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Abstract

The existence of noisy labels in real-world data nega-

tively impacts the performance of deep learning models. Al-

though much research effort has been devoted to improving

robustness to noisy labels in classification tasks, the prob-

lem of noisy labels in deep metric learning (DML) remains

open. In this paper, we propose a noise-resistant training

technique for DML, which we name Probabilistic Ranking-

based Instance Selection with Memory (PRISM). PRISM

identifies noisy data in a minibatch using average similarity

against image features extracted by several previous ver-

sions of the neural network. These features are stored in

and retrieved from a memory bank. To alleviate the high

computational cost brought by the memory bank, we intro-

duce an acceleration method that replaces individual data

points with the class centers. In extensive comparisons with

12 existing approaches under both synthetic and real-world

label noise, PRISM demonstrates superior performance of

up to 6.06% in Precision@1.

1. Introduction

Commonly resulting from human annotation errors or

imperfect automated data collection, noisy labels in training

data degrade the predictive performance of models trained

on them [11, 47, 16]. Manual inspection and correction of

labels are labour-intensive and hence scale poorly to large

datasets. Therefore, training techniques that are robust to

incorrect labels in training data play an important role in

real-world applications of machine learning.

To date, most works on noise-resistant neural networks

[11, 17, 31, 52, 47, 48, 16] focus on image classification.

Little research effort has been devoted to noise-resistant

deep metric learning (DML). The goal of DML is to learn a

distance metric that maps similar pairs of data points close

together and dissimilar pairs far apart, based on a predefined

notion for similarity. DML finds diverse applications such

as image retrieval [18, 10, 33], landmark identification [49],

and self-supervised learning [25].

Pair-based loss functions encourages DML networks to

distinguish a similar pair of data points from one or more

dissimilar pairs. Large batch sizes often lead to improved

performance [6, 46, 5], as larger batches are more likely

to contain informative examples. Pushing the idea of large

batches to an extreme, [46] collects all positive and negative

data samples from a memory bank. However, in the pres-

ence of substantial noise, indiscriminate use of all samples

could lower performance. Alternatively, [26] uses learnable

class centers to replace individual data samples in order to

reduce computational complexity. Nonetheless, the cluster

centers can also be sensitive to outliers and label noise.

We propose a noise-resistant deep metric learning algo-

rithm, Probabilistic Ranking-based Instance Selection with

Memory (PRISM), which works with both the memory bank

approach and the class-center approach. PRISM computes

the probability that a label is clean based on the similarities

between the data point and other data points using features

extracted during the last several training iterations. This

may be seen as modeling the posterior probability of the

data label. For data points with high probability, we ex-

tract their features and insert them into the memory bank,

which is used in subsequent model updates. In addition, we

develop a smooth top-R (sTRM) trick to adjust the thresh-

old for noisy data identification as well as an acceleration

technique that replaces individual data points with the class

centers in the probability calculation.

We perform extensive empirical evaluations on both syn-

thetic and real datasets. Inspired by the the “noise cluster”

phenomenon observed from real-world data, we introduce

the Small Cluster noise model to mimic open-set noise in

real data. Experimental results show that PRISM achieves

superior performance compared to 12 existing DML and

noise-resistant training techniques under symmetric noise,

Small Cluster noise, and real noise. In addition, the accel-
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eration trick speeds up the algorithm by a factor of 6.9 on

SOP dataset. The code and data are available at https:

//github.com/alibaba-edu/Ranking-based-

Instance-Selection.

2. Related Work

Noise-resistant Training in Classification. Training under

noisy labels has been studied extensively for classification

[2, 47, 48, 16, 54, 1]. A common approach is to gradu-

ally detect noisy labels and exclude them from the training

set. F-correction [31] models the noise as a class transition

matrix. MentorNet [17] trains a teacher network that pro-

vides weight for each sample to the student network. Co-

teaching [11] trains two networks concurrently. Samples

identified as having small loss by one network is used to

train the other network. Co-teaching+ [52] trains on sam-

ples that have small losses and different predictions from

the two networks.

Differing from the conventional classification problem,

metric learning learns an effective distance metric that

works well for unseen classes and is evaluated using

retrieval-based criteria. In the experiments, PRISM demon-

strates superior performance to several noise-resistant clas-

sification baselines.

Models of Label Noise. Though noisy labels are preva-

lent, it is often difficult to ascertain and control the degree

of noise in natural datasets. Artificial noisy models are thus

commonly used as evaluation metrics for noise-resistant al-

gorithms. In the symmetric noise model [40], a proportion

R of data points belonging to one ground-truth class are

uniformly distributed to all other classes. In pairwise noise

(e.g., [11]), data points from each class are transferred to a

designated target class. [16] curates a natural dataset with

controlled levels of noise.

Open-set noise refers to the presence of data points that

do not belong to any classes recognized by the dataset. Un-

der open-set noise, it is futile to model noise as a class tran-

sition matrix, which adds to the difficulty. In classification,

[47] simulates open-set noisy labels by adding data from

other datasets. In this paper, we propose the Small Cluster

noise model for open-set label noise in metric learning.

Deep Metric Learning. We broadly categorize deep met-

ric learning into 1) pair-based methods and 2) proxy-based

methods. Pair-based methods [34, 44, 43, 37] calculate loss

based on the contrast between positive pairs and negative

pairs, which is often calculated using contrastive loss [7],

triplet losses [14], or softmax loss [9]. In this process, iden-

tifying informative positive and negative pairs becomes an

important consideration [35, 12, 36, 6, 43, 37, 50]. Proxy-

based methods [26, 32, 6, 19, 38, 55, 8, 53, 4] represent each

class as one or more proxy vectors, and use the similarities

between the input data and the proxies to calculate the loss.

Proxies are learned from data during model training, which

could deviate from the class center under heavy noise and

cause performance degradation.

Noisy Labels in Metric Learning: To our knowledge, the

only method which explicitly handles noise in neural metric

learning is [42]. The technique estimates the posterior label

distribution using a shallow Bayesian neural network with

only one layer. Due to its computational complexity, the ap-

proach may not scale well to deeper network architectures.

A few works attempt to handle outliers in normal train-

ing data in DML, but do not explicitly deal with substan-

tial label noise. Wang et al. [45] uses the pair-based loss

and trains a proxy for each class simultaneously to adjust

the weights of the outliers, but substantial label noise may

cause the learned proxies to be inaccurate. Ozaki et al. [30]

handles noisy data in DML by first performing label clean-

ing using a model trained on a clean dataset, which may not

be available in real-world applications. In this paper, we do

not rely on the existence of a clean dataset.

3. The PRISM Approach

The detection of noisy data labels usually attempts to

catch data points that stand out from others in the same

class. However, distinguishing such data samples in DML

requires a good similarity metric. The learning of a good

similarity metric in turn depends on the availability of clean

training data, thereby creating a chicken-and-egg problem.

To cope with this challenge, PRISM adopts an online

data filtering approach. At every training iteration, we use

the features extracted during the past several iterations to

filter out a portion of training data. The rest are considered

clean, added to the memory bank, and used in updating the

metric.

3.1. Identifying Noisy Labels

Let the training set be X = {(x0, y0), (x1, y1), ...,
(xN , yN )}, where xi is an image and yi is the correspond-

ing label. N is the size of training set. The aim of DML is to

learn a convolutional neural network, f(·), which extracts a

feature vector f(xi) for image xi, such that the cosine sim-

ilarity S(f(xi), f(xj)) between f(xi) and f(xj) is high if

yi = yj and low if yi 6= yj :

S(f(xi), f(xj)) =
f(xi)

T f(xj)

‖f(xi)‖‖f(xj)‖
. (1)

In addition, we denote the current mini-batch as B =
{(x0, y0), (x1, y1), ..., (xB , yB)} where B is the batch size.

A pair of feature (f(xi), f(xj)) is called positive pair if

yi = yj , negative pair if yi 6= yj .

To identify noisy labels, we maintain a first-in first-out

memory bank M, M = {(v0, y0), (v1, y1), ..., (vM , yM )},

to store historic features of data samples. M is the size

of memory bank. In every step of stochastic gradient de-

scent, we separate the clean data from the noisy data, and
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append the current feature vi of clean data xi to the mem-

ory bank. If the maximum bank capacity is exceeded, the

oldest features are dequeued from the memory bank, so that

we always keep track of the more recent features.

We compare the features of xi with the content of the

memory bank to determine if its label yi is noisy. If yi is

a clean label, then the similarity between xi and other sam-

ples with the same class label in the memory should be large

compared to its similarity with samples from other classes.

Based on this intuition, we define the probability of (xi, yi)
being a clean data point, Pclean(i), as follows

Pclean(i) =
exp (T (xi, yi))

∑

k∈C exp (T (xi, k))
(2)

T (xi, k) =
1

Mk

∑

(vj ,yj)∈M,yj=k

S(f(xi), vj) (3)

Mk is the number of samples in class k in the memory

bank. T (xi, k) is the average similarity between xi and all

the stored features vj in class k. T (xi, k) may be seen as

logP (X = xi|Y = k) up to a constant. Equation 2 can be

understood as the probability P (Y = k|X = xi), assuming

a uniform prior for P (Y = k) and identical normalization

constants for every class. Although similar math forms can

be found in applications such as metric learning [9, 32], data

visualization [39], and uncertainty estimation [24, 51], we

note that its use in noise-resistant DML is novel.

When Pclean(i) falls below a threshold m, we treat

(xi, yi) as a noisy data sample. We propose two meth-

ods to determine the value of threshold m: the top-R
method (TRM) and the smooth top-R method (sTRM). Un-

der TRM, we define a filtering rate (i.e., estimated noise

rate) R. In each minibatch, we treat (xi, yi) as noisy if

Pclean(i) falls in the smallest R% of all samples in the cur-

rent minibatch B.

In contrast, sTRM keeps track of the average of the Rth

percentile of Pclean(i) values over the last τ batches. For-

mally, let Qj be the Rth percentile Pclean(i) value in j-th

mini-batch, the threshold m is defined as:

m =
1

τ

t
∑

j=t−τ

Qj (4)

Compared to TRM, the sliding window approach of sTRM

reduces the influence of a single mini-batch and creates a

smooth and more accurate estimate of the Rth percentile.

To create balanced minibatches, we first sample P
unique classes and sample K images for each selected class,

yielding PK images in every minibatch.

3.2. Accelerating PRISM

The above method requires computing the similarities

between all pairs of data samples, which has high time com-

plexity. We propose a simple technique for improving the

efficiency. For the kth cluster, we replace its Mk data sam-

ples with the mean feature vector wk of the class,

∑

(vj ,yj)∈M
yj=k

S(f(xi), vj)

Mk

=









1

Mk

∑

(vj ,yj)∈M
yj=k

vj
‖vj‖









f(xi)

‖f(xi)‖

= wk

f(xi)

‖f(xi)‖
,

(5)

wk =
1

Mk

∑

(vj ,yj)∈M,yj=k

vj
‖vj‖

. (6)

Plugging Eq. (5) into Eq. (2), Pclean(i) can be expressed

as:

Pclean(i) = exp

(

wyi

f(xi)

‖f(xi)‖

)

/
∑

k∈C

exp

(

wk

f(xi)

‖f(xi)‖

)

.

(7)

The time complexity of Eq. (2) is O(PKN) for a mini-

batch of size PK and a training set of N samples. Adopting

Eq. (7) reduces the time complexity to O(PK|C|), where

|C| is the total number of classes which is much smaller

than N . This yields an acceleration factor of N
|C| .

3.3. The PRISM Algorithm

We now describe the PRISM algorithm, shown as Algo-

rithm 1. In each iteration of training, PRISM first calculates

Pclean(i) for each (xi, yi) tuple. In the first iteration, when

the class center vector wyi
has not been updated and is the

zero vector, all data samples in class yi are considered clean

(Line 3). At this moment, the memory bank does not con-

tain any data points of class k, so we cannot compute the

mean vector wk. After the first iteration, we will update

the center vector to a non-zero value and perform sample

selection based on Pclean(i).
After that, we compute the threshold m and add data

points with Pclean(i) > m to Bclean (Line 12). To reduce

computational cost, we update only the center vectors of

classes in Bclean (Line 17). Finally, the loss is calculated to

update parameters of model f(·) (Line 19). PRISM com-

putes the loss with clean labels and perform stochastic gra-

dient descent. The loss functions are described in the fol-

lowing section.

3.4. Loss Functions

The traditional pair-based contrastive loss function [7]

computes similarities between all pairs of data samples

within the mini-batch B. The loss function encourages f(·)
to assign small distances between samples in the same class

and large distances between samples from different classes.

6813



Algorithm 1: A training iteration of PRISM

Input : B = {(x0, y0), (x1, y1), ..., (xB , yB)}:

a given minibatch of data with size B;

f(·): a given deep metric model;

Parameter: {wk|k ∈ C}: the set of mean feature

vectors of all classes, all initialized to

zero before training commences;

1 for each (xi, yi) ∈ B do

2 if wyi
=

#»

0 then

3 Pclean(i) = 1;

4 else

5 Calculate Pclean(i) according to Eq. (7);

6 end

7 end

8 Calculate the threshold m using TRM or sTRM;

9 Initialize Bclean as an empty set;

10 for each (xi, yi) ∈ B do

11 if Pclean(i) > m then

12 Add (f(xi), yi) to Bclean;

13 end

14 end

15 Enqueue Bclean into the Memory Bank

16 for each (vi, yi) ∈ Bclean do

17 Update wyi
according to Eq. (6);

18 end

19 Calculate loss L(Bclean) and update the parameters

of f(·)

More formally, the loss for mini-batch B is

Lbatch(B) =
∑

i,j∈B,yi 6=yj

max(S(f(xi), f(xj))− λ, 0)

−
∑

i,j∈B,yi=yj

S(f(xi), f(xj))
(8)

where λ ∈ [0, 1] is a hyperparameter for the margin. With

a memory bank M that stores the features of data samples

in previous minibatches in a first-in-first-out manner [46],

we can employ many more positive and negative pairs in

the loss, which may reduce the variance in the gradient es-

timates. The memory bank loss can be written as:

Lbank(M,B) =
∑

(xi,yi)∈B, (vj ,yj)∈M
yi 6=yj

max(S(f(xi), vj)− λ, 0)

−
∑

(xi,yi)∈B, (vj ,yj)∈M
yi=yj

S(f(xi), vj).
(9)

The total loss is the sum of the batch loss Lbatch(B)
and the memory bank loss Lbank(M,B), referred to as the

memory-based contrastive loss [46]. As we adopt the mem-

ory bank setup to identify data with noisy labels, PRISM

works well under the memory-based contrastive loss.

Another loss we employ with PRISM is the Soft Triple

loss [32], a type of proxy-based loss function. This loss

maintains H learnable proxies per class. A proxy is a vector

that has the same size with the feature of an image. The

similarity between an image to a given class of images is

represented as a weighted similarity to each proxy in the

class. The loss is computed as the similarities between the

minibatch data and all classes:

LSoftTriple = − log
exp(λ(S′

i,yi
− δ))

exp(λ(S′
i,yi

− δ)) + exp(λS′
i,j)

, (10)

S′
i,j =

∑H

h=1 exp
(

γf(xi)
⊤phj

)

f(xi)
⊤phj

∑H

h=1 exp
(

γf(xi)⊤phj
)

. (11)

λ and γ are predefined scaling factors. δ is a predefined

margin. phj is the h-th proxy for class j, which is a learnable

vector updated during model training.

4. Experimental Evaluation

4.1. Datasets

We compare the algorithms on five datasets, including:

• CARS [20], which contains 16,185 images of 196 dif-

ferent car models. Following [20], we use the first 98

models for training and the rest for testing, and incor-

porate synthetic label noise into the training set.

• CUB [41], which contains 11,788 images of 200 dif-

ferent bird species. Following [41], we use the first

100 species for training and the rest for testing, and

incorporate synthetic label noise into the training set.

• Stanford Online Products (SOP) [29], which con-

tains 59,551 images of 11,318 furniture items on eBay.

We use 59,551 images in all classes for training and the

rest for testing, and incorporate synthetic label noise

into the training set.

• Food-101N [21], which contains 310,009 images of

food recipes in 101 classes. The test set is the Food-

101 [3] dataset, which contains the same 101 classes

as Food-101N. Images in Food-101N are obtained us-

ing search results from Google, Bing, Yelp, and Tri-

pAdvisor with an estimated noise rate of 20% [21]. In

the same evaluation setup with CARS, CUB, and SOP,

we use 144,086 images in the first 50 classes (in al-

phabetical order) as the training set, and the remaining

51 classes in Food-101 as the test set which contains

51,000 images.
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Figure 1: Example images in CARS-98N. Images in the

first row have clean labels. The second row shows some im-

ages with noisy labels, including car interiors and car parts.

• CARS-98N. We build a new noisy label dataset named

CARS-98N by crawling 9,558 images for 98 car mod-

els from Pinterest. We used the Pinterest image search

engine to retrieve images using the 98 labels from the

CARS training set as the query terms. The CARS-98N

is only used for training, and the test set of CARS is

used for performance evaluation. Figure 1 shows ex-

ample images in this dataset. The noisy images often

contain the interior of the car, car parts, or images of

other car models.

4.2. Synthesizing Label Noise

In the experiments, we adopt two models for noisy label

synthesis: 1) symmetric noise and 2) Small Cluster noise.

Symmetric noise [40] has been widely used to evaluate the

robustness of classification models (e.g., [11, 52, 31, 22]).

Given a clean dataset, the symmetric noise model assigns a

predefined portion of data from every ground-truth class to

all other classes with equal probability, without regard to the

similarity between data samples. After the noise synthesis,

the number of classes remains unchanged.

We contend that noisy labels that occur naturally differ

from the symmetric noise model. Observing Food-101N

and CARS-98N, the two datasets with naturally occurring

noisy labels, we notice that some noisy data points are close

to each other and can form small clusters. This is evident in

Figure 1, where the car interior and car part images can form

their own clusters. Further, the number of classes in metric

learning may not be fixed. For example, in person or vehicle

reidentification, two people or vehicles with similar looks

may be inadvertently merged into one cluster. Conversely,

images of the same person with different outfits may be sep-

arated into different clusters.

To mimic these traits of naturally occurring label noise,

we propose a new noise synthesis model — Small Cluster.

In this method, we first cluster images from a randomly se-

lected ground-truth class into a large number of small clus-

ters, using features extracted from a pretrained neural net-

work. Here we use L2-normalized features from ResNet-18

pretrained on ImageNet. The number of clusters is set to

one half of the number of images in the class. Each cluster

is then merged into a randomly selected ground-truth class.

After every iteration, the number of classes decreases by

one. In this way, the Small Cluster model creates an open-

set label noise scenario [47] as the ground-truth classes are

eliminated in the corrupted dataset.

4.3. Baseline Techniques

We compare PRISM against 12 baselines, including

four baselines designed for noise-resistant classification and

eight baselines for deep metric learning:

• Co-teaching [11], which trains two CNNs jointly. Data

samples assigned small losses by one model are used

to train the other model.

• Co-teaching+ [52]. Similar to Co-teaching, a model

is trained using data samples that (1) the two models

disagree on, and (2) receive small losses from the other

model.

• Co-teaching [11] with Temperature [53], which adds a

temperature hyperparameter to the cross-entropy loss.

• F-correction [31], which multiplies the class transition

matrix to the loss function. Since Small Cluster pro-

duces open-set label noises, for which the class transi-

tion matrix is not properly defined, this baseline is only

used under symmetric noise settings.

• Eight DML algorithms. Four of them use proxy-based

losses (including Soft Triple [32], FastAp [6], nSoft-

max [53] and proxyNCA [26]), and the other four use

pair-based losses (including MS loss [43], circle loss

[37], contrastive loss [7] and memory contrastive loss

(MCL) [46]). They treat all data samples as clean.

We train the classification baselines using cross-entropy.

When retrieving images during inference, we use the L2-

normalized features from the layer before the final linear

classifier.

For Co-teaching, Co-teaching+ and Memory Contrastive

Loss [46], we use the official implementation. The

other DML algorithms are implemented by Pytorch Met-

ric Learning [28]. We follow the hyperparameter settings

given in the respective papers or code repositories. For Co-

teaching and Co-teaching+, we use the learning rate (LR)

scheduler given in their code, while for others (including

our algorithm), cosine LR decay [23] is used. We set the

batch size to 64 for experiments on all datasets and all mod-

els. The input images are first resized to 256x256, then ran-

domly cropped to 224x224. A horizontal flip is performed

on the training data with a possibility of 0.5.
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Table 1: Precision@1 (%) on CARS, SOP, and CUB dataset with symmetric label noise.

CARS SOP CUB

Noisy Label Rate 10% 20% 50% 10% 20% 50% 10% 20% 50%

Algorithms for image classification under label noise

Co-teaching [11] 73.47 70.39 59.55 62.60 60.26 52.18 53.74 51.12 45.01

Co-teaching+ [52] 71.49 69.62 62.35 63.44 67.93 58.29 53.31 51.04 45.16

Co-teaching [11] w/ Temperature [53] 77.51 76.30 66.87 73.71 71.97 64.07 55.25 54.18 50.65

F-correction [31] 71.00 69.47 59.54 51.18 46.34 48.92 53.41 52.60 48.84

DML with Proxy-based Losses

FastAP [6] 66.74 66.39 58.87 69.20 67.94 65.83 54.10 53.70 51.18

nSoftmax [53] 72.72 70.10 54.80 70.10 68.90 57.32 51.99 49.66 42.81

ProxyNCA [26] 69.79 70.31 61.75 71.10 69.50 61.49 47.13 46.64 41.63

Soft Triple [32] 76.18 71.82 52.53 68.60 55.21 38.45 51.94 49.14 41.46

DML with Pair-based Losses

MS [43] 66.31 67.14 38.24 69.90 67.60 59.58 57.44 54.52 40.70

Circle [37] 71.00 56.24 15.24 72.80 70.50 41.17 47.48 45.32 12.98

Contrastive Loss [7] 72.34 70.93 22.91 68.70 68.80 61.16 51.77 51.50 38.59

Memory Contrastive Loss (MCL) [46] 74.22 69.17 46.88 79.00 76.60 67.21 56.72 50.74 31.18

MCL + PRISM (Ours) 80.06 78.03 72.93 80.11 79.47 72.85 58.78 58.73 56.03

For Soft Triple and Soft Triple with PRISM, we set the

number of proxies per class H = 10 for CARS-98N and

Food-101N. Other hyperparameters follow [32]. The size

of the memory bank is set to the size of the training dataset

as in [46].

Again following [46], when comparing performance on

CARS, CUB and CARS-98N, we use BN-inception [15] as

the backbone CNN model for all algorithms. The dimension

of the output feature is set as 512, the same as in [46]. No

other tricks (e.g., freezing BN layers) are used during the

experiments. For SOP and Food-101N, we use ResNet-50

[13] with a 128-dimensional output.

Testing is based on the ranked list of the nearest neigh-

bors for the test images. Specifically, we use Precision@1

(P@1) and Mean Average Precision@R (MAP@R) [27] as

the evaluation metrics. The test sets are noise-free, as the

purpose of the experiments is to evaluate the algorithms in

the presence of noisy labels in the training data.

4.4. Results and Discussions

Symmetric Label Noise. Table 1 shows the evaluation

results on CARS, SOP, and CUB under symmetric label

noise. PRISM with Memory Contrastive Loss achieves the

highest performance among all the compared algorithms.

As the noisy label rate increases, the Precision@1 scores

decrease for all approaches, but PRISM exhibits the least

performance drop among all methods. In CUB, the perfor-

mance of PRISM decreases by 0.05% when the noise level

increases from 10% to 20%, and by less than 3% when noise

increases to 50%.

The robust classification methods, including Co-

teaching, Co-teaching+, and F-correction, show a certain

level of robustness to noisy labels. However, their perfor-

Table 2: Precision@1 (%) on CARS, SOP, and CUB with

Small Cluster label noise.

CARS SOP CUB

Noisy Label Rate 25% 50% 25% 50% 25% 50%

Algorithms for image classification under label noise

Co-teaching 70.57 62.91 61.97 58.08 51.75 48.85

Co-teaching+ 70.05 61.58 62.57 59.27 51.55 47.62

Co-teaching w/ Temperature 75.26 66.19 70.19 68.50 54.59 48.32

DML with Proxy-based Losses

FastAP 62.49 53.07 70.66 67.55 52.18 48.46

nSoftmax 71.61 62.29 70.00 61.92 49.61 41.78

ProxyNCA 69.50 58.34 67.95 62.25 42.07 36.48

Soft Triple 73.26 66.66 73.63 64.14 56.18 50.35

Soft Triple + PRISM (Ours) 77.60 70.45 70.99 69.38 57.61 54.27

DML with Pair-based Losses

MS 63.92 43.73 67.32 62.17 53.60 41.66

Circle 53.03 19.95 70.33 40.48 44.07 22.96

Contrastive Loss 65.60 26.45 68.25 64.27 47.27 39.43

Memory Contrastive Loss (MCL) 69.46 36.43 75.61 68.71 52.25 41.58

MCL + PRISM (Ours) 77.08 68.26 78.56 73.84 55.77 53.46

mance is generally lower compared to DML approaches

and PRISM. Applying temperature normalization to cross-

entropy [53] boosts the performance of Co-teaching, espe-

cially on the SOP dataset.

Approaches with proxy-based loss achieve generally

high scores under CUB and CARS, even at 50% noise.

However, they generally perform worse than approaches

with pair-based loss under SOP. The average number of im-

ages per class in the SOP training set is only 5.26, in con-

trast to 82.18 in CARS, causing difficulties in accurately

estimating the proxy centers in SOP.

In comparison, pair-based losses are subject to severe

performance drops under high noise rates. The pair-based

loss takes a pair of samples (xi, xj) as unit. At 50% noise,

the correct pairs only account for 25% of all pairs, which

bears on the performance heavily. In addition, both MS loss
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Table 3: Precision@1 (%) and Mean Average Precision@R

(%) on CARS-98N and Food-101N [21].

CARS-98N Food-101N

P@1 MAP@R P@1 MAP@R

Algorithms for image classification under label noise

Co-teaching 58.74 9.10 59.08 14.66

Co-teaching+ 56.66 8.40 57.59 14.72

Co-teaching w/ Temperature 60.72 9.61 63.18 17.38

DML with Proxy-based Losses

ProxyNCA 53.55 8.75 48.41 9.30

Soft Triple 63.36 10.88 63.61 16.23

Soft Triple + PRISM (Ours) 64.81 11.21 64.46 17.53

DML with Pair-based Losses

MS 49.00 5.92 52.53 9.82

Contrastive 44.91 4.76 50.04 9.42

Memory Contrastive Loss (MCL) 38.73 3.34 52.58 9.88

MCL + PRISM (Ours) 57.95 8.04 52.47 9.64

[43] and circle loss [37] assign higher weights for learn-

ing the hard examples which could be the noisy data. This

causes the performance to drop significantly. The use of the

memory bank in MCL increases the performance. However,

the performance is still lower than that of proxy-based loss

approaches.

Small Cluster Open-set Label Noise. Table 2 reports

the Precision@1 scores achieved by various approaches

on datasets with Small Cluster label noise. Incorporating

PRISM into MCL improves the performance of the result-

ing model. The advantage of PRISM is especially pro-

nounced under 50% noise rate. A similar trend of perfor-

mance can be observed for SoftTriple + PRISM.

Real-world Noisy Datasets. Table 3 displays the perfor-

mance on two datasets with real-world label noise, CARS-

98N and Food-101N [21]. In both datasets, using Soft

Triple with PRISM achieves the best performance. In

CARS-98N, MCL performs worse than the naïve con-

trastive loss [7] because the presence of noise in the memory

bank hurts the performance of MCL. However, after adding

PRISM to MCL, we improved Precision@1 by as much as

19%. However, we do not observe performance improve-

ment on Food-101N from incorporating PRISM into MCL.

We attribute this to an interesting characteristic of Food-

101N, that many small clusters of open-set noise are often

unique to one ground-truth class. For example, images of

oatmeals often appear in the class apple-pie, but not in

similar classes like crab-cakes or chocolate-cake.

As a result, the model may have learned to treat oatmeals

to be special apple pies. The multi-center SoftTriple loss is

less susceptible to this phenomenon.

Training Time. Table 4 reports the time required for 5,000

training iterations. PRISM without centers (Eq. (2)) re-

quires the longest training time because it needs to calcu-

late average similarities of all classes for each minibatch

Table 4: Training time required with and without PRISM

for 5,000 iterations on the SOP dataset and 10% symmetric

label noise. The time recording starts when the memory

bank is completely filled at iteration 3,000.

Algorithm Training Time (Seconds)

Memory Contrastive Loss (MCL) 1,679.22

MCL + PRISM without centers 12,294.76

MCL + PRISM with centers 1,777.38

Soft Triple 1,685.47

Soft Triple + PRISM with centers 1,767.97

data. However, by maintaining center vectors to identify

noise (Eq. (7)), the required training time decreases sig-

nificantly. PRISM only incurs 6% more training time than

that of Memory Contrastive Loss on SOP Similar observa-

tion can be found when we change the loss function to Soft

Triple [32]. On CARS and CUB dataset, PRISM incurs up

to 10.4% more training time. Due to space limitation, we

show detailed results in the supplementary material. The

results show that PRISM is an efficient method to handle

noisy labels.

4.5. Ablation Study

Design of Pclean(i). We compare PRISM against slightly

different designs of the clean-data identification function

Pclean(i). As baselines, we adopt the following designs of

Pclean(i), which are compared with Eq. (2). The first base-

line, Batch-positive, uses the average similarity between

xi and same-class samples within the minibatch. This ap-

proach neither uses the memory bank nor considers the neg-

ative samples.

Pclean(i) ∝
1

Nyi

∑

(xj ,yj)∈B,yj=yi

S(f(xi), f(xj)) (12)

The second baseline, Memory-positive, uses the average

similarity between xi and other same-class samples re-

trieved from the memory bank, but still does not consider

the negative samples.

Pclean(i) ∝
1

Nyi

∑

(vj ,yj)∈M, yj=yi

S(f(xi), vj) (13)

Table 5 reports the performance on CARS with 25%

Small Cluster noise using different noise-filtering strategies

with the threshold m determined by TRM. We use Soft

Triple [32] as the loss function. All filtering strategies im-

prove performance relative to the scenario of no noise filter-

ing. The Memory-positive strategy works better than Batch-

positive, showing the importance of using the entire mem-

ory bank to identify noise. PRISM, in the form of Equa-

tion (2), achieves the best P@1 and MAP@R scores.
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Table 5: Precision@1 (%) and MAP@R (%) under different

designs of the noise identification function. We use TRM to

determine the threshold m for all methods.

P@1 MAP@R

No noise filtering 73.40 15.21

Batch-positive filtering, Eq. (12) 74.66 16.44

Memory-positive filtering, Eq. (13) 75.12 17.11

PRISM, Eq. (2) 75.40 17.40
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Figure 2: The Precision@1 (%) vs number of iterations on

CARS with 25% Small Cluster Noise.

Figure 2 shows that the Precision@1 changes as training

iterations increase. Ignoring label noise makes the model

overfit to the noisy data, which is shown as good initial

performance followed by a rapid fall. The batch-positive

strategy, which does not use the memory bank, can improve

performance, but also experiences a performance drop after

5,000 training iterations. Under the the PRISM strategy of

Eq. (2), the model converges to the best performance.

TRM vs sTRM. Figure 3 illustrates the model performance

for different choices of the sliding window size in sTRM.

Note that TRM is a special case of sTRM, where the win-

dow size τ is set to 1. Across all different choices of τ ,

sTRM consistently outperforms TRM.

Noise rate R for CARS-98N. In PRISM, we use the Rth

percentile of Pclean(i) values to determine the threshold m
for identifying noisy labels. Table 6 shows the performance

under different R values. We use memory-based contrastive

loss [46] as the loss function. The model achieves the best

performance when R = 50%. We can thus estimate that the

noisy label rate of CARS-98N is approximately 50%. We

also use R = 50% for Co-teaching and its extensions.
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Figure 3: The Precision@1 (%) vs. window size τ . The

dataset used is CARS with 25% Small Cluster noise.

Table 6: Precision@1 (%) and Mean Average Precision@R

(%) when using different filtering rate R for identifying

noisy label. Models trained with filtering rate R = 50%
obtained the best performance.

R 0.0 0.3 0.4 0.5 0.6 0.7

P@1 38.73 49.43 52.43 57.95 54.91 51.27

MAP@R 3.34 5.47 6.29 8.04 7.43 6.29

5. Conclusions

In this paper, we propose a simple, efficient, and effec-

tive approach, Probabilistic Ranking-based Instance Selec-

tion with Memory (PRISM), to enhance the performance

of deep metric learning in the presence of training label

noise. Through extensive experiments with both synthetic

and real-world datasets, we demonstrate that PRISM out-

performs 12 existing approaches.
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