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Abstract

Current developments in temporal event or action lo-

calization usually target actions captured by a single cam-

era. However, extensive events or actions in the wild may

be captured as a sequence of shots by multiple cameras

at different positions. In this paper, we propose a new

and challenging task called multi-shot temporal event lo-

calization, and accordingly, collect a large-scale dataset

called MUlti-Shot EventS (MUSES). MUSES has 31,477

event instances for a total of 716 video hours. The core

nature of MUSES is the frequent shot cuts, for an average

of 19 shots per instance and 176 shots per video, which in-

duces large intra-instance variations. Our comprehensive

evaluations show that the state-of-the-art method in tem-

poral action localization only achieves an mAP of 13.1%

at IoU=0.5. As a minor contribution, we present a sim-

ple baseline approach for handling the intra-instance vari-

ations, which reports an mAP of 18.9% on MUSES and

56.9% on THUMOS14 at IoU=0.5. To facilitate research in

this direction, we release the dataset and the project code at

https://songbai.site/muses/.

1. Introduction

Driven by the increasing number of videos generated,

shared and consumed every day, video understanding has

attracted greater attention in computer vision especially in

recent years. As one of the pillars in video understand-

ing, temporal event (or action) localization [10, 47, 61,

77, 84, 85, 87, 88] is a challenging task that aims to pre-

dict the semantic label of an action, and in the meantime,

locate its start time and end time in a long video. Au-

tomating this process is of great importance for many ap-

plications, e.g., security surveillance, home care, human-

computer interaction, and sports analysis.

*Work done during an internship at Alibaba Group.
†Corresponding author
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Figure 1. Different types of shot cuts, such as cutting on action (a),

dissolve (b), cut-in (c), and cross-cut (d). Clickable: best viewed

with Adobe Acrobat Reader; click to watch the animation.

While fruitful progress has been made in this field, our

work focuses on a real-world scenario that has not been se-

riously treated so far, that is, localizing events in TV shows

and movies. We cast it as a new research topic named multi-

shot temporal event localization, which is detailed below:

1) Motivation: Our work is motivated by some commer-

cial applications of multi-shot temporal event localization,

where truncated videos are automatically generated from

TV shows and movies. For example, a trailer is generated

for presenting the highlight to tease the audience, a video

summary is generated to help the viewer grasp the impor-

tant plot points and characters, or a mashup is generated

for blending multiple clips of the same theme. To achieve

this, a basic but time-consuming step is to find the materi-

als, i.e., the video segments of interest, while the develop-

ment of multi-shot temporal event localization will enable

efficient material extraction and greatly improve the produc-

tivity of video content generation.

2) Characteristic: Compared with user-generated

videos or surveillance videos, a unique characteristic of TV

shows and movies is the highly frequent shot cuts. Herein,

12596

https://songbai.site/muses/


✂ ✂Conversation

Stroll

Cooking ✂ ✂

Shot 1 Shot 3

✂ ✂

Shot 2

… … …

…… …

…… …

Figure 2. Examples of multi-shot events. In each row, we show three consecutive shots in an instance and select two frames per shot for

illustration. The scissor icons indicate the shot boundaries.

a shot means a single sequence of video frames taken by

one camera without interruption1. Because of the use of

multi-camera shooting and professional editing techniques,

a complete action or event in such videos is usually ex-

pressed as a sequence of meaningful short shots connected

by cuts of various types, such as cutting on action, dissolve,

cut-in, and cross-cut (see Fig. 1 for examples). In other

words, the termination of a shot does not mean the end of

the corresponding event or action.

3) Challenge: The key challenge of localizing events in

TV shows and movies is the large intra-instance variation,

induced by the nature of shot cuts. As can be observed in

Fig. 2, the view angles and the depth of fields across shots

vary dramatically. Meanwhile, due to the existence of shot

cuts, some side effects occur, such as scene change, actor

change, and heavy occlusions. With such large variations

within a single instance, the difficulty of localizing a com-

plete event across shots is significantly increased.

4) Our Contribution: To facilitate the study of multi-

shot temporal event localization, the main contribution of

this work is a collection of a large-scale dataset named

MUlti-Shot EventS (MUSES). Unlike existing datasets

(e.g., THUMOS14 [30], ActivityNet-1.3 [8], HACS Seg-

ments [86]) that are mainly built upon user-generated

videos, the data source of MUSES is drama videos pro-

cessed by professional editing techniques of the entertain-

ment industry. Each instance is defined and annotated as an

individual event that may take place across multiple shots.

As a consequence, the number of shots in MUSES is as

great as 19 per instance and 176 per video. MUSES is also

a large-scale dataset that is suitable for training deep learn-

1Note that the meaning of “shot” in our work is different from those in

one-shot/zero-shot/few-shot learning [16].

ing models, which contains 31,477 instances for a total of

716 video hours.

We conduct a comprehensive evaluation of state-of-

the-art methods on MUSES, including P-GCN [85], G-

TAD [76] and MR [87]. The results show that current meth-

ods cannot well handle the large intra-instance variations.

The best performance is achieved by P-GCN [85], which

is 13.1% mAP at IoU=0.5. It reveals the difficulty of our

dataset in temporal event localization, and in the meantime,

dramatically exposes the necessity of exploring methods

specifically focusing on capturing intra-instance variations.

As a minor contribution of this work, we present a simple

baseline approach for multi-shot temporal event localiza-

tion. The proposed baseline achieves an mAP of 18.9% on

MUSES and 56.9% on THUMOS14 [30] at IoU=0.5. The

dataset and the project code are publicly available for fellow

researchers.

2. Related Work

Our work targets temporal event or action localization by

contributing a new benchmark dataset. Existing datasets are

mainly built upon user-generated videos, where less profes-

sional editing is involved. For example, THUMOS14 [30]

focuses on sports events. ActivityNet-1.3 [8] extends the

taxonomy from sports to human daily activities and sig-

nificantly increases the number of categories and samples.

HACS Segments [86] shares the same lexicon as Activi-

tyNet and further increases the size. In comparison, our

dataset is based on drama videos processed by professional

editing with frequent shot cuts, so the intra-instance vari-

ances are much greater.

Previous methods on temporal event localization can be

roughly categorized into two groups, i.e., two-stage meth-
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Datasets #Videos #Categories #Instances #Total Hours #Categories per Video Multi-shot

THUMOS14 [30] 413 20 6,365 30 1.2 -

ActivityNet-1.3 [8] 19,994 200 30,971 648 1 -

HACS Segments [86] 50k 200 139k 2,048 1 -

MUSES (ours) 3,697 25 31,477 716 3.3
√

Table 1. Comparing MUSES with existing datasets for temporal event localization.

ods [7, 25, 51, 45, 54, 83, 88] and one-stage methods [3,

35, 42, 47, 48, 59, 84], according to whether a standalone

proposal generation stage is used. For two-stage meth-

ods, we first generate a set of proposals, i.e., temporal seg-

ments that may contain an event, then leverage a classifier

for semantic prediction. Proposal generations can be ful-

filled by scoring handcrafted anchors [6, 10, 14, 20, 61, 76],

grouping potential event boundaries [43, 59, 87, 88], or

a combination of both [19, 46]. For example, Shou et

al. [61] sample regularly distributed segments as propos-

als and train a binary classifier to remove background seg-

ments. Lin et al. [43] locate action boundaries by per-

frame classification and group pairs of potential bound-

aries as proposals. To classify the proposals, Convolu-

tional Neural Networks (CNNs) [20, 61, 88], Recurrent

Neural Networks (RNNs) [83] or Graph Convolutional Net-

works (GCNs) [85] are usually used. For instance, Shou et

al. [61] employ the C3D [67] network for proposal clas-

sification. Zeng et al. [85] model proposal-proposal rela-

tions with GCNs to extract contextual information. In one-

stage methods, action localization can be implemented by

classifying each pre-defined anchor [5, 35, 42, 47] or each

frame [48, 59, 84]. For example, Lin et al. [42] predict

the classes and boundaries of all anchors simultaneously.

Meanwhile, reinforcement learning is also exploited [81].

Some methods [44, 50, 52, 60, 70, 82] also try to learn

action localization models in a weakly supervised manner,

where only video-level labels are accessible.

This task is also related to action recognition [17, 18, 40,

53, 63, 68, 69, 71, 75, 78], spatio-temporal action localiza-

tion [27, 31, 39, 64, 73, 79] and temporal action segmenta-

tion [13, 35, 36, 37, 38, 55, 72]. Action recognition aims to

classify action in a given video, which is usually trimmed

to include one action only without background. Rep-

resentative datasets include KTH [57], Weizemann [22],

HMDB51 [34], UCF101 [65], Sports-1M [32], Cha-

rades [62], Kinetics [9], Moments in Time [49], Something-

Something [23], EventNet [80], Youtube-8M [1] and Fine-

Gym [58]. Spatial-temporal action localization, which re-

quires to locate both the temporal segment and spatial lo-

cations of actions. UCF101-24 [65], JHMDB [29] and

AVA [24] are often used for evaluation. Temporal action

segmentation requires to label each frame in a long video

by an action class. Some popular datasets include 50Sal-

ads [66], GTEA [15] and Breakfast [33], Hollywood Ex-

tended [4], and MPII Cooking 2 [56].

MUSES is also related to several movie datasets with ac-

tion annotations, such as ThreadSafe [26], AVA [24] and

MovieNet [28], However, ThreadSafe and AVA are de-

signed for action recognition and spatio-temporal action lo-

calization respectively. MovieNet does not annotate action

boundaries. Therefore, none of them is tailored for multi-

shot temporal event localization.

3. MUSES Dataset

The goal of this work is to build a large-scale dataset

for temporal event localization, especially in the multi-shot

scenario. In this section, we present the collection process,

the statistic, the characteristic, the evaluation metric, and

the baseline approach of the MUSES dataset.

3.1. Data Collection

Category Selection. 25 categories are chosen according to

the occurrence frequency in drama, the difficulty of rec-

ognizing, and the audience appeal, including conversation,

quarrel, crying, fight, drinking, eating, telephone conversa-

tion, horse riding, hugging, stroll, driving, chasing, gun-

fight, modern meeting, speech, ancient meeting, kissing,

war, playing an instrument, dance, (human) flying, cook-

ing, singing, bike riding, and desk work. Some categories

also appear in existing datasets (e.g., ActivityNet-1.3 [8]),

most of which are daily-life actions such as drinking. In ad-

dition, we include some events that are rare in daily life but

common in dramas, such as gunfight, and war.

Data Collection. We begin with the drama database hosted

by an online video sharing platform, where each drama

is tagged with the genre, such as “romance”, “action”,

“crime”, “comedy”, “fantasy”, “war”, “life”, “sports”, and

“science fiction”. For each genre, we first exclude those

dramas with a small number of views or of a low resolu-

tion, then randomly select dramas to ensure diversity. The

500 selected dramas contain 1,003 episodes that cover var-

ious years of production, genres, directors and actors, and

also convey stories of different periodic eras.

Annotation. The annotation of an instance is given as a set

of the start time, the end time, and the category. Our anno-

tation team is composed of 6 experienced annotators. The

annotators are trained for a week before the formal anno-

tation. To guarantee the quality, each video is labeled by

at least two annotators. Two experts review the annotations

provided by the annotators every week and resolve possible
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Figure 3. Number of instances per category for MUSES. Note that

the Y-axis is in logarithm scale.

inconsistencies between different annotations. The whole

annotation process lasts for 3 months.

Two noteworthy comments should be made here. First,

as the motivation of this work reveals, an event may go

through a series of shots, and sometimes the event is in-

visible or occluded during the shot cuts. For example, a

shot of the audience may be inserted between two shots of

a dance event. We ask the annotation team to preserve the

completeness of the dance instance in this case.

Second, different instances may overlap temporally with

each other. For example, telephone conversation and driv-

ing can happen simultaneously in a car. In this case, we ask

the annotation team to extract two instances belonging to

telephone conversation and driving separately.

3.2. Statistics

The dataset is split into two subsets, with 702 episodes

for training and 301 for testing. The average length per

episode is 42.8 minutes. Each episode is segmented into

videos of around 10 minutes. After removing those that do

not contain any events or actions, we obtain 3,697 videos,

with 2,587 for training and 1,110 for testing. As a re-

sult, MUSES consists of 31,477 instances for a total of 716

video hours.

In Table 1, we give a comparison of dataset statistics

between MUSES and some representative datasets, includ-

ing THUMOS14 [30], ActivityNet-1.3 [8] and HACS Seg-

ments [86]. In terms of scale, MUSES is slightly larger

than ActivityNet-1.3 but smaller than HACS Segments. The

length of videos varies from 300 to 1,151 seconds with an

average of 698 seconds, which is about 3 times longer than

THUMOS14.

Fig. 3 depicts the category distribution over instances.

As it shows, MUSES contains at least 90 instances per cat-

egory and an average of 1,260 instances. We present the

category distribution over videos in Fig. 4(a), which sug-

gests that most videos in MUSES contain instances from 3

categories while those in the other datasets are mainly from

1 semantic class. The instance distribution over videos is

given in Fig. 4(b). It can be observed that most videos in
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Figure 4. Comparison of datasets: the number of categories (a) and

instances per video (b). The numbers in the brackets are the aver-

age values of instances and categories per video. The distribution

of instance length (c) and the number of shots (d) on MUSES.

MUSES THUMOS14 ActivityNet
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Figure 5. Illustrations of self-similarity samples on MUSES, THU-

MOS14, and ActivityNet-1.3. The intra-instance variations on

MUSES are much greater than that on the other datasets.

MUSES contain 5 to 10 instances with an average of 8.5 in-

stances. Richer yet noisy contextual information is brought

by the nature of multi-category and multi-instance in a sin-

gle video, which encourages the development of advanced

techniques for contextual reasoning. Fig. 4(c) presents the

distribution of instance length, from which we find that

most instances last for 20 to 40 seconds.

Besides, it is found that 15.8% of the instances over-

lap with another instance with an IoU>0.5. Some frequent

pairs include playing an instrument ↔ singing, dance ↔

singing, kissing ↔ hugging, crying ↔ hugging, conversa-

tion ↔ eating, war ↔ horse riding, fight ↔ (human) flying

↔ driving and telephone conversation ↔ driving. The rea-

son behind is that those events or actions usually happen in

the same scene.

3.3. Characteristics

The primary property of MUSES is frequent shot cuts in-

side a single instance. Different from previous datasets [8,

30, 86] for temporal event localization that mainly col-

lect user-generated videos where less editing is involved,

MUSES is built upon drama videos made by the industry.

In these videos, professional editing techniques are widely

used for different purposes, such as removing less informa-
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tive segments or guiding the viewer’s attention. As a con-

sequence, an event in such videos is usually expressed by a

sequence of short shots connected by various types of shot

cuts. Fig. 4(d) presents the distribution of the number of

shots over instances. The average number of shots is 19 per

instance and 176 per video. Frequent shot cuts induce large

intra-instance variations, as we can see from Fig. 2 that dif-

ferent shots differ significantly in the view angles, depth of

fields, actors, and backgrounds.

The intra-instance variations can be further evidenced in

the feature space. 1) Self-similarity: we compute the co-

sine similarity of each pair of snippets of a single instance

using the I3D [9] features, then report the average standard

deviation of such self-similarity. The average standard de-

viation on MUSES is 0.16, while that on THUMOS14 and

ActivityNet-1.3 is 0.01 and 0.09, respectively. It suggests

that the self-similarity of instances on MUSES is generally

smaller than that on the other datasets. Fig. 5 further depicts

some examples of self-similarities on different datasets. We

find that in MUSES, the snippet pairs with high similarities

usually occur in the same shot. 2) Class activation map-

ping: we leverage CAM [89] to visualize the contribution

of each temporal snippet to the final prediction. As shown

in Fig. 6, the individual contribution is significantly differ-

ent, which again reveals the intra-instance variations. It also

indicates that a considerable number of snippets are less dis-

criminative, caused by the shot cuts, to a precise prediction

of the semantic meaning and localization of the correspond-

ing instance.

3.4. Evaluation Metrics

To evaluate the performance of multi-shot temporal

event localization, we employ mean Average Precision

(mAP). A prediction is considered as a true positive if its

IoU with the ground truth is greater than a threshold α and

the predicted category is correct, denoted as mAPα. α is set

to 0.3 to 0.7 with a stride of 0.1 following the convention

of THUMOS14. Meanwhile, we also report an average of

mAPs, which is computed over the 5 IoU thresholds.

Moreover, to quantify the capability of algorithms in

handling shot cuts, we further resort to mAPs with differ-

ent numbers of shots. To be concrete, we divide all the in-

stances into 3 groups according to the number of shots, and

report mAPsmall (fewer than 10 shots), mAPmedium (10 to 20

shots), and mAPlarge (no fewer than 20 shots). In MUSES,

the 3 groups make up 39.8%, 27.5%, and 32.7% of all in-

stances, respectively.

3.5. Baseline Approach

Pipeline. We adopt the detection by classifying proposal

paradigm following Fast R-CNN [21]. Taking a video and a

set of temporal proposals (refer to the supplementary ma-

terial for proposal generation) as input, our baseline ap-

proach is comprised of three steps: 1) feature extraction.

As [85, 10, 87], we use the I3D [9] network to extract a 1D

feature for the input video; 2) temporal aggregation. The

feature will be forwarded into a temporal aggregation mod-

ule, which is detailed below, to mitigate the intra-instance

variations caused by shot cuts; 3) proposal evaluation. For

each proposal, a feature representation is extracted via RoI

pooling [21]. Two classifiers are utilized respectively to pre-

dict the category and the completeness of the proposal. A

boundary regressor is also employed to adjust the bound-

aries.

Temporal Aggregation. As analyzed in Sec. 3.3, shot cuts

will result in large inter-snippet variations. One of the keys

is to enhance the feature coherence within a single instance.

To this end, we present a simple yet effective module called

temporal aggregation to improve the feature discriminative

power of each snippet.

Let X ∈ R
T×C be the video feature extracted from the

I3D network, where T and C denote its length and the di-

mension respectively. We first evenly divide X into H units

of length W as X
′ = reshape(X) ∈ R

H×W×C , where

X
′

ij = XiW+j and T = H × W . As a result, each row

in X
′ correspond to consecutive snippets in the same unit,

and each column in X
′ correspond to non-adjacent snippets

with a stride of W (a configurable parameter) in X.

We then apply the standard 2D convolution to X
′ as

Y
′ = W ∗ X

′, where W ∈ R
kH×kW is the convolution

kernel. In this way, we can obtain both short-term (within

each row) and long-term (across multiple rows) information

for each multi-shot instance, so that the feature variation is

reduced significantly. It is easy to find that the receptive

field is equivalent to (kH − 1)W + kW and one can adjust

the receptive field by tuning W without changing the kernel

size.

The output feature map Y
′ is re-casted into 1D view, as

Y = reshape(Y′) ∈ R
T×C , which is of the same size as the

input feature X. Therefore, the temporal aggregation mod-

ule is easy to implement using 2D convolutions and acts as

a cheap plug-in. There are a few alternatives for modeling

the long-term information, such as dilated 1D convolution,

deformable 1D convolution [11], etc. Our experiments sug-

gest that they achieve inferior performance to our temporal

aggregation module.

Moreover, as the duration of events and shots in MUSES

vary significantly, we adopt a split-transform-merge strat-

egy [74] and build a multi-branch block to handle the scale

changes. More precisely, we use K temporal aggregation

modules, each of which uses a convolution kernel of differ-

ent sizes. The output of each branch is fused by summation.

Thanks to the various kernel sizes, the learned feature inte-

grates temporal information of different scales and is po-

tentially capable of better dealing with events of different

durations.
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Figure 7. Event localization performance in terms of AP (bars) and the number of training instances per category (lines) on MUSES.

4. Experiments

In this section, we give a thorough study of the newly

collected MUSES dataset. In addition, we report the results

on THUMOS14 [30] and ActivityNet-1.3 [8] under the con-

ventional experiment setup following [61, 88, 43, 41]. Due

to space limitation, we put the experimental details, such

as the network architecture, the loss functions, the training

strategy, some tricks like boundary extension [12] and the

hyper-parameters, in the supplementary material.

4.1. Analysis of MUSES Dataset

Which Categories Are More Challenging? We present

the localization performance and the number of training in-

stances per category in Fig. 7. The best performance is wit-

nessed in the conversation category, probably owing to the

largest number of training instances. Meanwhile, categories

related to objects and scenes, such as telephone conversa-

tion and modern meeting, and categories that have salient

motion features, such as fight and dance, are relatively eas-

ier to be coped with. The top-5 challenging categories are

singing, desk work, playing an instrument, drinking, and

quarrel. The poor performance might be caused by less

training data or larger diversity.

Error Analysis. Using the protocol devised by [2], we

present an error analysis on MUSES in Fig. 8(a). Accord-

ing to its IoU with the matched ground truth (denoted as

gIoU) and whether the predicted label is correct, a false

positive can be divided into five types, including Double

Detection Error (a duplicate prediction with gIoU ≥ α and

a correct label that is not the highest scoring one), Wrong

Label Error (gIoU ≥ α, incorrect label), Localization Er-
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Figure 8. Error analysis on MUSES. (a) Left: the error distribution over the number of predictions per video. G means the number of

ground truth instances. (a) Right: the impact of error types, measured by the improvement gained from resolving a particular type of error.

See Sec. 4.1 for the definitions of the errors. (b) Confusion matrix.

ror (0.1 ≤ gIoU < α, correct label), Confusion Error

(0.1 ≤ gIoU < α, incorrect label), and Background Error

(gIoU < 0.1).

As Fig. 8(a) left shows, Confusion Error, Localization

Error, and Wrong Label Error are the three main sources of

false positives. It indicates that incorrect boundaries and

incorrect labels are responsible for false positive predic-

tions, which are the side effect of frequent shot cuts. Dif-

ferent from the error distribution on ActivityNet-1.3 where

Localization Error occurs most (quoted from [2]), more

Wrong Label Errors and Confusion Errors are observed on

MUSES. This phenomenon suggests that the classification

task is more difficult on MUSES compared with that on

ActivityNet-1.3. Meanwhile, Fig. 8(a) right suggests that

the performance boost is more remarkable if the classifica-

tion task is well addressed.

To dissect Wrong Label Error, we present the confusion

matrix in Fig. 8(b). It is observed that instances in many

categories are easy to be mis-classified into conversation.

The possible reasons are two folds: 1) imbalanced number

of training samples among different classes; 2) as one of

the key visual cues in conversation, the close-ups of charac-

ters also exist in the other categories, such as modern meet-

ing, quarrel, speech, desk work, etc. Besides, event pairs

with high concurrency, such as fight ↔ (human) flying and

singing ↔ dance, are easy to confuse.

Effect of Temporal Aggregation. In Table 2, we compare

the performance of different variants of our method. As

can be observed, removing temporal aggregation (vanilla)

leads to a decrease of 2.8% in terms of mAP0.5 on MUSES.

Replacing temporal aggregation with dilated 1D convolu-

tion or deformable 1D convolution also leads to a perfor-

mance drop. Meanwhile, an integration of multiple tem-

Methods kH × kW W mAP0.5

Vanilla - - 16.1

Dilated Conv. - - 17.1

Deformable Conv. [11] - - 17.0

Ours (Single-scale)

1× 3 3 16.0

3× 3 3 16.8

3× 3 6 17.5

3× 3 9 17.2

Ours (Multi-scale) - - 18.9
Table 2. Performance analysis of temporal aggregation in terms of

mAP0.5.

poral aggregation modules at different scales outperforms

its single-scale counterparts. The performance gain stems

from the fact that temporal aggregation is capable of en-

hancing the feature coherence within each single instance

to a certain extent. To verify this, we follow the gist de-

scribed in Sec. 3.3 to compute the standard deviation of self-

similarities, and find that the standard deviation is decreased

from 0.16 to 0.09 after temporal aggregation is applied.

State-of-the-art Evaluations on MUSES. We present an

evaluation of state-of-the-art methods whose code is pub-

licly available, including P-GCN [85], G-TAD [77], and

MR [87]. Note that G-TAD and MR only focus on class-

agnostic proposals, so we train an MLP on I3D features to

generate category predictions. To ensure a fair comparison,

the video features are kept the same for all the methods and

the same proposals are used in P-GCN and our approach.

As shown in Table 3, our method achieves the highest mAPs

among all the methods. However, the achievement is far

below the state-of-the-art performance on THUMOS14 (an

mAP of around 52% at IoU=0.5, refer to [77, 85]) and
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Methods mAP0.3 mAP0.4 mAP0.5 mAP0.6 mAP0.7 mAP mAPsmall mAPmedium mAPlarge

Random 1.20 0.64 0.29 0.10 0.03 0.45 0.02 0.06 0.41

MR [87] 12.9 11.3 9.2 7.6 5.9 9.4 4.1 6.9 7.5

G-TAD [77] 19.1 14.8 11.1 7.4 4.7 11.4 7.3 9.6 4.6

P-GCN [85] 19.9 17.1 13.1 9.7 5.4 13.0 6.3 8.7 7.9

Ours 25.9 22.6 18.9 15.0 10.6 18.6 7.4 11.9 17.3

Table 3. Performance evaluation of state-of-the-art methods on the newly collected MUSES dataset.

Methods mAP0.3 mAP0.4 mAP0.5 mAP0.6 mAP0.7

SCNN [61] 36.3 28.7 19.0 10.3 5.3

SMS [84] 36.5 27.8 17.8 - -

CDC [59] 41.3 30.7 24.7 14.3 8.8

Dai et al. [12] - 33.3 25.6 15.9 9.0

R-C3D [76] 44.8 35.6 28.9 19.1 9.3

SS-TAD [5] 45.7 - 29.2 - 9.6

SSN [88] 50.6 40.8 29.1 - -

TAL-Net [10] 53.2 48.5 42.8 33.8 20.8

GTAN [47] 57.8 47.2 38.8 - -

P-GCN [85] 63.6 57.8 49.1 - -

G-TAD [77] 66.4 60.4 51.6 37.6 22.9

MR [87] 53.9 50.7 45.4 38.0 28.5

Ours 68.9 64.0 56.9 46.3 31.0

Table 4. Performance comparison on THUMOS14 in terms of

mAP at IoU thresholds from 0.3 to 0.7.

ActivityNet-1.3 (an mAP of around 50% at IoU=0.5, refer

to [41, 77]), which reveals the difficulty of our dataset. Note

that mAPlarge can be higher than mAPmedium and mAPsmall,

as events with more shots are often longer thus easier to

localize.

4.2. Evaluations on THUMOS14 and ActivityNet

Our baseline approach leverages temporal aggregation

which is originally designed for handling intra-instance

variations caused by frequent shot cuts. Here, we report

the performance of temporal aggregation on THUMOS14

and ActivityNet-1.3. Table 4 presents the comparison with

the state-of-the-art methods on THUMOS14. Our approach

achieves the highest mAPs at different IoU thresholds. In

particular, we outperform the second-best entry, that is G-

TAD [77], by an absolute improvement of 5.3% in terms

of mAP at IoU=0.5. Table 5 presents the performance

comparison on ActivityNet-1.3. We build our model upon

BMN [41], one of the state-of-the-art algorithms with pub-

licly available code. As it shows, integrating temporal ag-

gregation with BMN is also useful and we report an average

mAP of 33.99%.

5. Conclusion

Truncating TV shows and movies into concise and at-

tractive short videos has been a popular way of increasing

click-through rates in video sharing platforms, where lo-

calizing temporal segments of interest is the kick-off step.

Methods mAP0.5 mAP0.75 mAP0.95 mAP

R-C3D [76] 26.80 - - 12.70

TAL-Net [10] 38.23 18.30 1.30 20.22

GTAN [47] 52.61 34.14 8.91 34.31

BMN [41] 50.07 34.78 8.29 33.85

BMN* [41] 49.66 33.85 7.86 33.45

Ours 50.02 34.97 6.57 33.99

Table 5. Performance comparison on the validation set of

ActivityNet-1.3 at different IoU thresholds. * indicates the result

is our re-implementation with the publicly available code.

However, temporal event or action localization in such

video sources is more or less ignored by our research com-

munity. And existing methods cannot well handle the intra-

instance variations caused by the frequent shot cuts as TV

shows and movies are usually post-processed by profes-

sional editing techniques.

To enable automatic video content generation with ef-

ficient and scalable material extraction in TV shows and

movies, we define a new task called multi-shot temporal

event localization that aims to localize events or actions

captured in multiple shots. A large-scale dataset, called

MUSES, is collected for this study. Built upon drama

videos, MUSES provide rich multi-shot instances with fre-

quent shot cuts, which induces great intra-instance vari-

ations and brings new challenges to current approaches.

A comprehensive evaluation shows that the state-of-the-art

methods in this field fail to cope with frequent shot cuts and

reveal the difficulty of the MUSES dataset. MUSES could

serve as a benchmark dataset and facilitate research in tem-

poral event localization.

MUSES will be updated in the future by adding multi-

modal annotations, such as subtitles, audio, facial expres-

sion, etc. The setting of weakly-supervised multi-shot tem-

poral event localization will be also defined and explored

on top of MUSES. We hope that MUSES could trigger and

advance the application of temporal event localization tech-

niques to commercial products in video content generation.
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