Pose Residual Fusion (PRF) networks work concurrently to obtain an effec-

tive search scope Φi(p, c, n) and pose residuals Ψi(p, c, n), respectively. These are then fed into our Pose Correction Network (PCN)

which refines the keypoint estimation for person i in Fc.

allowing for efficient inference, these approaches tend to

be insufficient in modeling complex relationships between

body parts, and this weakness is accentuated when temporal

information enters the picture. Recently, neural networks

based methods [20, 21, 35, 2, 7, 14, 46, 37, 32, 8, 50] have

been in the spotlight due to their superior performance in

various fields. One line of work [6] outputs skeletal joints

coordinates directly by regressing image features. Another

approach [27, 28] utilises probability heatmaps to represent

joints locations. Due to the reduced difficulty for optimiza-

tion, heatmap based pose estimation have since been widely

adopted. In general, these methods can be classified into

part-based framework (bottom-up) and two-step framework

(top-down). The bottom-up approach [5, 17, 18, 19] first

detects individual body parts, then assembles these con-

stituent parts into the entire person. [5] builds a bottom-up

pipeline and utilizes part affinity fields to capture pairwise

relationships between different body parts. Conversely, the

top-down approach [12, 43, 41, 33, 27, 26] first performs

person detection, then proceeds with single-person pose es-

timation on each individual. [41] proposes a sequential ar-

chitecture of convolutional pose machines, which follows

a strategy of iteratively refining the output of each network

stage. [12] designs a symmetric spatial transformer network

for extracting a high-quality single person region from an

inaccurate bounding box. A recent work in [33] proposes a

HRNet that performs multi-scale fusion to retain high reso-

lution feature maps. This improves spatial precision in key-

point heatmaps and achieves the state-of-the-art on several

image-based benchmarks.

2.2. Video Based Multi Person Pose Estimation

Directly applying the existing image-level methods to

video sequences produces unsatisfactory predictions, pri-

marily due to the failure to capture temporal dependency

among video frames. Consequently, these models fail

to handle motion blur, video defocus, or pose occlusions

which are frequently encountered in video inputs. [28, 31,

42] compute the dense optical flow between every consec-

utive frames with the flow representations providing addi-

tional cues for aligning predictions. However, motion blur,

defocus or occlusion occurrences hinder optical flow com-

putation and affect performance. [25] replaces the convolu-

tional pose machines in [41] with convolutional LSTMs for

modeling temporal information in addition to spatial con-

texts. A principal shortcoming of such an approach is being

severely impacted by occlusion. [3] proposes to learn an

effective video pose detector from sparsely labeled videos
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through a warping mechanism and has turned out to be

very successful, dominating the PoseTrack leaderboard for

a long time. [39] extends HRNet [33] with temporal con-

volutions and proposes 3DHRNet, which is successful in

handling pose estimation and tracking jointly.

3. Our Approach

The pipeline of our proposed DCPose is illustrated in

Fig. 2. To improve keypoint detection for the current frame

Fc, we make use of additional temporal information from

a previous frame Fp and a future frame Fn. Fp and Fn

are selected within a frame window [c − T, c + T ], where

p ∈ [c − T, c) and n ∈ (c, c + T ] respectively denote the

frame indices. The bounding boxes for individual persons

in Fc are first obtained by a human detector. Each bounding

box is enlarged by 25% and is further used to crop the same

person in Fp and Fn. Individual i in the video will thus be

composed of a cropped video segment, which we denote as

Clipi(p, c, n). Clipi(p, c, n) is then fed into a backbone

network that serves to output preliminary keypoint heatmap

estimations hi(p, c, n). The pose heatmaps hi(p, c, n) is

then processed in parallel through two modular networks,

Pose Temporal Merger (PTM) and Pose Residual Fusion

(PRF). PTM outputs Φi(p, c, n), which encodes the spa-

tial aggregation, and PRF computes Ψi(p, c, n), which cap-

tures pose residuals in two directions. Both feature tensors

Φi(p, c, n) and Ψi(p, c, n) are then simultaneously fed into

our Pose Correction Network (PCN) to refine and improve

upon the initial pose estimations. In what follows, we intro-

duce the three key components in detail.

3.1. Pose Temporal Merger

The motivation for our Pose Temporal Merger (PTM)

comes from the following observations and heuristics. 1)

Although existing pose estimation methods such as [33, 12]

suffer from performance deterioration on videos, we ob-

serve that their predictions do still provide useful infor-

mation for approximating the keypoint spatial positions.

2) Another heuristic is on temporal consistency, i.e., the

pose of an individual does not undergo dramatic and abrupt

changes across a very few frame intervals (typically 1/60 to

1/25 of a second per frame). Therefore, we design PTM to

encode the keypoint spatial contexts based on initial predic-

tions (from a backbone network), providing a compressed

search scope that facilitates refinement and correction of

pose prediction within a confined range.

For person i, the backbone network returns initial key-

point heatmaps hi(p),hi(c),hi(n). Naively, we could

merge them through a direct summation Hi(p, c, n) =
hi(p) + hi(c) + hi(n). However, we expect that the ad-

ditional information that may be extracted from Fp and Fn

is inversely proportional to their temporal distances from

current frame Fc. We formalize this intuition as:

H(p, c, n) =
n− c

n− p
hi(p) + hi(c) +

c− p

n− p
hi(n). (1)

Recall that p, c, n are frame indices. We explicitly assign

higher weights to the frames that are temporally nearer to

the current frame.

Based on the important fact that convolution operations

serve to adjust (feature) weights, we utilise convolutional

neural networks to practically implement the idea of Eq. 1.

However, including all joint channels in the computation

for the merged keypoint heatmap of a single joint will re-

sult in redundancy. For example, when encoding the spatial

context of the left wrist, involving other joints such as the

head and ankle at different times will likely not to have any

bearing and may even breed confusion. Therefore, for each

joint, we only include its own specific temporal information

for computing its merged keypoint heatmap. This is imple-

mented via a group convolution. We regroup the keypoint

heatmaps hi(p),hi(c),hi(n) according to joint, and stack

them to a feature tensor φi, which can be expressed as:

φi(p, c, n) =

N⊕

j=1

n− c

n− p
h
j
i (p)⊕ h

j
i (c)⊕

c− p

n− p
h
j
i (n)

(2)

where ⊕ denotes the concatenate operation and the super-

script j index the j-th joint for a total of N joints. Sub-

sequently, the feature tensor φi is fed into a stack of 3 ×
3 residual blocks (adapted from the residual steps block

in RSN [4]), producing the merged keypoint heatmaps

Φi(p, c, n):

φi(p, c, n)
stack of 3×3
−−−−−−−→
residual blocks

Φi(p, c, n). (3)

This group convolution not only eliminates the distur-

bance of irrelevant joints, but also removes redundancy and

shrinks the amount of model parameters required. It is

also advantageous to directly summing keypoint heatmaps

in Eq. 1 since the group CNN operation allow different

weights at the pixel level and benefits learning an end-to-

end model. Visual results of aggregated keypoint heatmaps

following our PTM is illustrated in Fig. 1.

3.2. Pose Residual Fusion

Parallel to spatial aggregation of keypoint heatmaps

in PTM, our Pose Residual Fusion (PRF) branch aims

to compute the pose residuals which will serve as addi-

tional favorable temporal cues. Given keypoint heatmaps

hi(p),hi(c),hi(n), we compute the pose residual features
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as follows:

ψi(p, c) = hi(c)− hi(p)

ψi(c, n) = hi(n)− hi(c)

ψi = ψi(p, c)⊕ ψi(c, n)

⊕
n− c

n− p
ψi(p, c)⊕

c− p

n− p
ψi(c, n).

(4)

ψi concatenates the original pose residuals ψi(p, c),
ψi(c, n), and their weighted versions, where the weights

are obtained according to the temporal distances. Similar

to PTM, ψi is then processed via a stack of 3 × 3 residual

blocks to give the final pose residual feature Ψi(p, c, n):

ψi(p, c, n)
stack of 3×3
−−−−−−−→
residual blocks

Ψi(p, c, n). (5)

3.3. Pose Correction Network

Given the merged keypoint heatmaps Φi(p, c, n) and

pose residual feature tensor Ψi(p, c, n), our Pose Correction

Network is employed to refine the initial keypoint heatmap

estimation hi(c), yielding adjusted final keypoint heatmaps.

Primarily, the pose residual feature tensor Ψi(p, c, n) is

used as the input for five parallel 3 × 3 convolution lay-

ers with different dilation rates d ∈ {3, 6, 9, 12, 15}. This

computation gives five groups of offsets for the five kernels

of the subsequent deformable convolution layer. Formally,

the offsets are computed as:

Φi(p, c, n)⊕Ψi(p, c, n)
stack of 3×3
−−−−−−−→
residual blocks

dilation rate d
−−−−−−−−−→
convolution layers

Oi,d.

(6)

Different dilation rates correspond to varying the size of the

effective receptive field whereby enlarging the dilation rate

[45] increases the scope of the receptive field. A smaller

dilation rate focuses on local appearance, which is more

sensitive for capturing subtle motion contexts. Conversely,

using a large dilation rate allows us to encode global repre-

sentations and capture relevant information of a larger spa-

tial scope. In addition to the offset computation, we feed

the merged keypoint heatmaps to similar convolution layers

and obtain five sets of masks Md as:

Φi(p, c, n)⊕Ψi(p, c, n)
stack of 3×3
−−−−−−−→
residual blocks

dilation rate d
−−−−−−−−−→
convolution layers

Mi,d.

(7)

The parameters of two dilation convolution structures for

offsetO and maskM computation are independent. A mask

Md can be considered as the weight matrix for a convolu-

tion kernel.

We implement the pose correction module through the

deformable convolution V 2 network (DCN v2 [49]) at var-

ious dilation rates d. DCN v2 takes the following inputs:

1) the merged keypoint heatmaps Φi(p, c, n), 2) the ker-

nel offsets Oi,d, and 3) the masks Mi,d, and outputs a pose

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

PoseFlow[44] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow[11] - - - - - - - 69.3

FastPose[47] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

SimpleBaseline[43] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding[16] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet[33] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN[13] 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

PoseWarper[3] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

Table 1. Quantitative Results (AP) on PoseTrack2017 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

PoseFlow[44] 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0

JointFlow[11] - - - 53.1 - - 50.4 63.4

KeyTrack[30] - - - 71.9 - - 65.0 74.0

DetTrack[39] - - - 69.8 - - 65.9 74.1

SimpleBaseline[43] 80.1 80.2 76.9 71.5 72.5 72.4 65.7 74.6

HRNet[33] 80.1 80.2 76.9 72.0 73.4 72.5 67.0 74.9

PoseWarper[3] 79.5 84.3 80.1 75.8 77.6 76.8 70.8 77.9

DCPose 84.3 84.9 80.5 76.1 77.9 77.1 71.2 79.2

Table 2. Performance comparisons on the PoseTrack2017 test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

AlphaPose[12] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

MDPN[13] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PoseWarper[3] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

DCPose 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

Table 3. Quantitative Results(AP) on PoseTrack2018 validation set.

heatmap for person i at dilation rate d:

(Φi(p, c, n), Oi,d,Mi,d)
dilation rate d
−−−−−−−→

DCN v2
Hi,d(c). (8)

The five outputs for five dilation rates are summarized and

normalized to yield the final pose prediction for person i:

∑

d∈{3,6,9,12,15}

Hi,d(c)
normalization
−−−−−−−→ Hi(c). (9)

Ultimately, the above procedure is performed for each indi-

vidual i. By effectively utilising the additional cues from Fp

and Fn in our DCPose framework, the final pose heatmaps

are enhanced and improved.

3.4. Implementation Details

Backbone Model Our network is highly adaptable and

we can seamlessly integrate any image based pose estima-

tion architecture as our backbone. We employ the state-of-

the-art Deep High Resolution Network (HRNet-W48 [33])

as our backbone joints detector, since its superior perfor-

mance for single image pose estimation will be beneficial

for our approach.

Training Our Deep Dual Consecutive Network is im-

plemented in PyTorch. During training, we use the ground

truth person bounding boxes to generate the Clipi(p, c, n)
for person i as the input sequence to our model. For bound-

ary cases, we apply same padding. In other words, if there
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

AlphaPose++[12, 13] - - - 66.2 - - 65.0 67.6

DetTrack [39] - - - 69.8 - - 67.1 73.5

MDPN[13] - - - 74.5 - - 69.0 76.4

PoseWarper[3] 78.9 84.4 80.9 76.8 75.6 77.5 71.8 78.0

DCPose 82.8 84.0 80.8 77.2 76.1 77.6 72.3 79.0

Table 4. Performance comparisons on the PoseTrack2018 test set.

are no frames to extend forward and backward from Fc,

Fp or Fn will be replaced by Fc. We utilize the HRNet-

W48 pretrained on the PoseTrack dataset as our backbone,

and freeze the backbone parameters throughout training,

only backpropagating through the subsequent components

in DCPose.

Loss function We employ the standard pose estima-

tion loss function as our cost function. Training aims to

minimize the total Euclidean or L2 distance between pre-

diction and ground truth heatmaps for all joints. The cost

function is defined as:

L =
1

N
∗

N∑

j=1

vj ∗ ||G(j)− P (j)||
2

(10)

Where G(j), P (j) and vj respectively denote the ground

truth heatmap, prediction heatmap and visibility for joint j.

During training, the total number of joints is set to N = 15.

The ground truth heatmaps are generated via a 2D Gaussian

centered at the joint location.

4. Experiments

In this section, we present our experimental results on

two large-scale benchmark datasets: Posetrack2017 and

PoseTrack2018 Multi-frame Person Pose Estimation Chal-

lenge datasets.

4.1. Experimental Settings

Datasets PoseTrack is a large-scale public dataset for

human pose estimation and articulated tracking in video and

includes challenging situations with complicated movement

of highly occluded people in crowded environments. The

PoseTrack2017 dataset [15] contains 514 video clips and

16,219 pose annotations, with 250 clips for training, 50

clips for validation, and 214 clips for testing. The Pose-

Track2018 dataset greatly increased the number of video

clips to a total of 1,138 clips and 153,615 pose annotations.

The training, validation, and testing splits consist of 593,

170, and 375 clips respectively. The 30 frames in the cen-

ter of the training video clips are densely annotated. For the

validation clips, annotations are provided every four frames.

Both PoseTrack2017 and PoseTrack2018 identify 15 joints,

with an additional annotation label for joint visibility. We

evaluate our model only for visible joints with the average

precision (AP) metric [15, 1].

Parameter Settings During training, we incorporate

data augmentation including random rotations, scaling,

truncating, and horizontal flipping to increase variation. In-

put image size is fixed to 384 × 288. The default interval

between Fc and Fp or Fn is set to 1. Backbone parameters

are fixed to the pretrained HRNet-W48 model weights. All

subsequent weight parameters are initialized from a Gaus-

sian distribution with µ = 0 and σ = 0.001, while bias

parameters are initialized to 0. We employ the Adam op-

timizer with a base learning rate of 0.0001 that decays by

10% every 4 epochs. We train our model for a batch size of

32 for 20 epochs with 2 Nvidia GeForce Titan X GPUs.

4.2. Comparison with State­of­the­art Approaches

Results on the PoseTrack2017 Dataset We evaluate

our approach on PoseTrack2017 validation set and full test

set using the widely adopted average precision (AP) metric

[43, 44, 11, 47]. Table 1 presents the quantitative results of

different approaches in terms of AP on PoseTrack2017 val-

idation set. We benchmark our DCPose model against eight

existing methods [44], [11], [47], [43], [16], [33], [13], [3].

In Table 1, the APs of key joints, such as Head, Shoulder,

Knee, and Elbow, are reported, as well as the mAP (mean

AP) for all joints.

Results on the test set are provided in Table 2. These

results are obtained by uploading our prediction results to

the PoseTrack evaluation server:https://posetrack.

net/leaderboard.php because the annotations for

test set are not public. Our DCPose network achieves state-

of-the-art results for multi-frame person pose estimation

challenge for both the validation and test sets. DCPose con-

sistently outperforms existing methods and achieves a mAP

of 79.2. The performance boost for relatively difficult joints

is also encouraging: we obtain an mAP of 76.1 for the wrist

and an mAP of 71.2 for the ankle. Some sample results are

displayed in Fig. 3, which are indicative of the effective-

ness of our method in complex scenes. More visualized

results can be found in https://github.com/Pose-

Group/DCPose.

Results on the PoseTrack2018 Dataset We also eval-

uate our model on the PoseTrack2018 dataset. The vali-

dation and test set AP results are tabulated in Table 3 and

Table 4, respectively. As shown in the tables, our approach

once again delivers the state-of-the-art results. We achieve

an mAP of 79.0 on the test set, and obtain an mAP of 77.2

for the difficult wrist joint and 72.3 for the ankle.

4.3. Ablation Experiments

Extensive ablation experiments are performed on the

PoseTrack2017 dataset to study the effectiveness of vari-

ous components in our DCPose framework. Through ablat-

ing the various modular networks including Pose Temporal

Merger (PTM), Pose Residual Fusion (PRF) and Pose Cor-
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

DCPose, complete, T = 1 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

r/m PTM, Φ(p, c, n)← h(p) + h(c) + h(n) 87.3 88.4 83.6 77.6 82.8 78.4 73.7 82.0

r/m PTM, Φ(p, c, n)← h(c) 87.5 88.5 83.7 78.1 82.9 80.8 73.4 82.2

r/m PRF 87.4 88.3 83.6 77.6 82.7 80.5 73.4 82.1

1 dilation convolution, d = 3 87.3 88.5 83.8 72.6 82.9 78.4 73.7 81.7

2 dilation convolutions, d ∈ {3, 6} 87.5 88.2 83.6 74.7 82.8 79.8 73.6 81.9

3 dilation convolutions, d ∈ {3, 6, 9} 87.9 88.6 83.9 78.3 82.9 81.4 74.0 82.7

4 dilation convolutions , d ∈ {3, 6, 9, 12} 87.9 88.6 84.0 76.9 83.0 80.9 74.0 82.6

r/m previous frame 87.8 88.4 83.8 77.8 82.6 80.6 73.7 82.2

r/m next frame 88.0 88.6 83.7 77.7 82.8 80.7 73.2 82.3

T = 2 87.7 88.4 83.8 78.0 83.0 80.8 73.2 82.6

T = 3 87.6 88.4 83.6 77.7 82.6 80.7 71.7 82.1

T = 4 81.2 87.4 83.3 76.7 81.9 80.2 72.1 81.7

Table 5. Ablation study of different components in our DCPose performed on PoseTrack2017 validation set. “r/m X” refers

to removing X module in our network. The complete DCPose consistently achieves the best results which are highlighted.

Figure 3. Visual results of our model on the PoseTrack2017 and PoseTrack2018 datasets comprising complex scenes: high-speed move-

ment, occlusion, and multiple persons.

rection Network, we evaluate their contributions towards

the overall performance. We also investigate the efficacy

of including information from both temporal directions as

well as the impact of modifying the temporal distance, i.e.,

frame intervals between Fc and Fp, Fn. The results are re-

ported in Table 5.

Pose Temporal Merger For this ablation setting,

we remove the PTM and instead obtain the merged

pose heatmaps Φ(p, c, n) as follows: i) h(p) + h(c) +

h(n)
3×3

−−−−−−−−−→
convolution layer

Φ(p, c, n); ii) h(c) −→ Φ(p, c, n). The

mAP falls from 82.8 to 82.0 for (i) and 82.2 for (ii). This

significant performance degradation upon removal of the

PTM module can be attributed to the failure of obtaining

an effective search range for the joints, which lead to de-

creased accuracy in locating the joint in the subsequent pose

correction stage.

Pose Residual Fusion We investigate removing the

PRF and compute the pose residual maps Ψ(p, c, n) with the

following scheme: h(c)−h(p)⊕h(n)−h(c)
3×3

−−−−−−−−−→
convolution layer

Ψ(p, c, n). This results in the mAP dropping 0.7 to 82.1.

This significant reduction in performance highlights the im-

portant role of PRF in providing accurate pose residual cues

for computing offsets and guiding the keypoint localization.

Pose Correction Network We study the effects of

adopting different sets of dilation rates for the convolutions

in PCN. This corresponds to different effective receptive

fields. We experiment with four different dilation settings:

d = 3, d ∈ {3, 6}, d ∈ {3, 6, 9} and d ∈ {3, 6, 9, 12}
whereas the complete DCPose framework setting has d ∈
{3, 6, 9, 12, 15}. From the results in Table 5, we observe the

gradual improvement of the mAP with increasing levels of
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Figure 4. Visualization of the pose predictions of our DCPose

model(a), SimpleBaseline(b), HRNet(c), and PoseWarper(d)

on the challenging cases from the PoseTrack2017 and

PoseTrack2018 datasets. Each column from left to right repre-

sents the Rapid-Motion, Nearby-Person, Occlusions, and Video-

Defocus scene, respectively. Inaccurate predictions are high-

lighted with the red solid circles.

dilation rates, from 81.7 → 81.9 → 82.7 → 82.6 → 82.8.

This is in line with our intuitions that increasing the depth

and scope of the effective receptive fields, i.e., by varying

the range of dilation rates, the Pose Correction Network

is able to model local and global contexts more efficiently,

leading to more accurate estimations of the joint locations.

Bidirectional Temporal Input In addition, we exam-

ine the effects of removing a single temporal direction, i.e.,

removal of either Fp or Fn from the input to PTM and PRF.

In removing the previous (respectively next) frame Fp (re-

spectively Fn), the mAP drops 0.6 (respectively 0.5). This

highlights the importance of leveraging dual temporal direc-

tions as each direction allows access to useful information

that are beneficial in improving pose estimation for videos.

Time Interval T The time interval T described in Sec-

tion 3 is a hyper-parameter whose default value is set to 1.

In other words, DCPose looks at 3 consecutive frames as

the shorter time/frame interval ensures the validity of our

assumptions of temporal consistency. We experiment with

enlarging the interval between frames, where T is set to 2, 3,

4. Indices p and n are randomly selected with p ∈ [c−T, c)
and n ∈ (c, c + T ]. The results reflect a performance drop

with an increase in T , whereby the mAP decreases from

82.8 for T = 1 to 82.6, 82.1, 81.7 as T goes to 2, 3, 4

respectively. This is in accordance with our expectations,

since frame-wise difference is small for shorter time inter-

vals so thatFp and Fn can provide more abundant and effec-

tive temporal and spatial cues for our PTM and PRF. Con-

versely, a large time interval would invalidate our assump-

tion of time consistency as the frame differences would be

too great and the additional cues would lack efficacy. This

ablation experiment explains our choice of modeling con-

secutive frames. The continuous frames of a video clip fa-

cilitate a precise aggregation of spatiotemporal context cues

and improve the robustness of our model.

4.4. Comparison of Visual Results

In order to evaluate the capability of our model to adapt

to sophisticated scenarios, we illustrate in Fig. 4 the side-

by-side comparisons of our DCPose network against state-

of-the-art approaches. Each column depicts different sce-

nario complications including rapid motion, nearby-person,

occlusions and video defocus, whereas each row displays

the joint detection results from different methods. We

compare our a) DCPose against 3 state-of-the-art methods,

namely b) SimpleBaseline [43], c) HRNet-W48 [33] and d)

PoseWarper [3]. It is observed that our method yields more

robust detection for such challenging cases. SimpleBaseline

and HRNet-W48 are trained on static images and fail to cap-

ture temporal dependency among video frames, resulting in

suboptimal joint detection. On the other hand, PoseWarper

leverages the temporal information between video frames to

warp the initial pose heatmaps but only employing one ad-

jacent video frame as the auxiliary frame. Our DCPose net-

work makes full use of the temporal context by processing

consecutive frames in dual directions. Through our princi-

pled design of PTM and PRF modules for better encoding

of these information as well as PCN for refining pose detec-

tion, our method achieves new state-of-the-art both quanti-

tatively and qualitatively.

5. Conclusion

In this paper, we propose a dual consecutive network

for multi-frame person pose estimation which significantly

outperforms existing state-of-the-art methods on the bench-

mark datasets. We design a Pose Temporal Merger and a

Pose Residual Fusion module that allows abundant auxil-

iary information to be drawn from the adjacent frames, pro-

viding a localized and pose residual corrected search range

for location keypoints. Our Pose Correction Network em-

ploys multiple effective receptive fields to refine pose es-

timation in this search range, achieving notable improve-

ments and is able to handle complex scenes.
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