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Abstract

Predicting multiple plausible future trajectories of the

nearby vehicles is crucial for the safety of autonomous

driving. Recent motion prediction approaches attempt to

achieve such multimodal motion prediction by implicitly

regularizing the feature or explicitly generating multiple

candidate proposals. However, it remains challenging since

the latent features may concentrate on the most frequent

mode of the data while the proposal-based methods depend

largely on the prior knowledge to generate and select the

proposals. In this work, we propose a novel transformer

framework for multimodal motion prediction, termed as

mmTransformer. A novel network architecture based on

stacked transformers is designed to model the multimodal-

ity at feature level with a set of fixed independent propos-

als. A region-based training strategy is then developed to

induce the multimodality of the generated proposals. Ex-

periments on Argoverse dataset show that the proposed

model achieves the state-of-the-art performance on mo-

tion prediction, substantially improving the diversity and

the accuracy of the predicted trajectories. Demo video

and code are available at https://decisionforce.

github.io/mmTransformer.

1. Introduction

Predicting the future trajectories of nearby vehicles is

critical for the Autonomous Vehicle systems to understand

the surrounding and make informative decisions. Multi-

modal prediction, which aims to generate multiple plausible

trajectories of the target vehicle, plays a key role to handle

the uncertainty in motion prediction and improve the safety

of motion planning. Due to the uncertain future events, traf-

fic vehicles could perform differently even under the same

scene. However, there is only one ground truth trajectory

collected in each driving scene. Hence one challenge for

⋆ Co-first authors with equal contributions.

Figure 1. Examples of multimodal motion prediction in complex

driving scenarios. For each moving vehicle near the ego car, three

plausible future trajectories are predicted by the proposed model.

enabling multimodal prediction lies in how to learn to cover

all the possible outcomes in a given scene with limited train-

ing samples.

Recent motion prediction methods mainly follow prob-

abilistic approaches [19, 16, 28] or proposal-based ap-

proaches [33, 26, 5, 11] to address the aforementioned is-

sue. The probabilistic approaches implicitly model the un-

certainty of the trajectory through defining the underlying

possible models as a latent variable. They either achieve the

multimodal prediction with generator conditioned on differ-

ent latent variables, or directly constrain the output over a

probability distribution(e.g., GMM) to get diverse results.

These methods depend heavily on the predefined prior dis-

tribution and the well-designed loss function, which might

be prone to the optimization instability and the mode col-

lapse issue. Unlike probabilistic approaches which gen-

erate multimodal outputs through modeling the latent dis-

tribution of the modality, the proposal-based approaches

[11, 33, 5, 25] perform in an alternative way, which first de-

fines candidate points or trajectories as proposals, and then

regress or classify these proposals to the ground truth. With

predefined proposals, these methods alleviate optimization

burden and narrow down the feasible space of solutions. Al-

though these methods achieve good performance, they still

have the following two issues: 1) The result relies heavily

on the quality of the predefined anchors since the heuristic

methods are applied to sample the candidate points. 2) The
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multimodal prediction can not be guaranteed since multi-

modal nature of trajectory prediction is not well captured

with only one ground truth provided during the training.

In this work, we propose a novel end-to-end multimodal

motion prediction framework called MultiModal Trans-

former (mmTransformer), where the proposals are first

randomly initialized and then refined to incorporate con-

textual information. mmTransformer is designed based on

the transformer architecture, which proves to be effective

in modeling sequential data. The whole model can be

viewed as stacked transformers in which the past trajec-

tories, the road information, and the social interaction are

aggregated hierarchically with several transformer encoder-

decoder modules. Two multimodal prediction examples of

the whole traffic scenes are shown in Fig 1.

We develop two new mechanisms to ameliorate the uni-

modal effects brought by identical features. First, we in-

troduce a trajectory proposal mechanism to the field of mo-

tion prediction. Specifically, queries in the decoders of mm-

Transformer are represented as trajectory proposals, which

asymptotically aggregate multiple channels of contextual

information from encoders, and make independent predic-

tions. Since these proposals are orthogonal with each other,

each of them will carry customized features, which pro-

motes the diversity and multimodality. Second, a region-

based training strategy (RTS) is developed to explicitly en-

sure the multimodality, which negotiates the conflicts be-

tween the uniqueness of ground truth and multimodal na-

ture of predictions. We divide the surrounding space into

several regions and group trajectory proposals into differ-

ent sets, with each set being assigned to one region. During

training, only the set of proposals assigned to the region

where ground truth locates will be utilized to optimize the

framework. This new strategy enforces individual proposal

to focus on a specific mode, without compromising the la-

tent features learned by other proposals.

The contributions of this paper are summarized as fol-

lows: (1) To the best of our knowledge, mmTransformer

is the first model using stacked transformers for trajectory

proposals to aggregate multiple channels of contextual in-

formation and achieve multimodal prediction.(2) To pre-

serve the multimodal nature of motion forecasting, we de-

sign a novel region-based training strategy, which ensures

that each individual proposal is capable of capturing a spe-

cific mode. (3) Extensive experiments show the substantial

improvement brought by the proposed model architecture

and the tailored region-based training strategy. Our model

ranked the 1st on the Leaderboard of Argoverse benchmark

dated on 16 Nov 2020, and remains competitive on the

leaderboard.

2. Related Work

Motion Prediction. Recently deep learning-based meth-

ods have been widely used for motion prediction [1, 14, 8,

2, 11]. The typical pipeline is to first create the input rep-

resentation by rasterizing [10, 32] or vectorizing [7, 21, 12]

surrounding information and then use deep neural network

(e.g., CNN, Long Short-Term Memory(LSTM), graph neu-

ral network[31, 15]) to extract informative features. Finally,

the trajectory is directly generated by model [12] or based

on prior knowledge [11, 33, 5].

To this end, motion prediction methods can be roughly

divided into two categories: feature-based and proposal-

based methods. For the first kind of methods, most of

them focus on how to extract useful information from the

environment. CNN Encoder-Decoder is proposed in [31]

to extract features from vehicles’ past positions and direc-

tions and directly regress the future positions. Graph neu-

ral networks [21] have emerged in response to problems

that scenes cannot be easily represented by matrices of pix-

els or simple vectors. SoPhie [27] have leveraged features

extracted from the physical environment, attention mecha-

nisms, and adversarial training. However, for these feature-

based methods it is difficult to guarantee the multimodal

prediction of the model. As for another kinds of models

[33, 26, 5, 11], where the candidate trajectory set is first gen-

erated based on prior knowledge and candidate point and

then optimize and reduce these candidate trajectory by de-

signed cost function or post-processing to obtain final pre-

diction. Although these methods successfully modeling the

multimodality, there are still many unsolved problems. As

these methods focus on the manipulation of the predicted

trajectories or candidates, the meanings of latent features

are typically neglected, which may hurts the stability of the

model. As a result, performance will be significantly in-

fluenced by the robustness of prior hypothesis made by the

author.

Different from above, our model achieves the multi-

modal prediction at both feature and proposal levels. The

region-based training strategy further refines the proposals

which reduces the correlation of the proposals and guaran-

tees the diversity of the predicted trajectories. Meanwhile,

by explicitly considering modality into proposal during

training process, mmTransformer has a more interpretable

pipeline.

Transformer. Transformer is a novel attention-based

method which was firstly introduced in [29]. It has been

successfully deployed in several applications (e.g., neural

machine translation and image caption generation [9, 23]).

The most important part of transformer is the self-attention

mechanism.The advantage of the attention mechanism in

transformer lies in its capability of learning high quality
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Figure 2. Overview of mmTransformer: The proposed mmTransformer uses stacked transformers as the backbone, which aggregates

the contextual information on the fixed trajectory proposals. Proposal feature decoder further generates the trajectories and corresponding

confidence scores by decoding each proposal feature through the trajectory generator and selector, respectively. Besides, the trajectory

generator and trajectory selector are two feed-forward network, which have the same structure with the FFN in the transformer [29]. The

detailed network architecture can be found in appendix.

features through taking the whole context into considera-

tion. Some of the recent methods in the field of trajectory

forecasting adopt the attention mechanisms in sequence and

interaction modeling [20, 13, 24]. For example, an interac-

tion transformer [20] is introduced to model the interaction

between traffic vehicles. Ind-TF [13] replaces RNN with

vanilla transformer to model the trajectory sequences. Un-

like these methods that use transformer as a part of their

feature extractor, a fully transformer based architecture is

used in our case to solve the multimodal motion prediction

problem.

3. Multimodal Motion Prediction Framework

Motion prediction aims to accurately predict the future

motion of target vehicles, given the history trajectories of

traffic vehicles in the scene and other contextual informa-

tion such as road and traffic information. To tackle the mul-

timodal motion prediction, we firstly learn a feature set Y
comprising various proposal features y ∈ Y . Each y is

generated from Fθ(x), where x is the scene information,

involving motion history and surrounding context. With the

set of proposal features, we can generate multiple future tra-

jectories S = {si ∈ R
T×2 : 1 ≤ i ≤ K} by Gφ(y), in which

T denotes future horizon and K denotes the total number of

predictions. Additionally, prediction set S ⊂ S where S is

the entire space of possible S, and Fθ(·) and Gφ(·) are pa-

rameterized by θ and φ, respectively.

We aim to construct an appropriate set of proposal fea-

tures Y ⊂ Y to ensure both accuracy and multimodal-

ity. Therefore, we introduce a novel mmTransformer to ob-

tain informative proposals and then apply the region-based

training strategy to ensure the multimodality of proposals.

3.1. Stacked Transformers

Transformer has demonstrated outstanding performance

in dealing with sequential data. In order to apply trans-

former to trajectory prediction, we need to extend the model

to incorporate a variety of the contextual information, be-

cause the vanilla transformer only supports encoding single

type of data (e.g., the corpus token in the language trans-

former [9], and image in the visual transformer [4]). A

naive solution is to concatenate all types of inputs such as

past trajectory and lane information into a sequence of con-

textual embeddings and input them to the transformer. As

the transformer requires a fixed size of the input, a naive

solution will consume a large amount of resources. Addi-

tionally, since different types of information will compound

in such design and be aggregated by the attention layers, the

quality of the latent feature might be compromised. There-

fore, we consider the alternative of incorporating multiple

channels of information separately.

Under the circumstance of different inputs, the challenge

lies in how to incorporate multiple channels of information

as input to the transformer. we propose to define the queries

of transformer decoder as trajectory proposals, tailored to

our multimodal trajectory prediction task. This design is in-

spired by the parallel version of transformer used in [4].

Its strength is that parallel trajectory proposals can inte-
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grate the information from the encoder independently, al-

lowing each single proposal to carry disentangled modality

information. The stacked architecture adapts to the multi-

input circumstance with several tailored feature extractors,

integrating different contextual information hierarchically.

Specifically, the structure of the stacked transformers con-

sists of three individual transformer units, motion extractor,

map aggregator, and social constructor respectively, each

taking the updated trajectory proposals from the previous

transformer as the input of its decoder to refine the propos-

als. The framework is illustrated in Fig 2.

For simplicity, the transformer modules retain the struc-

ture introduced by [4]. Since the transformer decoder is

permutation-invariant, the K proposals must be distinct to

each other in order to represent different modes and gener-

ate different trajectories. A learned positional encoding is

added before each decoder layer of the transformer mod-

ules. We illustrate the three components in more detail as

follows.

Motion Extractor. The encoder input of motion extractor is

the history trajectories of observed vehicles as H = {hi ∈
R

Tobs×2 : 1 ≤ i ≤ Nvehicle}, where Nvehicle is the number

of the observed vehicles, including the target vehicle, and

Tobs is the length of history observation. The decoder inputs

are the trajectory proposals Y = {yi ∈ R
n : 1 ≤ i ≤ K},

textcolorredwhich are initialized by a set of learnable po-

sitional encoding, feature size of each encoding is n. The

outputs of decoder can be considered as proposal features.

It is noted that all the observed vehicles share the same ar-

chitecture of motion extractor, the same for map aggregator.

Map Aggregator. As the behaviors of vehicles depend

largely on the topology of the map, such as road structure,

we utilize this transformer to fuse the geometric and seman-

tic information from high definition map to refine features

of the input proposals. Following [12], we encode each cen-

terline segment into vectorized representation, and use the

subgraph module in [12] to process each vectorized poly-

lines. After that, the latent features of the polylines are fed

to the map aggregator to explicitly model the scene. Bene-

fiting from the interpretability of encoder-decoder attention

module inside transformer, the proposal can retrieve the cor-

responding map features based on its preassigned modality.

Social Constructor. Unlike the previous transformers, so-

cial constructor encodes the vehicle features among all ob-

served vehicles, aiming to model the interactions between

them. In particular, the vehicle feature of each observed

vehicle is obtained by summarizing all the proposals for

each of vehicles via a multi-layer perception (MLP). The

vehicle feature can be also viewed as distribution of future

movements for each traffic vehicle. Since our objective is to

forecast the future trajectory of the target vehicle, we only

utilize the decoder of social constructor to update the pro-

posals for target vehicles, instead of all vehicles, in pursuit

of higher efficiency.

As a whole, the motivation behind our framework is to

establish the intra-relation inside data (e.g., extracting the

map topology with the encoder of map aggregator), and

integrate contextual information from different encoders

asymptotically to update each proposal and highlight its

pre-assigned modality.

Intuitively, stacked transformers can be divided into two

parts. First part only encodes the information of each ve-

hicle individually by the motion extractor and the map

aggregator, without any interaction information being in-

volved. Then the social constructor is applied to aggregate

the nearby information and model the dependency among

all the vehicles. Thus, the order is logically sequential, i.e.,

the social relation should be constructed based on individual

vehicle features. Additionally, the order of the other trans-

formers has been verified empirically by experimental re-

sults shown in Table 2. Based on this stacked architecture,

our model can capture the latent connection between con-

textual information and the diverse proposal features which

ensures the multimodal predictions.

3.2. Proposal Feature Decoder

The final Proposal Feature Decoder comprises two

branches, namely, the Trajectory Generator for trajectory

prediction and the Trajectory Selector branch for proposal

scoring. For each of the K target proposals, we apply a

three-layer MLP G(·) to generate the prediction as follows,

S = {si ∈ R
T×2 : si = G(yi),yi ∈ Y, 1 ≤ i ≤ K} (1)

where yi ∈ Y is the ith proposal feature generated from

social constructor, s is a tensor of predicted trajectory, T is

the number of future time steps.

For scoring, we apply the MLP, W(·), with the same

structure as regression branch to generate the K confidence

scores for each of the trajectory proposals.

C = {ci ∈ R : ci = W(yi), 1 ≤ i ≤ K, } (2)

3.3. Region­based Training Strategy

As shown in previous work [33], direct regression for all

the trajectory proposals leads to the mode average problem,

which hampers the multimodalily property of the model.

One feasible solution to overcome the mode average prob-

lem is to calculate the regression loss and classification loss

only using the proposal with the minimum final displace-

ment error. We term this as the vanilla training strategy.

Although our model achieves competitive results under this

training strategy using 6 trajectory proposals, the predic-

tion results are confined to a local region around the ground

truth trajectory due to the small number of proposals are
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Figure 3. Overview of the region-based training strategy. We first

distribute each proposal to one of the M regions. These propos-

als, shown in colored rectangles, learn corresponding proposal fea-

ture through the mmTransformer. Then we select the proposals

assigned to the region where the GT endpoints locate, generate

their trajectories as well as their associated confidence scores, and

calculate the losses for them.

used. However, the modality collapsing issue occurs when

we attempt to increase the number of proposals to improve

diversity.

To address the limitation of the vanilla training strategy,

we propose a novel training strategy called region-based

training strategy (RTS), which groups trajectory proposals

into several spatial clusters based on the spatial distribution

of the ground truth endpoints, and optimizes the framework

to improve the prediction results within each cluster.

The strategy is illustrated in Fig 3. For each single sce-

nario, we first rotate the scene to align the heading direction

of the target vehicle to +y axis, and make all coordinates

centered at the last observation point of the target vehicle.

Based on that, we partition the sample space of target ve-

hicles into M regions, without any overlaps between them.

The detailed analysis of region shape and region number

is illustrated in Section 4.3 and the procedure of the par-

tition is illustrated in appendix. After that, we equally di-

vide the total K proposals of mmTransformer into M parts,

with each of them assigned to a specific region. As a re-

sult, each region will possess N individual proposals, where

N = K/M . It is noted that the pre-processing in our work

ensures that all the samples can share the same partition

map.

During the training, we utilize the regression loss and

classification loss in a similar way to vanilla training strat-

egy. The difference is that we calculate the loss for all the

proposals that are assigned to the region where ground truth

endpoint locate, rather than the one closest to the ground

truth. In this way, we improve the multimodal results in

a region-based manner, which optimizes the predictions in

one region without affecting any other regions.

3.4. Training Objective

Since all the modules are differentiable, our framework

yields fully supervised end-to-end training. The final loss

of our model is composed of regression loss, scoring loss,

and an auxiliary loss for multi-task learning. They are the

Huber loss for regression, the KL divergence for scoring tra-

jectories, and an auxiliary loss for the region classification

respectively. The detail of losses is as follows:

Regression Loss. Lreg is the Huber loss over per-step co-

ordinate offsets.

Lreg =
1

N

N∑

i=1

LHuber(si, sgt), (3)

where si is the i-th predicted trajectory generated by pro-

posal feature decoder, and the sgt is the ground truth trajec-

tory.

Confidence Loss.To assign each trajectory a confidence

score, we follow the [33] to tackle this scoring problem of

trajectory prediction via a maximum entropy model,

τ(y) =
exp (W(y))

∑N

i=1 exp (W(yi))
, (4)

Yregion = {y1, . . . ,yN},

where Yregion ⊂ Y is a subset of proposal features selected

by the region-based training strategy from Y .

λ(s) =
exp (−D(s, sgt))∑N

i=1 exp (−D(si, sgt))
, (5)

where D(si) of each predicted trajectory si is defined

by the L2 distance of its endpoint to ground truth endpoint,

D(si, sj) = ‖si,T − sj,T‖2.

Lconf =
1

N

N∑

i

DKL(λ(si)||τ(yi)). (6)

As we want the distribution of the predicted score to stay

close to the target distribution calculated in Eq 5, We use

the Kullback-Leibler Divergence as the loss function.

Classification Loss. We introduces region classification

loss to ensure model can identify correct region. When the

proposal number K is large, we find that using such auxil-

iary loss Lcls helps to regularize the confidence loss, which

accelerates the convergence of mmTransformer + RTS. The

details of Lcls is provided in appendix.

Intermediate Layer Losses. In order to accelerate the

training process, we add Proposal Feature Decoder and the

aforementioned combination of losses after each decoder

layer of social constructor.

Total Loss. Since the total loss function can be viewed as

the summation of multiple distinct tasks, we use multi-task

learning approach in [17, 22] to balance them.
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Methods minADE minFDE MR(%)

NN [6] 1.7129 3.2870 53.69

LSTM ED [6] 2.34 5.44 -

TNT [33] (4th) 0.9358 1.5384 13.28

LGCN [21] (7th) 0.8679 1.3640 16.34

LA [25] (21th) 0.9436 1.5486 21.79

WIMF [18] (8th) 0.8995 1.4220 16.69

mmTrans. (5th) 0.8435 1.3383 15.42

mmTrans.+RTS (1st) 0.8704 1.3688 13.00

Table 1. Comparison with state-of-the-art methods on the Argov-

erse test set (K=6). Here, mmTrans. stands for 6-proposal mm-

Transformer, while mmTrans.+RTS stands for 36-proposal mm-

Transformer trained with RTS.

L =
1

σ2
1

Lreg +
1

σ2
2

Lconf +
1

σ2
3

Lcls +
3∑

i=1

log(σi + 1), (7)

where σi, i ∈ {1, 2, 3} are learnable loss weights.

3.5. Inference

During inference, all the K proposals are used to gener-

ate final results. In order to merge multimodal predictions, a

selection algorithm inspired by the non-maximum suppres-

sion algorithm is used to reject near-duplicate trajectories

based on the euclidean distances of endpoints (the detailed

procedure can be found in appendix).

4. Experiments

4.1. Experimental Setup

Dataset. We perform experiments on Argoverse motion

forecasting benchmark [6], which involves 340k 5s long

trajectory sequences and corresponding contextual informa-

tion. The sequences are split into 205,942 training, 39,472

validation and 78,143 testing cases, respectively. Given a 2-

second history trajectory and the context as inputs, the goal

is to forecast the future movements of the target vehicle over

the next 3 seconds. For each scenario, local map informa-

tion can be represented as a set of centerline-based poly-

lines from HD map. Besides, past trajectories and locations

of the adjacent vehicles and the ego-car are also included in

order to model the interaction between them.

Metrics. We evaluate our model in terms of the widely used

Average Displacement Error (ADE) and Final Displace-

ment Error (FDE). Due to the multimodal nature of trajec-

tory prediction, minADE, minFDE and miss rate (MR) of

the top K (K=6) trajectories are also reported following the

evaluation criteria of the Argoverse benchmark.

Motion Map Social RTS Proposal minADE minFDE MR(%)

X 6 0.915 1.681 23.3

X X 6 0.794 1.284 14.4

X X 6 0.826 1.418 17.3

X X X 6 0.713 1.153 10.6

X X X 36 0.833 1.453 17.6

X X X X 36 0.721 1.211 9.2

Table 2. Ablation study on the effectiveness of different com-

ponents of mmTransformer on the Argoverse validation dataset.

As shown in the last two rows of Table 2, same model without

RTS shows a poorer performance when other condition remain the

same.

4.2. Results

We compare our model with the state-of-the-art methods

in the test set of Argoverse. The scores of different meth-

ods in Table 1 were extracted before the CVPR submission

deadline (16/11/2020) from the Argoverse Leaderboard.

As shown in Table 1, we include the results of vanilla

mmTransformer and mmTransformer model trained with

RTS. It shows that our models achieve the best perfor-

mance in terms of all the metrics, which indicates that our

method is capable of learning high quality proposal features

by employing stacked transformers, and achieving promis-

ing multimodal results by using the RTS. Compared to the

6-proposal mmTransformer without RTS , we observe a

slightly drop of minADE and minFDE in the 36-proposal

mmTransformer with RTS. It is the large number of pro-

posals that leads to the drop of minADE and minFDE.

We explain the reason using outcome of 36-proposal mm-

Transformer as an example: Limitted by the fixed num-

ber (6) of final outputs, we discard the redundant candi-

date proposals to retain the diversity(i.e., MR) during the

post-processing. As a side effect, the number of selected

proposals in GT region is decreased, which may hurt the

accuracy, i.e. minFDE and minADE. We regard this as a

trade-off between accuracy and diversity. Besides, the ac-

cruacy drop caused by post-processing is a common issue in

machine learning community [3], especially when selecting

final predictions from a large candidate set.

Visualization of Multimodal Motion Prediction. In Fig 4,

we showcase multimodal prediction results of mmTrans-

former on the Argoverse validation set. We can see that

mmTransformer generates trajectories covering all the plau-

sible modes in each driving scenario. Although mmTrans-

former itself is capable to make reasonable predictions (col-

umn 1,2) with trajectory proposals, it fails to achieve com-

parable performance as mmTransformer+RTS in more chal-

lenging scenarios (column 3,4), as the modalities may con-

centrate in a specific area.
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Results of 36-proposal mmTransformer+ RTS filtered by confidence score

Results of 6-proposal mmTransformer

Figure 4. Qualitative comparison between mmTransformer (6 proposals) and mmTransformer+RTS (36 proposals) on four driving scenarios

from Argoverse validation set. Green rectangle represents the target vehicle. The red and yellow arrows indicate the groundtruth and

predicted trajectories with high confidence scores. For a clear visualization, we filter the trajectories with scores lower than the uniform

probability in each scenario. It can be seen that most of plausible areas are covered by our prediction results.

4.3. Ablation Study

We first conduct ablation study to analyze the impor-

tance of each component in our model. Then, we evaluate

two different partition methods, K-means and manual parti-

tion. We finally measure impact of the number of region M
and the number of proposal in each region N on mmTrans-

former+RTS.

Importance of Each Transformer Module and RTS. To

analyze the importance of each component in mmTrans-

former, we compare the results of several models on Ar-

goverse validation set. We consider the motion extractor in

mmTransformer as the baseline model, and progressively

add other transformer modules to aggregate contextual in-

formation, and utilize RTS to encourage multimodal pre-

diction. Observations can be drawn from the experimental

results shown in Table 2.

Firstly, all the structural components contribute to the

performance of the framework. We observe that the MR

is improved from 23.3% to 10.6% by applying all the trans-

former modules (row 1-4). With the contextual informa-

tion being captured and incorporated by each module, the

model gains more comprehensive understanding of the sce-

nario. For example, the map information captured by map

aggregator brings useful road features (e.g. layout of lane

lines), which benefits the overall performance (from 23.3%

to 14.4%). Also, The model with map aggregator and social

constructor further promotes the MR to 10.6%. It is noted

that we stack these modules hierarchically rather than fol-

lowing a parallel design because of the logical relationship

Partition method minADE minFDE MR(%)

K-means 0.72 1.21 9.21

Manual partition 0.73 1.23 9.13

Table 3. Impact of different partition algorithms on the Argoverse

validation dataset.

between different contextual information.

Besides, RTS facilities the final results by increasing

the number of proposals to encourage multimodal predic-

tion. As shown in Table 2, the region-based training strat-

egy boosts the performance by a large margin, from 17.6%

to 9.2% in MR. We attribute the large improvement to the

large amount of proposals used by the RTS. However, train-

ing large number of proposals with vanilla strategy can not

result in the comparable performance, since the optimiza-

tion of a single proposal compromises the others under this

setting. The comparison results demonstrate that RTS helps

to preserve the modality information.

Spatial partitions. We evaluate two ways to divide the sur-

rounding space for RTS. The first one adopts constrained

K-means [30], while we manually split the space into fan-

shaped regions(similar with Fig 3) for the another one.

Training samples are evenly distributed in each region for

data balance. For a fair comparison, we partition the space

into 6 regions, according to the number of regions, and as-

sign 6 proposals (represented as regional proposals) to each

region. Compared to K-means based partition algorithm,

manual partition can successfully divide some blurry sam-
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Figure 5. Visualization of the multimodal prediction results on Argoverse validation set. We utilize all trajectory proposals of mmTrans-

former to generate multiple trajectories for each scenario and visualize all the predicted endpoints in the figures (left three columns). For

clear illustration, we filter the points with confidences lower than the uniform probability(1/K). The background represents all the pre-

dicted results and colored points indicate the prediction results of a specific group of proposals (regional proposals). We observe that the

endpoints generated by each group of regional proposals are within the associated region. Miss Rate (MR) matrix of regional proposals is

shown on the upper right, where the value in each cell (i, j) represents the MR calculated by proposals assigned to region i and ground

truth in region j. The proposals possess high accuracy when the GT is located in their region. For reference, the layout of the regions

produced by constrained K-means[30] is shown in the bottom right.

N

MR(%) M
3 6 9

1 28.87 20.67 23.86

6 11.65 9.21 9.37

8 12.96 9.23 9.31

Table 4. Impact of number of region M and the number of pro-

posal in each region N on the Argoverse validation dataset.

ples to correct region. Since we assume that the misclassi-

fied samples may perturb the learning of regional proposal,

manual partition can, therefore, achieve slightly higher per-

formance, as shown in Table 3. How to classify the samples

to help training remains to be an open topic.

Number of Proposals. We further conduct experiments to

explore the appropriate number of proposals and regions

utilized in mmTransformer+RTS. We hypothesis that the

number of regions (M ) and the number of proposals in each

region (N ) jointly control the concentration and coverage of

predicted trajectories. We find that the ratio between M and

N affects the performance significantly when total num-

ber of proposal is not very large. Specifically, the perfor-

mance drops when the ratio is far way from 1. However, the

performance increases marginally and even becomes worse

when the total number of proposal is large, regardless of the

changing of ratio. According to our experiments, the model

gives the most desirable performance when M and N both

equal to 6.

Visualization of Region-based Training Strategy. Fig 5

illustrates the effectiveness of RTS (36 proposals). We con-

duct the experiments on Argoverse validation set. As shown

in the MR matrix of Fig 5, cell (i, j) represents the missing

rate of proposals assigned to i-th region (named as region

proposals) in predicting all cases that belong to j-th region.

The low MR in diagonal indicates that the regional pro-

posals have learned specialization in assigned region. We

observe that each proposal tends to generate the trajectory

which ends in the preassigned region, which demonstrates

that mmTransformer has learned different modalities in a

region-based manner.

5. Conclusion

We develop a transformer-based motion prediction

model called mmTransformer for accurate multimodal pre-

diction. A novel partition training method is introduced to

improve the multimodal prediction. The experiments show

the competitive result on the Argoverse benchmark.
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