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Abstract

3D point cloud classification has many safety-critical

applications such as autonomous driving and robotic grasp-

ing. However, several studies showed that it is vulnerable to

adversarial attacks. In particular, an attacker can make a

classifier predict an incorrect label for a 3D point cloud via

carefully modifying, adding, and/or deleting a small num-

ber of its points. Randomized smoothing is state-of-the-art

technique to build certifiably robust 2D image classifiers.

However, when applied to 3D point cloud classification,

randomized smoothing can only certify robustness against

adversarially modified points.

In this work, we propose PointGuard, the first defense

that has provable robustness guarantees against adversar-

ially modified, added, and/or deleted points. Specifically,

given a 3D point cloud and an arbitrary point cloud classi-

fier, our PointGuard first creates multiple subsampled point

clouds, each of which contains a random subset of the

points in the original point cloud; then our PointGuard pre-

dicts the label of the original point cloud as the majority

vote among the labels of the subsampled point clouds pre-

dicted by the point cloud classifier. Our first major theoret-

ical contribution is that we show PointGuard provably pre-

dicts the same label for a 3D point cloud when the number

of adversarially modified, added, and/or deleted points is

bounded. Our second major theoretical contribution is that

we prove the tightness of our derived bound when no as-

sumptions on the point cloud classifier are made. Moreover,

we design an efficient algorithm to compute our certified

robustness guarantees. We also empirically evaluate Point-

Guard on ModelNet40 and ScanNet benchmark datasets.

1. Introduction

3D point cloud, which comprises a set of 3D points, is

a crucial data structure in modelling a 3D shape or object.

In recent years, we have witnessed an increasing interest

in 3D point cloud classification [23, 17, 24, 30] because it

∗The first two authors made equal contributions.
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Figure 1: Top: point modification attack. Middle: point

addition attack. Bottom: point deletion attack. Red

points are added and yellow points are deleted.

has many applications, such as robotic grasping [28], au-

tonomous driving [2, 36], etc.. However, multiple recent

studies [34, 31, 38, 39, 35, 20] showed that 3D point cloud

classifiers are vulnerable to adversarial attacks. In particu-

lar, given a 3D point cloud, an attacker can carefully mod-

ify, add, and/or delete a small number of points such that a

3D point cloud classifier predicts an incorrect label for it.

We can categorize these attacks into four types based on the

capability of an attacker: point modification, addition, dele-

tion, and perturbation attacks. In particular, in a point modi-

fication/addition/deletion attack [34, 31, 38, 35], an attacker

can only modify/add/delete points in a 3D point cloud. An

attacker, however, can apply one or more of the above three

operations, i.e., modification, addition, and deletion, to a

3D point cloud in a point perturbation attack. Figure 1 illus-

trates the point modification, addition, and deletion attacks.

These adversarial attacks pose severe security concerns to

point cloud classification in safety-critical applications.

Several empirical defenses [18, 40, 35, 6] have been pro-

posed to mitigate the attacks. Roughly speaking, these de-

fenses aim to detect the attacks or train more robust point

cloud classifiers. For instance, Zhou et al. [40] proposed a

defense called DUP-Net, whose key step is to detect outlier

points and discard them before classifying a point cloud.
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These defenses, however, lack provable robustness guaran-

tees and are often broken by more advanced attacks. For

instance, Ma et al. [20] proposed a joint gradient based at-

tack and showed that it can achieve high attack success rates

even if DUP-Net [40] is deployed.

Therefore, it is urgent to study certified defenses that

have provable robustness guarantees. We say a point cloud

classifier is provably robust if it certifiably predicts the same

label for a point cloud when the number of modified, added,

and/or deleted points is no larger than a threshold. Random-

ized smoothing [4] is state-of-the-art technique for build-

ing provably robust 2D image classifiers. For instance, via

adding Gaussian noise to a 2D image, randomized smooth-

ing provably predicts the same label for the image when the

ℓ2-norm of the adversarial perturbations added to the image

is no larger than a threshold. Randomized smoothing can

be applied to point cloud classification. For instance, we

can add Gaussian noise to each point of a point cloud and

randomized smoothing can predict the same label for the

point cloud when the adversarial modification of its points

is bounded. However, randomized smoothing requires the

size of the input (e.g., the number of pixels in a 2D image or

number of points in a 3D point cloud) remains unchanged

under adversarial attacks. Therefore, randomized smooth-

ing is only applicable to certify robustness against the point

modification attacks that do not change the size of a point

cloud, leaving the other three types of attacks untouched.

Our work: In this work, we propose PointGuard, the

first defense that has provable robustness guarantees against

point modification, addition, deletion, and perturbation at-

tacks. Suppose we are given a 3D point cloud and an arbi-

trary point cloud classifier. PointGuard first creates a sub-

sampled point cloud, which contains a random subset of k
points subsampled from the original point cloud. Since the

subsampled point cloud is random, its label predicted by

the point cloud classifier is also random. We use pi (called

label probability) to denote the probability that the point

cloud classifier predicts label i for the random subsampled

point cloud. Our PointGuard predicts the label that has the

largest label probability for the original 3D point cloud.

Our major theoretical contributions are twofold. First,

we show that, with any point cloud classifier, our Point-

Guard provably predicts the same label for a point cloud

when the number of modified, added, and/or deleted points

is no larger than a threshold. We call the threshold certi-

fied perturbation size. Note that the certified perturbation

size may be different for different testing point clouds and

point cloud classifiers. We derive the certified perturbation

size via leveraging the Neyman-Pearson Lemma [21]. Sec-

ond, we prove that, if no assumptions on the point cloud

classifier are made, our derived certified perturbation size is

tight, i.e., it is impossible to derive a certified perturbation

size larger than ours.

Our derived certified perturbation size for a point cloud is

the solution to an optimization problem, which relies on the

point cloud’s label probabilities. However, it is challenging

to compute the exact label probabilities in practice since it

requires predicting the labels for an exponential number of

subsampled point clouds. In particular, computing the exact

label probabilities for a point cloud requires predicting the

labels for
(

n
k

)

subsampled point clouds if the point cloud

contains n points. To address the challenge, we develop

a Monte-Carlo algorithm to estimate the lower and upper

bounds of the label probabilities with probabilistic guaran-

tees via predicting labels for N <<
(

n
k

)

subsampled point

clouds. Given the estimated label probability bounds, we

solve the optimization problem to obtain the certified per-

turbation size.

We empirically evaluate PointGuard on ModelNet40 and

ScanNet. To demonstrate the generality of PointGuard, we

consider two point cloud classifiers, i.e., PointNet [23] and

DGCNN [30]. We adopt certified accuracy as our eval-

uation metric. In particular, the certified accuracy at r
perturbed points is the fraction of the testing point clouds

whose labels are correctly predicted and whose certified

perturbation sizes are no smaller than r. Since the certified

accuracy of a standard point cloud classifier is unknown, we

measure a standard point cloud classifier using its empirical

accuracy under an empirical attack, i.e., we use an empir-

ical attack to perturb the testing point clouds and use the

point cloud classifier to classify them. Our experimental re-

sults show that the certified accuracy of PointGuard is sub-

stantially higher than the empirical accuracy of a standard

point cloud classifier in many cases. For instance, on Mod-

elNet40, PointNet achieves 0% empirical accuracy while

PointGuard with k = 16 achieves 69.7% certified accuracy

when an attacker can arbitrarily modify 30 points of each

testing point cloud. We also compare PointGuard with ran-

domized smoothing for point modification attacks, as ran-

domized smoothing is only applicable to such attacks. Our

results show that PointGuard substantially outperforms ran-

domized smoothing, e.g., randomized smoothing achieves

0% certified accuracy under the above setting.

In summary, our key contributions are as follows:

• We propose PointGuard, the first 3D point cloud classi-

fication system that is provably robust against different

types of adversarial attacks.

• We derive the certified robustness guarantee of Point-

Guard and prove its tightness. Moreover, we design an

algorithm to efficiently compute our certified robust-

ness guarantee.

• We evaluate our PointGuard on two datasets.

6187



2. Background and Related Work

3D point cloud classification: A 3D point cloud is an

unordered set of points sampled from the surface of a 3D

object or shape. We use T = {Oi |i = 1, 2, · · · , n} to

denote a 3D point cloud, where each point Oi is a vector

that contains the (x, y, z) coordinates and possibly some

other features, e.g., colours. In 3D point cloud classifica-

tion, given a point cloud T as input, a classifier f predicts a

label y ∈ {1, 2, · · · , c} for it. For instance, the label could

represent the type of 3D object from which the point cloud

T is sampled. Formally, we have y = f(T ). Many deep

learning classifiers (e.g., [23, 24, 17, 30]) have been pro-

posed for 3D point cloud classification. For instance, Qi et

al. [23] proposed PointNet, which can directly consume 3D

point cloud. Roughly speaking, PointNet first applies in-

put and feature transformations to the input points, and then

aggregates point features by max pooling. One important

characteristic of PointNet is permutation invariant. In par-

ticular, given a 3D point cloud, the predicted label does not

rely on the order of the points in the point cloud.

Adversarial attacks to 3D point cloud classifica-

tion: Multiple recent works [34, 31, 38, 35, 27, 8, 37, 39,

12] showed that 3D point cloud classification is vulnerable

to (physically feasible) adversarial attacks. Roughly speak-

ing, given a 3D point cloud, these attacks aim to make a

3D point cloud classifier misclassify it via carefully modi-

fying, adding, and/or deleting some points from it. Xiang

et al. [34] proposed point perturbation and addition attacks.

For instance, they showed that PointNet [23] can be fooled

by adding a limited number of synthesized point clusters

with meaningful shapes such as balls to a point cloud. Yang

et al. [35] explored point modification, addition, and dele-

tion attacks. In particular, their point modification attack

is inspired by gradient-guided attack methods, which were

designed to attack 2D image classification. Their point ad-

dition and deletion attacks aim to add or remove the criti-

cal points, which can be identified by their label-dependent

importance scores obtained by computing the gradient of

a classifier’s output with respect to the input. Wicker et

al. [31] proposed a point deletion attack which also lever-

aged critical points. Specifically, they developed an algo-

rithm to identify critical points in a random and iterative

manner. Ma et al. [20] proposed a joint gradient based at-

tack and showed that the proposed attack can break an em-

pirical defense [40] on multiple 3D point cloud classifiers.

Existing empirical defenses: Several empirical de-

fenses [18, 40, 35, 6, 32, 26] have been proposed to de-

fend against adversarial attacks. Roughly speaking, these

defenses aim to detect the attacks or train more robust point

cloud classifiers. For instance, Zhou et al. [40] proposed

DUP-Net, whose key idea is to detect and discard outlier

points before classifying a point cloud. Dong et al. [6] de-

signed a new self-robust 3D point recognition network. In

particular, the network first extracts local features from the

input point cloud and then uses a self-attention mechanism

to aggregate these local features, which could ignore adver-

sarial local features. Liu et al. [18] generalized adversar-

ial training [7] to build more robust point cloud classifiers.

However, these empirical defenses lack certified robustness

guarantees and are often broken by advanced adaptive at-

tacks.

Existing certified defenses: To the best of our knowledge,

there are no certified defenses against adversarial attacks for

3D point cloud classification. We note that, however, many

certified defenses against adversarial attacks have been pro-

posed for 2D image classification. Among these defenses,

randomized smoothing [1, 19, 13, 16, 4, 25, 22, 14, 15,

11, 29] is state-of-the-art because it is scalable to large-

scale neural networks and applicable to arbitrary classi-

fiers. Roughly speaking, randomized smoothing adds ran-

dom noise (e.g., Gaussian noise) to an input image before

classifying it; and randomized smoothing provably predicts

the same label for the image when the adversarial perturba-

tion added to the image is bounded under certain metrics,

e.g., ℓ2 norm. We can leverage randomized smoothing to

certify robustness of point cloud classification via adding

random noise to each point of a point cloud. However, ran-

domized smoothing requires the size of the input (e.g., the

number of points in a point cloud) remains unaltered under

adversarial attacks. As a result, randomized smoothing can

only certify robustness against point modification attacks,

leaving certified defenses against the other three types of

attacks untouched.

We note that Jia et al. [9] analyzed the intrinsic certi-

fied robustness of bagging against data poisoning attacks.

Both Jia et al. and our work use random sampling. How-

ever, our work has several key differences with Jia et al..

First, we solve a different problem from Jia et al.. More

specifically, we aim to derive the certified robustness guar-

antees of 3D point cloud classification against adversarial

attacks, while they aim to defend against data poisoning at-

tacks. Second, we use sampling without replacement while

Jia et al. adopted sampling with replacement, which results

in significant technical differences in the derivation of the

certified robustness guarantees (please refer to Supplemen-

tal Material for details). Third, we only need to train a sin-

gle 3D point cloud classifier while Jia et al. requires to train

multiple base classifiers.

3. Our PointGuard

In this section, we first describe how to build our Point-

Guard from an arbitrary 3D point cloud classifier. Then, we

derive the certified robustness guarantee of our PointGuard

and show its tightness. Finally, we develop an algorithm to

compute our certified robustness guarantee in practice.
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Label: plane

Prediction: radio
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Prediction: plane
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Figure 2: An example to illustrate the robustness of

PointGuard. A point cloud classifier misclassifies the ad-

versarial point cloud, where the red points are adversar-

ially perturbed points. Three subsampled point clouds

are created, and two of them (top and middle ones)

do not contain adversarially perturbed points. Our

PointGuard predicts the correct label for the adversar-

ial point cloud after majority vote.

3.1. Building our PointGuard

Recall that an attacker’s goal is to modify, add, and/or

delete a small number of points in a 3D point cloud T such

that it is misclassified by a point cloud classifier. Suppose

we create multiple subsampled point clouds from T , each

of which includes k points subsampled from T uniformly

at random without replacement. Our intuition is that, when

the number of adversarially modified/added/deleted points

is bounded, the majority of the subsampled point clouds do

not include any adversarially modified/added/deleted points

and thus the majority vote among their labels predicted by

the point cloud classifier may still correctly predict the label

of the original point cloud T . Figure 2 provides an example

to illustrate the intuition.

We design our PointGuard based on such majority-vote

intuition. Next, we present a probabilistic view of the

majority-vote intuition, which enables us to derive the certi-

fied robustness guarantees of PointGuard. Formally, we use

Sk(T ) to denote a random subsampled point cloud with k
points from a point cloud T . Given an arbitrary point cloud

classifier f , we use it to predict the label of the subsam-

pled point cloud Sk(T ). Since the subsampled point cloud

Sk(T ) is random, the predicted label f(Sk(T )) is also ran-

dom. We use pi = Pr(f(Sk(T )) = i), which we call label

probability, to denote the probability that the predicted label

is i, where i ∈ {1, 2, · · · , c}. Our PointGuard predicts the

label with the largest label probability for the point cloud T .

For simplicity, we use g to denote our PointGuard. Then,

we have the following:

g(T ) = argmax
i∈{1,2,··· ,c}

pi. (1)

3.2. Deriving the Certified Perturbation Size

Certified perturbation size: In an adversarial attack, an

attacker perturbs, i.e., modifies, adds, and/or deletes, some

points in a point cloud T . We use T ∗ to denote the per-

turbed point cloud. Given a point cloud T and its perturbed

version T ∗, we define the perturbation size η(T, T ∗) =
max{|T |, |T ∗|} − |T ∩ T ∗|, where | · | denotes the number

of points in a point cloud. Intuitively, given T and T ∗, the

perturbation size η(T, T ∗) indicates the minimum number

of modified, added, and/or deleted points that are required

to turn T into T ∗. Given the point cloud T and an arbitrary

positive integer r, we define the following set:

Γ(T, r) = {T ∗ | η(T, T ∗) ≤ r}. (2)

Intuitively, Γ(T, r) denotes the set of perturbed point clouds

that can be obtained by perturbing at most r points in T .

Our goal is to find a maximum r∗ such that our Point-

Guard provably predicts the same label for ∀ T ∗ ∈
Γ(T, r∗). Formally, we have:

r∗ = argmax
r

r s.t. g(T ) = g(T ∗), ∀T ∗ ∈ Γ(T, r). (3)

We call r∗ certified perturbation size. Note that the certified

perturbation size may be different for different point clouds.

Overview of our derivation: Next, we provide an

overview of our proof to derive the certified perturbation

size of our PointGuard for a point cloud T . The detailed

proof is shown in the Supplemental Material. Our deriva-

tion is inspired by previous work [10, 9]. In particular, the

key idea is to divide the space into different regions based

on the Neyman-Pearson Lemma [21]. However, due to the

difference in sampling methods, our space divisions are sig-

nificantly different from previous work [9]. For simplicity,

we define random variables W = Sk(T ) and Z = Sk(T
∗),

which represent the random subsampled point clouds from

T and T ∗, respectively. Given these two random variables,

we denote pi = Pr(f(W) = i) and p∗i = Pr(f(Z) = i),
where i ∈ {1, 2, · · · , c}. Moreover, we denote y = g(T ) =
argmaxi∈{1,2,··· ,c} pi. Our goal is to find the maximum

r∗ such that y = g(T ∗) = argmaxi∈{1,2,··· ,c} p
∗
i (i.e.,

p∗y > maxi 6=y p
∗
i ) for ∀T ∗ ∈ Γ(T, r∗).

The major challenge in deriving the certified perturba-

tion size r∗ is to compute p∗i . Specifically, the challenge

stems from the complexity of the point cloud classifier f
and predicting labels for the

(

t
k

)

subsampled point clouds

Sk(T
∗), where t is the number of points in T ∗. To overcome

the challenge, we propose to derive a lower bound of p∗y
and an upper bound of maxi 6=y p

∗
i . Moreover, based on the

Neyman-Pearson Lemma [21], we derive the lower/upper

bounds as the probabilities that the random variable Z is in

certain regions of its domain space, which can be efficiently
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computed for any given r. Then, we find the certified pertur-

bation size r∗ as the maximum r such that the lower bound

of p∗y is larger than the upper bound of maxi 6=y p
∗
i .

Next, we discuss how we derive the lower/upper bounds.

Suppose we have a lower bound py of py and an upper

bound pe of the second largest label probability pe for the

original point cloud T . Formally, we have the following:

py ≥ py ≥ pe ≥ pe = max
i 6=y

pi, (4)

where p and p denote the lower and upper bounds of p, re-

spectively. Note that py and pe can be estimated using the

unperturbed point cloud T . In Section 3.3, we propose an

algorithm to estimate them. Based on the fact that py and

pi (i 6= y) should be integer multiples of 1/
(

n
k

)

, where n is

the number of points in T , we have the following:

p′y ,
⌈py ·

(

n
k

)

⌉
(

n
k

) ≤ Pr(f(W) = y), (5)

p′i ,
⌊pi ·

(

n
k

)

⌋
(

n
k

) ≥ Pr(f(W) = i), ∀i 6= y. (6)

Given these probability bounds p′y and p′i (i 6= y), we derive

a lower bound of p∗y and an upper bound of p∗i (i 6= y) via

the Neyman-Pearson Lemma [21]. We use Φ to denote the

joint space of W and Z, where each element in the space

is a 3D point cloud with k points subsampled from T or

T ∗. We denote by E the set of intersection points between

T and T ∗, i.e., E = T ∩ T ∗. Then, we can divide Φ into

three disjoint regions: ∆T , ∆E , and ∆T∗ . In particular, ∆E

consists of the subsampled point clouds that can be obtained

by subsampling k points from E; and ∆T (or ∆T∗ ) consists

of the subsampled point clouds that are subsampled from T
(or T ∗) but do not belong to ∆E .

We assume p′y > Pr(W ∈ ∆T ). Note that we can make

this assumption because our goal is to find a sufficient con-

dition. Then, we can find a region ∆y ⊆ ∆E such that

Pr(W ∈ ∆y) = p′y − Pr(W ∈ ∆T ). We can find the

region because p′y − Pr(W ∈ ∆T ) is an integer multiple

of 1/
(

n
k

)

. Similarly, we can assume p′i < Pr(W ∈ ∆E)
since our goal is to find a sufficient condition. Then, for

each i 6= y, we can find a region ∆i ⊆ ∆E such that

Pr(W ∈ ∆i) = p′i based on the fact that p′i is an integer

multiple of 1/
(

n
k

)

. Finally, we derive the following bounds

based on the Neyman-Pearson Lemma [21]:

p∗y ≥ p∗y = Pr(Z ∈ ∆y), (7)

p∗i ≤ p∗i = Pr(Z ∈ ∆i ∪∆T∗), ∀i 6= y, (8)

where Pr(Z ∈ ∆y) and Pr(Z ∈ ∆i ∪ ∆T∗) represent the

probabilities that Z is in the corresponding regions, which

can be efficiently computed via the probability mass func-

tion of Z. Then, our certified perturbation size r∗ is the

maximum r such that p∗y > maxi 6=y p
∗
i .

Formally, we have the following theorem:

Theorem 1 (Certified Perturbation Size). Suppose we have

an arbitrary point cloud classifier f , a 3D point cloud T ,

and a subsampling size k. y, e, py ∈ [0, 1], and pe ∈ [0, 1]
satisfy Equation (4). Then, our PointGuard g guarantees

that g(T ∗) = y, ∀T ∗ ∈ Γ(T, r∗), where r∗ is the solution

to the following optimization problem:

r∗ = argmax
r

r

s.t. max
n−r≤t≤n+r

(

t
k

)

(

n
k

) − 2 ·
(

max(n,t)−r
k

)

(

n
k

) + 1− p′y + p′e < 0,

(9)

where p′y and p′e are respectively defined in Equation (5)

and (6), n is the number of points in T , and t is the number

of points in T ∗ which ranges from n− r to n+ r when the

perturbation size is r.

Proof. See Section A in Supplementary Material.

Note that our Theorem 1 can be applied to any of the four

types of adversarial attacks to point cloud classification, i.e.,

point perturbation, modification, addition, and deletion at-

tacks. Moreover, for point modification, addition, and dele-

tion attacks, we can further simplify the constraint in Equa-

tion (9) as there is a simple relationship between t, n, and

r. Specifically, we have the following corollaries.

Corollary 1 (Point Modification Attacks). Suppose an at-

tacker only modifies existing points in a 3D point cloud, i.e.,

we have t = n. Then, the constraint in Equation (9) reduces

to 1− (n−r

k )
(nk)

−
p′

y−p′

e

2 < 0.

Corollary 2 (Point Addition Attacks). Suppose an attacker

only adds new points to a 3D point cloud, i.e., we have

t = n + r. Then, the constraint in Equation (9) reduces

to
(n+r

k )
(nk)
− 1− p′y + p′e < 0.

Corollary 3 (Point Deletion Attacks). Suppose an attacker

only deletes existing points from a 3D point cloud, i.e., we

have t = n−r. Then, the constraint in Equation (9) reduces

to − (n−r

k )
(nk)

+ 1− p′y + p′e < 0.

Next, we show that our derived certified perturbation size

is tight, i.e., it is impossible to derive a certified perturbation

size larger than ours if no assumptions on the point cloud

classifier f are made.

Theorem 2 (Tightness of certified perturbation size). Sup-

pose we have p′y+p′e ≤ 1 and p′y+
∑

i 6=y p
′
i ≥ 1. Then, for

∀r > r∗, there exist a point cloud classifier f∗ which sat-

isfies Equation (4) and an adversarial point cloud T ∗ such

that g(T ∗) 6= y or there exist ties.

Proof. See Section B in Supplementary Material.
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Algorithm 1: PREDICTION & CERTIFICATION

Input: f , T , k, N , and α.

Output: Predicted label and certified perturbation size.

M1,M2, · · · ,MN ← RANDOMSUBSAMPLE(T, k)

counts[i]←∑N
j=1 I(f(Mj) = i), i = 1, 2, · · · , c.

y, e← top two indices in counts

py, pe ← PROBBOUNDESTIMATION(counts, α)
if py > pe then

r∗ = BINARYSEARCH(|T |, k, py, pe)
else

y, r∗ ← ABSTAIN,ABSTAIN

end if

return y, r∗

3.3. Computing the Certified Perturbation Size

Given an arbitrary point cloud classifier f and a 3D point

cloud T , computing the certified perturbation size r∗ re-

quires solving the optimization problem in Equation (9),

which involves the label probability lower bound py and up-

per bound pe. We develop a Monte-Carlo algorithm to es-

timate these label probability bounds, with which we solve

the optimization problem efficiently via binary search.

Estimating label probability lower and upper

bounds: We first create N random subsampled point

clouds from T , each of which contains k points. For

simplicity, we use M1,M2, · · · ,MN to denote them.

Then, we use the point cloud classifier f to predict

a label for each subsampled point cloud Mj , where

j = 1, 2, · · · , N . We use Ni to denote the number of

subsampled point clouds whose predicted labels are i,
i.e., Ni =

∑N
j=1 I(f(Mj) = i), where I is an indi-

cator function. We predict the label with the largest

Ni as the label of the original point cloud T , i.e.,

y = g(T ) = argmaxi∈{1,2,··· ,c} Ni. Moreover, based

on the definition of the label probability pi, we know Ni

follows a binomial distribution with parameters N and

pi, i.e., Ni ∼ Binomial(N, pi). Therefore, we can use

SimuEM [10], which is based on Clopper-Pearson [3]

method, to estimate a lower or upper bound of pi using Ni

and N . In particular, we have:

py = Beta(
α

c
;Ny, N −Ny + 1), (10)

pi = Beta(1− α

c
;Ni, N −Ni + 1), ∀i 6= y, (11)

where 1 − α is the confidence level for simultaneously es-

timating the c label probability bounds and Beta(τ ;µ, ν)
is the τ th quantile of the Beta distribution with shape pa-

rameters µ and ν. Both maxi 6=y pi and 1 − py are upper

bounds of pe. We use the smaller one as pe, i.e., we have

pe = min(maxi 6=y pi, 1− py), which gives a tighter pe.

Solving the optimization problem: Given the estimated

label probability bounds, we can use binary search to solve

the optimization problem in Equation (9) to find the certified

perturbation size r∗.

Complete algorithm: Algorithm 1 shows the complete

process of our prediction and certification for a 3D point

cloud T , which outputs our PointGuard’s predicted label y
and certified perturbation size r∗ for T . The function RAN-

DOMSUBSAMPLE creates N subsampled point clouds from

T . The function PROBBOUNDESTIMATION estimates the

label probability lower and upper bounds py and pe with

confidence level 1−α based on Equation (10) and (11). The

function BINARYSEARCH solves the optimization problem

in Equation (9) to obtain r∗ using binary search.

3.4. Training the Classifier with Subsampling

Our PointGuard is built upon a point cloud classifier f .

In particular, in the standard training process, f is trained on

the original point clouds. Our PointGuard uses f to predict

the labels for the subsampled point clouds. Since the sub-

sampled point clouds have a different distribution from the

original point clouds, f has a low accuracy on the subsam-

pled point clouds. As a result, PointGuard has suboptimal

robustness. To address the issue, we propose to train the

point cloud classifier f on subsampled point clouds instead

of the original point clouds. Specifically, given a batch of

point clouds from the training dataset, we first create a sub-

sampled point cloud for each point cloud in the batch, and

then we use the batch of subsampled point clouds to update

f . Our experimental results show that training with subsam-

pling significantly improves the robustness of PointGuard.

4. Experiments

4.1. Experimental Setup

Datasets and models: We evaluate PointGuard on Mod-

elNet40 [33] and ScanNet [5] datasets. In particular, the

ModelNet40 dataset contains 12,311 3D CAD models, each

of which is a point cloud comprising 2,048 three dimen-

sional points and belongs to one of the 40 common object

categories. The dataset is splitted into 9,843 training point

clouds and 2,468 testing point clouds. ScanNet is an RGB-

D video dataset which contains 2.5M views from 1,513

scenes. Following Li et al. [17], we extract 6,263 training

point clouds and 2,061 testing point clouds from ScanNet,

each of which belongs to one of the 16 object categories and

has 2,048 six dimensional points. We adopt PointNet [23]

and DGCNN [30] as the point cloud classifiers for Model-

Net40 and ScanNet, respectively. We use publicly available

implementations for both PointNet1 and DGCNN2.

1https://github.com/charlesq34/pointnet
2https://github.com/WangYueFt/dgcnn

6191



0 20 40 60 80 100
Number of Perturbed Points, r

0.0

0.2

0.4

0.6

0.8

1.0

C
er
ti
fi
ed
/E

m
p
ir
ic
al

A
cc
u
ra
cy

Undefended

PointGuard

(a) Point perturbation attacks.

0 20 40 60 80 100
Number of Modified Points, r

0.0

0.2

0.4

0.6

0.8

1.0

C
er
ti
fi
ed
/E

m
p
ir
ic
al

A
cc
u
ra
cy

Undefended

Cohen et al.

PointGuard

(b) Point modification attacks.

0 20 40 60 80 100
Number of Added Points, r

0.0

0.2

0.4

0.6

0.8

1.0

C
er
ti
fi
ed
/E

m
p
ir
ic
al

A
cc
u
ra
cy

Undefended

PointGuard

(c) Point addition attacks.

0 200 400 600
Number of Deleted Points, r

0.0

0.2

0.4

0.6

0.8

1.0

C
er
ti
fi
ed
/E

m
p
ir
ic
al

A
cc
u
ra
cy

Undefended

PointGuard

(d) Point deletion attacks.

Figure 3: Comparing different methods under different attacks on ModelNet40. The results on ScanNet are in Sup-

plemental Material.

Compared methods: We compare our PointGuard with

the following methods:

Undefended classifier. We call the standard point cloud

classifier undefended classifier, e.g., the undefended classi-

fiers are PointNet and DGCNN on the two datasets in our

experiments, respectively.

Randomized smoothing (Cohen et al.) [4]. Random-

ized smoothing adds isotropic Gaussian noise with mean 0

and standard deviation σ to an image before using a classi-

fier to classify it. Randomized smoothing provably predicts

the same label for the image when the ℓ2-norm of the adver-

sarial perturbation added to the image is less than a thresh-

old, which is called certified radius. We can generalize ran-

domized smoothing to certify robustness against point mod-

ification attacks. In particular, we can add Gaussian noise

to each dimension of each point in a point cloud before us-

ing a point cloud classifier to classify it, and randomized

smoothing provably predicts the same label for the point

cloud when the ℓ2-norm of the adversarial perturbation is

less than the certified radius. Note that our certified per-

turbation size is the number points that are perturbed by an

attacker. Therefore, we transform the certified radius to cer-

tified perturbation size as follows. Suppose the points in the

point clouds lie in the space Θ, and the ℓ2-norm distance be-

tween two arbitrary points in the space Θ is no larger than λ,

i.e., maxθ1,θ2 ‖θ1 − θ2‖2 ≤ λ. For instance, λ = 2
√
3 for

ModelNet40 and λ =
√
15 for ScanNet. Then, we can em-

ploy the relationship between ℓ0-norm and ℓ2-norm to de-

rive the certified perturbation size based on the certified ra-

dius returned by randomized smoothing. Specifically, given

λ and the ℓ2-norm certified radius δ for a point cloud, the

certified perturbation size can be computed as ⌊ δ2
λ2 ⌋.

Evaluation metric: PointGuard and randomized smooth-

ing provide certified robustness guarantees, while the unde-

fended classifiers provide empirical robustness. Therefore,

we use certified accuracy, which has been widely used to

measure the certified robustness of a machine learning clas-

sifier against adversarial perturbations, to evaluate Point-

Guard and randomized smoothing; and we use empirical

accuracy under an emprical attack to evaluate the unde-

fended classifiers. In particular, the certified accuracy at r
perturbed points is the fraction of the testing point clouds

whose labels are correctly predicted and whose certified

perturbation sizes are no smaller than r. Formally, given a

testing set of point clouds T = {(To, lo)}mo=1, the certified

accuracy at r perturbed points is defined as follows:

CAr =

∑m
o=1 I (lo = yo) · I (r∗o ≥ r)

m
, (12)

where I is an indicator function, lo is the true label of the

testing point cloud To, and yo and r∗o respectively are the

predicted label and the certified perturbation size returned

by PointGuard or randomized smoothing for To.

We use an empirical attack to calculate the empirical ac-

curacy of an undefended classifier. Specifically, we first use

the empirical attack to perturb each point cloud in a testing

set, and then we use the undefended classifier to classify the

perturbed point clouds and compute the accuracy (called

empirical accuracy). We adopt the empirical attacks pro-

posed by Xiang et al. [34] for the point perturbation, mod-

ification, and addition attacks. We use the empirical attack

proposed by Wicker et al. [31] for the point deletion attacks.

We note that the certified accuracy at r is a lower bound

of the accuracy that PointGuard or randomized smooth-

ing can achieve no matter how an attacker modifies, adds,

and/or deletes at most r points for each point cloud in the

testing set, while the empirical accuracy under an empirical

attack is an upper bound of the accuracy that an undefended

classifier can achieve under attacks.

Parameter setting: Our PointGuard has three parameters:

k, 1−α, and N . Unless otherwise mentioned, we adopt the

following default parameters: α = 0.0001, N = 10, 000,

and k = 16 for both ModelNet40 and ScanNet. By default,

we train the point cloud classifiers with subsampling. We

adopt σ = 0.5 for randomized smoothing so its certified

accuracy without attack is similar to that of PointGuard. By

default, we consider the point perturbation attacks, as they

are the strongest among the four types of attacks.
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Figure 4: (a) Training the point cloud classifier with vs. without subsampling. (b), (c), and (d) show the impact of k,

α, and N , respectively. The dataset is ModelNet40. The results on ScanNet are in Supplemental Material.

4.2. Experimental Results

Comparing PointGuard with other methods under dif-

ferent attacks: Figure 3 (or Figure 5 in Supplemental Ma-

terial) compares PointGuard with other methods under the

four types of attacks on ModelNet40 (or ScanNet), where an

undefended classifier is measured by its empirical accuracy,

while PointGuard and randomized smoothing are measured

by certified accuracy. We observe that the certified accuracy

of PointGuard is slightly lower than the empirical accuracy

of an undefended classifier when there are no attacks, i.e.,

r = 0. However, for point perturbation, modification, and

addition attacks, the empirical accuracy of an undefended

classifier quickly drops to 0 while the certified accuracy of

PointGuard is still high as r increases. For point deletion

attacks, the empirical accuracy of an undefended classifier

may be higher than the certified accuracy of PointGuard.

This indicates that the existing empirical point deletion at-

tacks are not strong enough.

Our PointGuard substantially outperforms randomized

smoothing for point modification attacks in terms of cer-

tified accuracy. Randomized smoothing adds additive noise

to a point cloud, while our PointGuard subsamples a point

cloud. Our experimental results show that subsampling out-

performs additive noise to build provably robust point cloud

classification systems. We also observe that the empirical

accuracy of the undefended classifier is close to the certi-

fied accuracy of randomized smoothing, indicating that the

empirical point modification attacks are strong.

We also compare PointGuard with an empirical defense

(i.e., DUP-Net [40]) to measure the gaps between certified

accuracy and empirical accuracy. According to [40], on

ModelNet40, the empirical accuracy of DUP-Net under a

point deletion attack [37] is 76.1%, 67.7%, and 57.7% when

the attacker deletes 50, 100, and 150 points, respectively.

Under the same setting, PointGuard achieves certified accu-

racy of 73.4%, 64.3%, and 53.5%, respectively. We observe

the gaps between the empirical accuracy (an upper bound

of accuracy) of DUP-Net and certified accuracy (a lower

bound of accuracy) of PointGuard are small.

Training with vs. without subsampling: Figure 4a (or

Figure 6a in Supplemental Material) shows the comparison

of the certified accuracy of PointGuard when the point cloud

classifier is trained with or without subsampling on Model-

Net40 (or ScanNet). Our experimental results demonstrate

that training with subsampling can substantially improve

the certified accuracy of PointGuard. The reason is that the

point cloud classifier trained with subsampling can more ac-

curately classify the subsampled point clouds.

Impact of k, α, and N : Figure 4b, 4c, and 4d (or Fig-

ure 6b, 6c, and 6d in Supplemental Material) show the im-

pact of k, α, and N on the certified accuracy of our Point-

Guard on ModelNet40 (or ScanNet), respectively. Based

on the experimental results, we make the following observa-

tions. First, k measures a tradeoff between accuracy without

attacks (i.e., r = 0) and robustness. In particular, a smaller

k gives a smaller certified accuracy without attacks, but the

certified accuracy drops to 0 more slowly as the number of

perturbed points r increases. The reason is that the per-

turbed points are less likely to be subsampled when k is

smaller. Second, the certified accuracy increases as α or N
increases. The reason is that a larger α or N leads to tighter

lower and upper label probability bounds, which in turn lead

to larger certified perturbation sizes. We also note that the

certified accuracy is insensitive to α and N once they are

large enough.

5. Conclusion

In this work, we propose PointGuard, the first provably

robust 3D point cloud classification system against various

adversarial attacks. We show that PointGuard provably pre-

dicts the same label for a testing 3D point cloud when the

number of adversarially perturbed points is bounded. More-

over, we prove our bound is tight. We empirically demon-

strate the effectiveness of PointGuard on ModelNet40 and

ScanNet benchmark datasets. An interesting future work is

to further improve PointGuard by leveraging the knowledge

of the point cloud classifier.
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