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Abstract

Visual grounding, which aims to build a correspon-

dence between visual objects and their language entities,

plays a key role in cross-modal scene understanding. One

promising and scalable strategy for learning visual ground-

ing is to utilize weak supervision from only image-caption

pairs. Previous methods typically rely on matching query

phrases directly to a precomputed, fixed object candidate

pool, which leads to inaccurate localization and ambigu-

ous matching due to lack of semantic relation constraints.

In our paper, we propose a novel context-aware weakly-

supervised learning method that incorporates coarse-to-

fine object refinement and entity relation modeling into a

two-stage deep network, capable of producing more ac-

curate object representation and matching. To effectively

train our network, we introduce a self-taught regression

loss for the proposal locations and a classification loss

based on parsed entity relations. Extensive experiments

on two public benchmarks Flickr30K Entities and Refer-

ItGame demonstrate the efficacy of our weakly grounding

framework. The results show that we outperform the previ-

ous methods by a considerable margin, achieving 59.27%

top-1 accuracy in Flickr30K Entities and 37.68% in the

ReferItGame dataset respectively1.

1. Introduction

Cross-modal understanding of visual scene and natural

language description plays a crucial role in bridging human

and machine intelligence, and has attracted much interest

from AI community [13]. Towards this goal, one core prob-
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student in ShanghaiTech University. This work was supported by Shanghai

NSF Grant (No. 18ZR1425100).
1Code is available at https://github.com/youngfly11/ReIR-
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Figure 1. Comparison of visual entities representation with exist-

ing weakly-supervised grounding models. (a) Previous methods

directly match between noun phrases and a precomputed, fixed

object proposals. (b) Our approach is capable of refining the ini-

tial object proposals and enriching their representation with visual

relation context cues.

lem is to establish instance-level correspondence between

visual regions and its related language entities, which is

commonly referred to as visual grounding [15]. Such corre-

spondence serves as a fundamental building-block for many

vision-language tasks, such as image captioning [6, 32], vi-

sual question answering [43, 23], visual navigation [37, 45]

and visual dialog[18, 7].

Much progress has been made recently in learning vi-

sual grounding with strong supervision [22, 39], which

requires costly annotations on region-phrase correspon-

dence. A more scalable modeling strategy is to learn from

only image-caption pairs, namely weakly-supervised visual

grounding [29, 40, 2, 8, 20]. Nevertheless, learning from

such weak supervision is particularly challenging mainly

due to the severe ambiguity in visual object location and

in correspondence between diverse noun phrases and object

entities during cross-modal learning.

Most existing approaches tackle those challenges via the
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Multiple Instance Learning (MIL) framework [14] using

object candidates generated by a pre-trained object detec-

tor [29, 4, 2]. Despite their promising results, these learn-

ing pipelines often suffer from the visual and matching am-

biguity from several aspects. First, they usually rely on

a precomputed object proposal set that contain many dis-

tractor or background regions, making it difficult to infer

positive matches for learning. In addition, these proposals

are typically kept fixed during learning, which leads to in-

accurate localization bounded by the external detectors (cf.

Fig. 1(a)). Furthermore, these methods often represent noun

phrase or visual object context in an implicit manner, using

attention-based feature aggregation or encoding predicate

triples [20, 21]. Such representations are limited in cap-

turing rich semantic constraints from relations in an image-

sentence pair, resulting in cross-modal matching ambiguity

in both learning and prediction.

To address the afore-mentioned limitations, we propose a

flexible and context-aware object representation for weakly-

supervised visual grounding in this work. Unlike previous

work, our representation is capable of refining the spatial

locations of object proposals using a self-taught mecha-

nism, and incorporates a relation-aware context model by

exploiting the language prior (cf. Fig. 1(b)). Such enriched

representation alleviates the impact from the inaccurate ob-

ject detection and the cross-modal matching ambiguity. To

achieve this, we develop a coarse-to-fine matching strategy

modeled as a two-stage deep network. The first stage of

our model consists of a backbone and a coarse-level match-

ing network for proposal generation and refinement, while

the second stage builds a visual object graph network and a

fine-level matching network for context modeling and final

matching prediction.

Specifically, given a pair of image and language descrip-

tion, we first use the backbone network to generate a set of

object proposals with their visual features and compute the

language embedding for the noun phrases. Then the coarse-

level matching network selects a small set of relevant pro-

posals for each phrase and refines their spatial locations. For

the second stage, we construct the visual object graph net-

work on the refined proposals by exploiting parsed language

structure, which enriches object features with their relations

and context. Based on the context-aware representation, the

fine-level matching network finally predicts instance-level

correspondence between phrases and object proposals, as

well as further refined object locations.

To train our deep network in a weak supervision setting,

we introduce a novel multi-task loss function to exploit both

the model prediction and linguistic relation cues. In par-

ticular, we first devise a self-taught regression loss for the

proposal location refinement, which employs highly confi-

dent proposal predictions as pseudo groundtruth for their

neighboring proposals. Moreover, we develop a classifica-

tion loss on visual relation types based on the output of an

external language parser. This enables us to generate effec-

tive supervision from the noisy language parsing results for

learning better entity representations.

We conduct extensive experiments on two public bench-

marks: Flickr30K Entities [27] and ReferItGame [16]. The

experiment results show that our method outperforms the

prior state-of-the-art with a considerable margin. To val-

idate the effectiveness of each model component, we also

provide the detailed ablative study on Flickr30K Entities

dataset. The main contributions of our work are three-folds:

• We adopt a coarse-to-fine strategy to refine object pro-

posals and alleviate semantic ambiguities by enriching

visual feature with relationship constraints.

• We propose a self-taught regression loss to supervise

object proposal refinement, and introduce an addi-

tional visual relation loss that helps learn a context-

aware object representation.

• Our method achieves new state-of-the-art performance

on Flickr30K Entities and ReferItGame benchmarks.

2. Related Work

Visual Grounding Visual grounding [26, 42, 22, 25, 41,

3] aims to learn region-phrase correspondence with bound-

ing box annotation for each phrase during training stage.

In recent years, the deep network is widely used in this task

and achieves remarkable success. Plummer et al. [26] de-

vised a single end-to-end network to learn multiple text-

conditioned embedding for grounding and DDPN [42] pro-

posed to generate a group of high-quality proposals with

a diversified and discriminate network. However, they ig-

nored the semantic context cues and relation constraints in

both vision and language. To address this problem, Na-

garaja et al. [24] explored to utilize LSTM to encode vi-

sual and linguistic context for referring expression, and

SeqGROUND [25] adopts chain-structure LSTMs to en-

code context in cross-domain with a history stack for visual

grounding. Besides, Wang et al. [35] took a self-attention

mechanism to capture their context in a sentence and build

a directed graph over neighbor objects to exploit the visual

relations, and Liu et al. [22] aimed to build a cross-modal

graph network under the guidance of language structure to

learn global context representation for both phrases and vi-

sual objects. Although these methods demonstrate superior

performance on visual grounding, they highly rely on the

strong supervision that is too expensive to obtain in most

scenarios. Thus the main focus of this work is on learning

cross-modal matching in a weak supervision setting.

Weakly-Supervised Visual Grounding Different from

supervised visual grounding, a weakly-supervised setting

aims to learn the fine-grained region-phrase correspon-

dence with only image-sentence association. Most recent
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works [29, 40, 2, 4, 8, 34, 20, 36] take a hypothesis-and-

matching strategy for the weakly-supervised visual ground-

ing task, in which they first generate a set of region pro-

posals from an image with an external object detector,

and then match between query phrases and those regions.

WPT [33] directly computed the cross-modal similarity be-

tween noun phrases and detected multi-level visual con-

cepts from amounts of object detectors. GroundR [29] built

correspondences by reconstructing phrases with an atten-

tion mechanism on visual features. To explore more pow-

erful supervision, KAC-Net [2] took a similar formulation

but exploited visual consistency and knowledge from object

categories, and Align2Ground [4] adopted a ranking-loss to

minimize the distances between associated image-caption

and maximize the distance between irrelevant pairs. Be-

sides, some works [8, 34] introduced a contrastive loss to

distillate knowledge from external language models [5] and

visual models [12].

Although these methods discovered various type of su-

pervision for weakly-supervised visual grounding, they suf-

fered from limited objects recall and all the methods above

fail to refine object regions due to the lack of location su-

pervision. MATN [44] solved this problem by introducing

a transformation network to search target phrase location

over the entire image directly, and such locations were reg-

ularized by the precomputed proposals. Only a few work

took into account context cues to eliminate semantic ambi-

guities in a weakly-supervised setting: ARN [20] extracted

the linguistic and visual cues on entity, location and context

levels separately that enforced multi-level cross-modal con-

sistency. KPRN [21] further exploited linguistic context and

required subject & object matching simultaneously. Our fo-

cus is to exploit context-aware instance refinement weakly-

supervised learning strategy for both limitations.

3. Method

3.1. Problem Setting and Overview

The task of weakly-supervised phrase grounding aims

to localize the noun phrases of a language description in

an associate image, while the correspondences between the

noun phrases and image regions are not available for train-

ing. Formally, we aim to learn a visual grounding model

M, which takes an input image I and a description D

with a group of noun phrases Q = {qi}
N
i=1 and predicts

the corresponding locations B = {bi}
N
i=1 for the query

phrases, i.e., B = M(I,D,Q). For the weakly-supervised

learning setting, we are only provided a training dataset

X = {(I(l), D(l),Q(l))}Ll=1 of size L, where the corre-

sponding locations B(l) of phrases Q(l) are unobserved.

In this work, we adopt a typical grounding strategy that

first uses an external object detector (e.g., [28]) to generate

a group of visual object proposals O from I , which are then

matched to the phrases [29, 40, 2]. Learning a cross-modal

matching with weak supervision, however, is particularly

challenging in such a generate-and-match framework due to

visual ambiguity caused by inaccurate object detection and

the lack of instance-level region-phrase correspondence.

To address those challenges, we propose to learn a flex-

ible context-aware entity representation based on the lan-

guage prior and a coarse-to-fine matching process, which

enables us to mitigate the impact of the matching and local-

ization ambiguity. We instantiate our strategy with a two-

stage deep network, as illustrated in Fig. 2. Specifically,

the first-stage network extracts the visual and textual fea-

tures from inputs, and perform a coarse-level matching in

which we estimate the similarity scores between each qi
and O and a refinement of object proposal locations. In

the second stage, we select a small group of relevant pro-

posals from O for each phrase qi according to the similarity

scores, and build a visual object graph network by exploit-

ing parsed language structure. Our second-stage network

performs message passing to enhance the visual represen-

tation with contextual cues, and finally predicts a fine-level

similarity score for each object-phrase pair as well as fur-

ther refinement of object locations.

To train our model, we develop a joint learning strat-

egy with a multi-task loss, which additionally incorporates a

self-taught regression loss to refine the object locations and

a language-induced relation classification loss to enforce a

relational constraint on the entity matching. Below we first

introduce the details of our model architecture in Sec. 3.2

followed by our design of loss functions in Sec. 3.3.

3.2. Model Architecture

We now introduce our two-stage network which consists

of four sub-modules and can be divided into two stages.

The first stage of our network includes a Backbone Network

to extract visual and linguistic features (Sec. 3.2.1), and a

Coarse-level Matching Network to refine object locations

and select a subset of relevant proposals for each phrase

(Sec. 3.2.2). For the second-stage network, we build a Vi-

sual Object Graph Network to capture visual context cues

by message passing (Sec. 3.2.3), and a Fine-level Matching

Network to compute the final matching and object locations

with context-aware features (Sec. 3.2.4).

3.2.1 Backbone Network

Our first module is a backbone network consisting of a con-

volutional network for extracting visual features and a re-

current network for encoding language features.

The convolutional network (e.g. ResNet [10]) takes the

image I as input and computes a feature map Γ. An exter-

nal object detector (e.g. Faster R-CNN [28]) provides a set

of object proposals O = {〈om, cm〉}Mm=1, where om ∈ R
4

denotes object regions and cm ∈ {1, 2, ..., C} indicates ob-
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Figure 2. Model Overview: There are four modules in our network, the Backbone Network prepares basic phrase and visual features; the

Coarse-level Matching Network selects a small set of objects for each phrase and refines their spatial locations; the Visual Object Graph

Network enriches the object feature with their context and relations by exploiting language structure, finally the Fine-level Matching

Network predicts instance-level correspondences and refines their locations further based on the context-aware visual representation.

Three main losses are demonstrated to supervise the whole network, like relation classification loss Lrel, self-taught regression loss Lreg

and phrase reconstruction loss Lrec.

ject category. Similar to [22], for each om, we use RoI-

Align [9] and global average pooling to compute its conv-

feature, which is fused with its spatial feature to generate

the vector xom ∈ R
d, where d is the feature dimensions.

For the language features, we compute an embedding of

noun phrases qi ∈ Q as follows. We first embed the words

in description D into a sequence of vectors H = {ht}
T
t=1

via an encoding LSTM [31], where T is the word length in

D. The language feature xqi of each phrase qi is computed

by taking average pooling on its word representations:

H = LSTMenc(D), xqi =
1

|qi|

∑

t∈qi

ht (1)

where |qi| indicates the phrase length in words, and the em-

beddings ht,xqi ∈ R
d, which have the same dimensional-

ity as the visual features.

3.2.2 Coarse-level Matching Network

Our second module performs a coarse-level matching be-

tween phrases and the initial object proposals, aiming to se-

lect a small set of relevant proposals and refine their spatial

locations. To this end, for each phrase-boxes pair {qi, om},

we compute a similarity score ŝci,m and regression offsets

δci,m ∈ R
4 according to the phrase feature xqi and object

feature xom as follows:

ŝci,m = Fcls(xqi ,xom), δci,m = Freg(xqi ,xom) (2)

where Fcls and Freg are two fully-connected networks.

Following [2], we further utilize object categories as a

semantic cue to compute an additional similarity score sai,m

in the linguistic space:

sai,m = 〈Eext(qi), Eext(cm)〉 (3)

where 〈·, ·〉 indicates the inner product, and Eext rep-

resents an off-the-shelf language embedding (e.g., Skip-

thoughts [17]). Finally, we fuse the above two similarity

scores and compute an attention weight by taking the Soft-

max over all the proposals:

sci,m = ŝci,m · sai,m, αc
i,m = Softmax

m∈[1:M ]
(sci,m) (4)

To refine the proposal set, we apply the regression off-

sets δ
c
i = {δci,m}Mm=1 and select the top K(K ≪ M)

proposals for each phrase qi based on the similarity scores

sci = {sci,m}Mm=1. This generates a set of refined proposals

Vi = {oi,k}
K
k=1 for phrase qi, and we denote the proposal

set for all the noun phrases as V = {Vi}
N
i=1.

3.2.3 Visual Object Graph Network

Given the refined proposal sets, we introduce a graph neu-

ral network, dubbed as the Visual Object Graph Network,

to capture the visual context with the guidance of language

structure. Specifically, we first extract a set of relation

phrases from the description D with an external language

parser2 [30, 38, 22]. We then build a graph network with N

nodes and its i-th node, denoted by zi, encodes the visual

feature for phrase qi. Two nodes zi and zj are connected if

a relation phrase exists between two phrases qi and qj .

21 https://github.com/vacancy/SceneGraphParser
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We initialize the node feature zi based on the phrase pro-

posal set Vi and its attention scores {αc
i,k}

K
k=1, which rep-

resents an estimation of the visual feature for qi:

zi =
K
∑

k=1

αc
i,k · xoi,k (5)

where xoi,k are the object proposal features, and αc
i,k are

from Eq. 4. Subsequently, our graph network refines the

visual features {zi} by a message passing step as below:

z′i = zi +
∑

j∈N (i)

ωi,jFM (zj) (6)

ωi,j = Softmax
j∈N (i)

(FM (zi)
⊺FM (zj)) (7)

where z′i denotes the updated visual features, N (i) is the

neighborhood of node i, FM is a multi-layer network for

computing messages, and ωi,j is an attention weight be-

tween node i and j. Finally, we update each object proposal

feature, denoted by {x′
oi,k

}, with the visual features of its

corresponding phrase qi as follows:

x′
oi,k

= xoi,k + αc
i,k · z′i, (8)

where the visual context in z′i is distributed to oi,k with at-

tention weighting.

3.2.4 Fine-level Matching Network

Given the context-aware features, our final module per-

forms a fine-level matching between phrases and the refined

object proposal subsets. Similar to the coarse-level match-

ing, we predict a similarity score s
f
i,k, an attention weight

α
f
i,k, and a phrase-specific regression offset δ

f
i,k ∈ R

4 for

each phrase-proposal pair {qi, oi,k} as below:

s
f
i,k = Fcls(xqi ,x

′
oi,k

) · sai,k, α
f
i,k = Softmax

k∈[1:K]
(sfi,k) (9)

δ
f
i,k = Freg(xqi ,x

′
oi,k

) (10)

Model Inference During the model inference, for each

query qi, we first compute an overall matching scores

{si,k}
K
k=1 for the candidate proposals in Vi by fusing the

coarse-level and fine-level scores:

si,k = sci,k · sfi,k, (11)

followed by applying the estimated offset δ
f
i,k to their loca-

tions. Finally, we take the proposal o∗i,k with the maximum

similarity score s∗i,k as the grounding result of phrase qi.

Figure 3. Illustration of self-taught regression. The green box has

the highest confident matching score. The orange box overlap-

ping with the green box with IoU > τ will be regressed toward

the green box, while the blue box overlapping with the green box

with IoU < τ will stay unchanged. The GT box region here is

unobserved during training.

3.3. Learning with Weak Supervision

We now introduce our weakly supervised learning strat-

egy for training the two-stage deep network. To this end,

we develop a multi-task loss that incorporates two novel su-

pervision signals from a partially trained model itself and a

language prior on entity relations, respectively.

Specifically, our overall loss function L consists of

four terms, including a reconstruction loss Lrec for noun

phrases, a self-taught regression loss Lreg for refining ob-

ject proposal locations, a relation classification loss Lrel for

language-induced relation cues, and a ranking loss Lrank

for image-caption pairs. Formally, this weakly-supervised

learning loss can be written as follows,

L = Lrec + λ1 · Lreg + λ2 · Lrel + λ3 · Lrank (12)

where {λ1, λ2, λ3} are weight coefficients to balance the

loss terms. In this work, we adopt a similar ranking loss as

[4], and leave its details to the Suppl. We will instead focus

on the remaining three loss terms below, which are defined

for each image-caption pair.

Phrase reconstruction loss Lrec Given the noun phrases,

we adopt a phrase reconstruction loss [2, 29] at both stages

of our deep network to provide model supervision. As those

two reconstruction loss terms are similar, we will use the

coarse-level as an example below.

To apply the reconstruction loss, we first generate a vi-

sual representation zci for phrase qi. Specifically, we ag-

gregate the object features {xom}Mm=1 with the attention

weights {αc
i,m}Mm=1 in Eq. 4, which can be written as

zci =
∑M

m=1 α
c
i,m · xom . We then reconstruct the noun

phrase qi using the visual feature zci based on a decoding

LSTM. Concretely, we compute a sequence of word distri-

bution ŷc
i = {ŷc

i,w}
|qi|
w=1 as below:

ŷc
i = LSTMdec([z

c
i , qi]) (13)

Similarly, we also predict ŷ
f
i in the fine-level based on

a context-aware feature for each phrase qi as z
f
i =
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∑K

k=1 α
f
i,k · x′

oi,k
. Both stages share the same parameters

for the decoder LSTMdec. For each phrase, we adopt the

standard sequence log loss Llog and the overall reconstruc-

tion loss can be written as:

Lrec =

N
∑

i=1

(

Llog(ŷ
c
i , qi) + Llog(ŷ

f
i , qi)

)

(14)

Self-taught regression loss Lreg As phrase locations are

not annotated, we introduce a self-taught regression loss for

training the location regressors. Particularly, we observe

that the proposals with high matching scores often have an

accurate localization after several rounds of training with-

out Lreg . This motivates us to use the confident proposals

from partially-trained models to supervise the location re-

finement of their neighboring proposals, as shown in Fig. 3.

Concretely, for phrase qi, we denote δc∗i = {δc∗i,m} in which

δc∗i,m is the offset between proposal om and the most con-

fident proposal if their overlaps are larger than a thresh-

old τ , and otherwise the predicted δci,m, which means they

will stay unchanged. We then adopt the smooth-L1 loss

Lsm [28, 9] for the offset regression:

Lreg =

N
∑

i=1

(

Lsm(δci , δ
c∗
i ) + Lsm(δfi , δ

f∗
i )

)

(15)

Relation classification loss Lrel We further introduce

a pairwise loss on the context-aware features of phrases,

which imposes a relational constraint for the context en-

coding and fine-level matching. Specifically, we first ex-

tract relation phrases on the entire dataset by the language

parser as described in Sec. 3.2.3, and select Cr most fre-

quent relations to form a set of relationship categories R =
{0, 1, 2, · · · , Cr}, where 0 indicates no relation. Then we

predict the relation type ŷr
i,j ∈ R

Cr between a pair of

{qi, qj} according to their fine-level context-aware object

features with a multi-layer network Frel as follows,

ŷr
i,j = Frel(z

f
i , z

f
j ). (16)

Denote the relation labels of {qi, qj} as rij ∈ R, we use the

cross entropy loss for the relation classification if rij > 0:

Lrel =
∑

i,j

Lce(ŷ
r
i,j , rij). (17)

4. Experiments

In this section, we first depict the experimental setup

and implementation details; then compare our model with

previous methods. Detailed ablation studies are also con-

ducted to validate each components in our model. Finally,

we demonstrate several qualitative results to show model

efficacy.

4.1. Datasets and evaluation metric

Flickr30K Entities [27] contains 29783 images for

training, 1000 images for validation and 1000 images

for test. Each image is associated 5 captions. Refer-

ItGame [16] dataset consists of around 20k images and

130k query phrases, where each tatget visual object is re-

ferred by 1-3 query phrase and we follow the standard

dataset split of [29]. It is worthed noting that we ignore the

target box annotations for the query phrases on both datasets

during the training stage.

Evaluation Metric: We consider a noun phrase

grounded correctly when its predicted box has at least 0.5

IoU with its ground-truth location. The grounding accuracy

Acc (i.e., Recall@1) is the fraction of correctly grounded

noun phrases. We also report the point game metric PointIt

for a clear comparison with previous methods [11, 1, 4].

Following [4], we define a hit if the center of the predicted

bounding box lies in anywhere inside the ground-truth re-

gion, and PointIt is the percentage of these hits.

4.2. Implementation Details

We generate an initial set of M=50 object proposals with

an external RPN [28] pre-trained on Visual Genome [19]

dataset, and predict their object categories with the classi-

fication head of Faster-RCNN [28]. Then we apply RoI-

Align [9] to extract the object visual representation on fea-

ture map Γ, which is the output of C4 block in ResNet-101

with channel dimension d=2048. In coarse-level matching

network, we set K=5 to filter out most irrelevant proposals

for each noun phrase. In addition, we select Cr=88 rela-

tions, of which frequency are greater than 100.

For model learning, we train the entire network with

SGD optimizer with an initial learning rate of 1e-3 and

weight decay of 5e-4. The training iterations are up to 80k

and the batch size of each is 40. We reduce the learning

rate with decay 0.1 in 32k and 40k respectively. The hyper-

parameters (λ1, λ2, λ3) are set as (0.1, 1, 1) in loss function.

The threshold τ=0.6 in self-taught regression and Lreg is

applied for training after 7.5k iterations. All optimal hyper-

parameters are selected by conducting a grid search on val-

idation set and applied to test set directly once fixed. More

details on ReferItGame are described in Suppl.

4.3. Quantitative Results

We compare our model with several previous works in

terms of Acc and PointIt on both Flickr30K Entities [27]

and ReferItGame [16] datasets.

Flickr30K Entities: As shown in Tab. 1, our approach

outperforms the prior methods by a considerable margin

in both evaluation metric, achieving 59.27% on Acc and

78.60% on PointIt. Compared with reconstruction-based

methods, we can outperform KAC Net* [2] by 12.66% on

5617



Methods Backbone Language Proposals Det Label
Flickr30k ReferItGame

Acc% PointIt% Acc% PointIt%

SSS [11] VGG18 N/A - × - 49.10 - 49.90

MultiGrounding [1] PNAS Net Elmo - × - 69.19 - 48.42

GroundR [29] VGG16 LSTM SS × 28.94 - 10.70 -

MATN [44] VGG16 LSTM SS × 33.10 - 13.61 -

KAC Net [2] VGG16 LSTM SS X 38.71 - 15.83 -

Align2Ground [4] RN152 LSTM FRCNN(VG) × 11.20 71.00 - -

UTG [40] N/A Glove YOLOV2(COCO) X 36.93 - 20.91 -

ARN [20] RN101 LSTM MaskRCNN(COCO) X - - 26.19 -

KAC Net* [2] RN101 LSTM FasterRCNN(VG) X 46.61 74.17 33.67 56.57

KPRN[21] RN101 LSTM MaskRCNN(COCO) X - - 33.87 -

Contr. Learning [8] RN101 Bert FasterRCNN(VG) × 51.67 76.74 - -

Contr. Dist. [34] RN101 LSTM FasterRCNN(OI) X 50.96 - 27.59 -

ours RN101 LSTM FasterRCNN(VG) X 59.27 78.60 37.68 58.96

Table 1. Comparison of phrases grounding accuracy on Flickr30K Entities and ReferitGame test sets. * denotes the re-implementation

using the same backbone and object proposals as ours. SS denotes the selective search and (VG),(COCO),(OI) denote the object detector

pre-trained on Visual Genome, MSCOCO, OpenImage dataset.

Methods TSD STR VOGN&RC Acc%

baseline - - - 48.18

X - - 50.80

X X(w/o xqi ) - 54.05

X X - 56.88

X - X 52.48

X X X(w/o attention) 55.60

ours X X X 58.30

Table 2. Ablation Study on Flickr30K Entities val set.

Acc and 4.43% on PointIt, which demonstrates that our

carefully-designed regression loss and visual object graph

can solve the spatial and semantic ambuigities simultane-

ously. When compared with recently proposed contrastive

learning based methods [34, 8], we can still improve the

performance by 7.60% on Acc and 1.96% on PointIt, al-

though Contrastive Learning [8] takes more powerful Bert

as their language model.3 In addition, we demonstrate more

detailed comparisons on each coarse classes in Suppl.

ReferItGame: In ReferItGame dataset, we achieve

37.68% on Acc and 58.96% on PointIt. Our method out-

perform KPRN [21] by 3.81% on Acc and KAC Net* [2] by

3.39% on PointIt, which further validates the effectiveness

of our method.

4.4. Ablation Study

In this section, we conduct extensive ablation studies on

Flickr30K Entities validation set to show effectiveness of

each component in our method (Tab. 2).

Baseline: We take the direrctly matching strategy with

only Backbone Network and Coarse-level Matching Net-

work (w/o box regression) as our baseline model, which is

only supervised by the phase reconstruction loss Lrec and

and the ranking loss Lrank.
3Comparison with concurrent work [36] which is trained with addi-

tional supervision from object attributes refers to Suppl.

Figure 4. Comparison of grounding accuracy in different IoU

threshold and overall mean IoU on Flickr30K Entities val set.

Two-stage denoising (TSD): As shown in Tab. 2, our

two-stage denoising strategy can bring the performance

gain of 2.64% on Acc compared with the baseline model.

Because such strategy helps to filter out most of background

distractors and irrelevant objects and thus alleviates difficul-

ties in establishing cross-modal correspondence.

Self-taught regression (STR): Different from the previ-

ous work [2, 21, 8, 4, 20] whose performance is directly

restricted to the quality of generated object proposals, we

improve the grounding accuracy from 50.8% to 56.88% by

refining the location of object proposals and thus reduce

spatial ambiguities under the supervision of self-taught box

regression. In addition, we explore to remove noun phrase

feature xqi in Eq. 2 & 10 (i.e. estimate the proposal offsets

only based on visual features), and observe the Acc drop

from 56.88% to 54.05%, which suggests the language fea-

ture provides semantic-aware guidance for box regression.

To validate its effectiveness further, we remove such self-

taught regression loss on the final model and observe a steep

accuracy decrease in different IoU threshold across from 0.5
to 0.8, as shown in Fig. 4 (left); and a mean IoU drop shown

in Fig. 4 (right).

Visual object graph network (VOGN) & Relation con-

strain (RC): Visual object graph network enriches each
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Figure 5. Visualization of weakly grounding results on Flickr30K validation set. The colored boxes in image correspond to the noun

phrases with the same color in sentence. (a) demonstrates grounding results when the input sentences are complex, while (b) shows results

when visual scene is complex. (c) shows the effects of self-taught regression and (d) illustrates the results with the help of context cues.

We denote that the dashed boxes in (c) are initial proposals from external detectors, the solid boxes are our predictions after regression. In

(d), the dashed boxes are the predictions from our model without visual object graph and relation constraints.

K 3 5 10

Acc% 57.47 58.30 57.15

Table 3. Ablation study of K on Flickr30K Entities val set.

visual representation with their context cues and relation

constraint provides additional supervision to learn such rep-

resentation, as a result it suppresses semantic ambiguity and

improves the accuracy from 56.88% to 58.30%. It worth

noting that VOGN incorporates with RC to work as a whole

in our model, and we find using any separate component

will result in a limited contribution to the final results. More

details refer to the Suppl.

To further explore the graph structure, we replace the at-

tention weights ωij in Eq. 7 with non-parametric uniform

values by averaging the number of edges. We observe a sig-

nificant performance drop from 58.30% to 55.60%, which

suggests that it is non-trivial to flexiblely learn the graph

weights over the whole dataset.

Hyper-parameter K: As shown in Tab. 3, our approach

achieves the highest performance when K=5. The perfor-

mance will drop when K=3, mainly due to lower propos-

als recall. When K=10, the the performance will drop from

58.30% to 57.15% because of bringing much noisy proposal

candidates.

4.5. Qualitative Results

Fig. 5 visualizes a variaty of grounding cases of our final

results. We can observe that our model is capable of pre-

dicting accurate grounding results when the language de-

scription (Fig. 5 a) and visual scene (Fig. 5 b) are complex.

To better understand the capacity of self-taught regression,

we also visualize the refined proposals (solid boxes) com-

pared with their initial proposals (dashed boxes) in Fig. 5 c,

and find that object regions can be regressed to a more ac-

curate location, e.g., in the upper image the initial proposal

of a red ball is inaccurate with IoU=0.30, and refined to

a precise region with IoU=0.83. In Fig. 5 d, we observe

the relation constrain can distinguish the target object from

similar candidates, demonstrating the effectiveness of such

relation-based context information.

5. Conclusion

In this paper, we propose a flexible context-aware in-

stance representation for weakly supervised visual ground-

ing by incorporating coarse-to-fine object refinement and

entity relation modeling into a two-stage deep network.

Specifically, we develop a coarse-to-fine denoising strat-

egy, which contains a self-taught regression operation to re-

fine object proposals and reduce location ambiguities, and

adopt a relation constraint by exploiting language structure

to alleviate semantic ambiguities. As a result, we achieve

state-of-the-art performance on the public Flickr30K Enti-

ties and ReferItGame benchmarks, outperforming previous

work with a sizeable margin.
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