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Abstract

Surgical skills have a great influence on surgical safety

and patients’ well-being. Traditional assessment of sur-

gical skills involves strenuous manual efforts, which lacks

efficiency and repeatability. Therefore, we attempt to au-

tomatically predict how well the surgery is performed us-

ing the surgical video. In this paper, a unified multi-path

framework for automatic surgical skill assessment is pro-

posed, which takes care of multiple composing aspects of

surgical skills, including surgical tool usage, intraoperative

event pattern, and other skill proxies. The dependency rela-

tionships among these different aspects are specially mod-

eled by a path dependency module in the framework. We

conduct extensive experiments on the JIGSAWS dataset of

simulated surgical tasks, and a new clinical dataset of real

laparoscopic surgeries. The proposed framework achieves

promising results on both datasets, with the state-of-the-art

on the simulated dataset advanced from 0.71 Spearman’s

correlation to 0.80. It is also shown that combining multi-

ple skill aspects yields better performance than relying on a

single aspect.

1. Introduction

Hundreds of millions of surgeries are performed world-

wide annually [57]. The proficiency of the operating sur-

geon is a key factor affecting outcomes after surgery [8].

To ensure patient safety and reduce clinical errors, surgical

skill assessment has become an indispensable part of surgi-

cal training [47] and credentialing [56].

Conventional surgical skill assessment is undertaken

manually by experts with direct observation [47] or struc-

tured rating protocols [35]. Such human assessment is slow

and hardly reproducible. Meanwhile, the prevalence of la-

paroscopic and robot-assisted surgeries nowadays brings a

large volume of surgery videos captured by the built-in cam-
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Figure 1. Different aspects of surgical skills. Surgical skills can

be assessed from many aspects, e.g., 1) the usage of surgical tools

2) the clearness of the operating field 3) the distribution of surgical

events. This paper proposes a unified framework for surgical skill

assessment, which exploits these different aspects and the interac-

tion among them. Best viewed in color.

eras in surgical devices, which lay the foundation for au-

tomatic learning-based approaches to provide efficient and

repeatable skill assessment [52]. This paper works on auto-

matic surgical skill assessment using surgical videos.

Surgical skills are complex with many facets. No univer-

sally accepted skill assessment criterion exists in the med-

ical field currently [10]. By discussion with clinicians, we

identify three important aspects from the medical literature

that are likely to characterize surgical skills and also suit-

able for automatic assessment, i.e., surgical tool usage, sur-

gical field clearness, and surgical event pattern. The first

aspect is the movement of surgical tools [19, 36], which

could reflect the instrument handling proficiency and mo-

tion efficiency of the surgeon. As in Fig. 1, a high-skill

surgeon will have a short and smooth tool trajectory con-
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centrating on the dissection area, while a low-skill surgeon

will have a lengthy and jerky trajectory dispersed in a large

spatial range. The second aspect is the clearness of the op-

erating field as a skill proxy [31]. Skill proxy means an indi-

rect indicator that is statistically correlated to surgical skills.

Concretely, a clear operating field ensures high visibility of

anatomy structures, which is critical for the surgeon’s per-

formance. And it is more likely to link a poorly-performed

surgery to an obscure field with excessive bleeding, burnt

tissue, smoke, and thus limited anatomy visibility. The third

aspect is the workflow of surgical events or actions [50]. For

example in Fig. 1, a well-performed surgery tends to have

a linear pattern of events following the optimal procedure.

On the contrary, a loopy pattern with more jumps across

events is more common in a poorly-performed surgery, be-

cause the surgeon could find some previous surgical step

unsatisfactory and go back to fix it. Besides, skill-related

factors are also major causes of adverse events in surgeries,

such as bleeding and injury [60].

Prior works on automated surgical skill assessment,

e.g. [46, 24, 31], mostly rely on one of these aspects. How-

ever, we believe the great complexity of surgical skills ne-

cessitates a combination of multiple aspects for an accurate

assessment. Besides, the dependency relationships among

different aspects also play important roles in skill assess-

ment. For instance, tool usage needs to be more care-

ful when the field clearness is impaired. This paper thus

conceptualizes a unified framework to leverage the com-

plementary information in different skill aspects and also

capture dependencies among aspects. The proposed frame-

work comprises multiple paths in parallel, with each cor-

responding to a skill aspect. Aspect-specific feature se-

quences extracted from surgical videos are forwarded along

each path, subsequently transformed into skill score se-

quences for each aspect. We integrate a path dependency

module into the framework to capture inter-path dependen-

cies. In this module, feature sequences are aggregated from

all the skill aspects to provide temporal importance weights

for the score sequences. Lastly, the weighted score se-

quences are pooled over time and fused across paths as the

final assessment prediction. One practical problem of sur-

gical skill assessment is the limited amount of annotations

for training. Therefore, apart from a classic supervised re-

gression loss, the framework is additionally equipped with

a self-supervised contrastive loss to learn without annota-

tions. Specifically, we employ a predictive coding mecha-

nism on the latent embedding of feature sequences.

On the other hand, existing approaches are usually vali-

dated on simulated surgical tasks, such as knot-tying in the

JIGSAWS benchmark [18, 2]. However, a clinical dataset of

real surgeries is more desirable. And it is better to also have

event and tool annotations to support multi-aspect assess-

ment. The clinical dataset in EndoVis Challenge 2019 [1]

satisfies these requirements, which is unfortunately not pub-

licly usable yet. Therefore, we collect a new clinical dataset

consisting of twenty in vivo laparoscopic gastrectomies with

comprehensive skill and event annotations. The proposed

framework is validated by extensive experiments on our

new clinical dataset and the simulated JIGSAWS dataset.

On both datasets, instantiations of the proposed frame-

work obtain state-of-the-art results. Experimental results

are higher when multiple skill aspects are combined, val-

idating the effectiveness of our unified approach. We also

correlate the predicted skill scores with the input features

on the temporal dimension to get insights on how the model

understands surgical skills.

To summarize, our contributions are three-fold: 1) A uni-

fied framework assessing surgical skills from multiple as-

pects 2) A new clinical surgery dataset 3) Promising results

on both simulated and clinical surgery datasets.

2. Related Works

2.1. Automatic Surgical Skill Assessment

Prior works roughly fall into three categories accord-

ing to which skill aspect they are related to. The first

category is tool-related and makes up the majority of the

literature. Methods in this category rely on tool motion

data from various sources, including video object track-

ing or detection [24, 5, 44], video spatiotemporal descrip-

tors [65, 64, 62, 7], robotic kinematics [63, 55, 15, 9], ex-

ternal sensors [13, 4, 23], and virtual reality interfaces [25].

The second category is proxy-related. The clearness of

operating field is identified as a skill proxy on clinical

data [31]. In their method [31], indirect assessment via

proxy performs better than direct skill prediction. The third

category is event-related. They usually break down surgical

trials into fine-grained events [46, 49, 34, 3, 51, 33]. These

methods use surgical events differently from our frame-

work. Our framework learns from the occurrence pattern

of events to determine skills, while they mainly evaluate

surgical skills in the individual event to provide detailed

feedback. A recent method [54], which also belongs to the

event-related category, tackles surgical skill assessment by

multi-task learning with surgical gestures. In addition, some

researchers adopt a purely learning-based approach [16]

that is not related to any of these three categories.

Most previous studies take advantage of only one skill

aspect. Our framework, instead, tries to unify multiple as-

pects for surgical skill assessment.

2.2. Action Quality Assessment

Action quality assessment is a field relevant to surgical

skill assessment. Methods in this field aim at assessing

the quality of actions in sports such as diving and gymnas-

tics [6, 40, 17, 48, 39, 37, 61, 45, 42, 41, 29, 20, 26, 58],
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Figure 2. Multi-path framework for unified surgical skill assessment. Two paths are visualized for clarity and four paths are used in practice.

or actions in daily life such as drawing and going up-

stairs [30, 38, 12, 11]. The quality assessment of simu-

lated surgical tasks is involved in the experiments of several

methods above [11, 17, 48, 39, 12], but not as their central

focuses. More importantly, medical domain knowledge is

not sufficiently incorporated in these general-purpose meth-

ods. However, such domain knowledge is crucial for surgi-

cal skill assessment.

3. Method

In this section, we present a unified framework for sur-

gical skill assessment, which takes in a surgery video and

outputs a skill score. As shown in Fig. 2, our framework

comprises multiple assessment paths, an inter-path depen-

dency module, and a contrastive learning mechanism. This

section introduces the framework in its general form and

detailed instantiations are left to the experiment section 4.3.

3.1. MultiPath Assessment

To characterize surgical skills from multiple aspects, our

framework adopts a multi-path design, in which multiple

paths with similar architectures are organized in parallel

such that each path concentrates on one skill aspect. Con-

cretely, four paths are included, with three of them cor-

responding to the previously mentioned skill aspects, i.e.,

tool, proxy, and event. The rest one is a baseline visual path

that evaluates surgical skills directly from semantic visual

features, such as the features from pre-trained deep neural

networks. The input to each path is a feature sequence ex-

tracted from the surgical video, which is intended to supply

distinct information specific to each skill aspect. Feature

sequences for different paths are of similar shapes:

Xm P R
LˆDm ,m P tV, T, P, Eu (1)

where V, T, P, E denote the visual, tool, proxy, event path

respectively, Xm denotes the feature sequence input to the

path m, L is the video length and Dm is the feature dimen-

sion. The extraction of these features is flexible and can

adapt to the dataset, task, application and so on, as long as

each focuses on its skill aspect. For example, the input to

the event path can be a sequence of occurrence probabilities

of surgical events, and the input to the tool path can be a

sequence of spatial coordinates of surgical tools.

Along each path m, the feature sequence is first encoded

into a high-level embedding sequence:

X̄m “ φmpXmq (2)

where φm represents an encoding function in the path m,

and X̄m P R
LˆD̄m is the resultant embedding with size

D̄m. Afterward, the embedding sequence is converted into

a score sequence Sm P R
Lˆ1 indicating predicted surgical

skill at each time step:

Sm “ λmpX̄mq. (3)

The λm denotes a score function in the path m. In this way,

each path gives an aspect-specific rating of surgical skills.

3.2. Path Dependency Module

In the assessment of surgical skills, the relation among

skill aspects matters. Skill predictions in one path con-

tribute to the overall assessment unequally at different time
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steps, often depending on the information in other paths.

For example, the surgical tool usage could become more

important for skill assessment when the field clearness is

reduced, and the event occurrence could become less im-

portant when no tool appears in the scene. To model such

inter-path dependencies, we design a path dependency mod-

ule in our framework, which mimics the phenomena in these

examples by gathering information from all the paths to pro-

vide different temporal importance weights for each path.

In detail, the importance weight Wm P R
Lˆ1 for the path

m is also a temporal sequence. To compute the weightWm,

feature sequences are collected from all the paths by an ag-

gregation function ψ and then sent to a weight function ωm:

Wm “ softmaxpωmpψpXV, XT, XP, XEqqq. (4)

The aggregation function is shared by paths while the

weight functions are not. And a softmax function is im-

posed to normalize the weight sequence on the temporal di-

mension. Subsequently, the score sequences, weighted by

the temporal importance, are averaged over time and paths

to obtain an overall video-level skill score:

q “
1

4

ÿ

m

L
ÿ

i“0

Sm,iWm,i,m P tV, T, P, Eu (5)

where Sm,i P R, Wm,i P R denote the score and weight in

the path m at time i, and q P R is the video-level skill pre-

diction. Lastly, a mean squared error (MSE) loss is utilized

to supervise the skill prediction:

Lmse “ py ´ qq
2
. (6)

The y is the ground truth skill annotation, which is within a

predefined range of scores.

3.3. SelfSupervised Contrastive Loss

The scarcity of annotated data is a common concern for

medical tasks, and surgical skill assessment is no exception.

To alleviate this issue, we resort to a contrastive learning

strategy. Inspired by the video predictive coding [21], we

take future prediction as an auxiliary task to help the model

learn temporal dynamics in a self-supervised manner. Con-

cretely, in each path m, a predicting function σm is used

to forecast the embedding in the future based on the recent

past:

Fm,i “ σmpX̄m,i´1q (7)

where X̄m,i´1 P R
D̄m is the embedding in Eqn. 2 at time

i´ 1, and Fm,i P R
D̄m is the predicted embedding for time

i. Then a contrastive loss is designed to encourage the simi-

larity of the predicted embedding Fm,i with the real embed-

ding X̄m,i at time i, and discourage its similarity with the

embeddings in other time steps:

Lcon “ ´
ÿ

m

L
ÿ

i“1

log
exppFm,i ¨ X̄m,iq

ř

jPNi
exppFm,i ¨ X̄m,jq

(8)

where ¨ represents the dot product, and Ni is a temporal

neighborhood around time i including time i. This con-

trastive loss could assist the encoding function φm in Eqn. 2

in better capturing temporal dynamics in the surgical video.

Finally, we combine the self-supervised contrastive loss

with the supervised MSE loss to train the framework:

Lfull “ Lmse ` Lcon. (9)

4. Experiments

This section first introduces the experimental setup and

the implementation of our framework. We then present ab-

lation studies and comparisons to state-of-the-art methods.

At last, the correlation between model prediction and input

features is examined.

4.1. Datasets

Simulated dataset. Experiments are first performed on

the public JIGSAWS dataset [18, 2], which contains three

simulated tasks for robotic-assisted surgery, i.e., suturing

(SU), needle-passing (NP), and knot-tying (KT). There are

78 egocentric videos for the suturing task, 56 for needle

passing, and 72 for knot tying, with 206 videos in total. The

duration of the video is 88 seconds on average. Each video

is annotated with a skill-level global rating score (GRS)

with a range from 6 to 30. We use the GRS as the ground

truth of the surgical skill. The JIGSAWS dataset also pro-

vides annotations of fine-grained surgical gestures and kine-

matic data of robotic manipulators.

Clinical dataset. Experiments are also performed on

a newly built clinical dataset. This dataset has 20 laparo-

scopic videos of in vivo surgeries for gastric cancer, includ-

ing partial or total gastrectomy and related lymph node (LN)

dissection. The videos have 960 ˆ 540 resolution and 25

FPS. Different from the simulated JIGSAWS dataset, our

dataset is collected from real operating rooms. This new

dataset is very challenging, due to its extremely long du-

ration (199 min. per video on average), frequent camera

movement, changing illumination, and varying patient con-

ditions. Example frames are given in Fig. 3.

For each video in our dataset, surgical skills are anno-

tated by an expert surgeon on 7 metrics based on a modified

OSATS protocol [35]. The global rating score (GRS) is de-

fined as the sum of the 7 metrics. The GRS has a range

from 7 to 35 and is used as the ground truth. In Fig. 4, we

Ours (Clinical) JIGSAWS (Simulated)

Figure 3. Example video frames.
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Figure 4. Skill distribution of the new clinical dataset.

# Videos 20

# Average frames per video 299K

Average duration per video 199 min.

# Surgical event classes 41

# Surgical event instances 1565

# Skill metrics 7

# Skill proxy 1

Table 1. Statistics of the new clinical dataset.

Surgical Event #Ins.

Abdominal cavity exploration 31

Dissection of fusion tissue 19

Dissection of the greater omentum 24

LN dissection of subpyloric region (SR) 22

LN dissection of hepatoduodenal ligament region (HLR) 41

LN dissection of the superior pancreas (SP) 27

LN dissection of lesser curvature (LC) 21

LN dissection of the left gastroepiploic region (LGR) 22

Resection of the distal stomach 20

Specimen removal 20

Gastro-jejunal anastomosis 21

Jejuno-jejunal anastomosis 21

Irrigation and placement of the drains 17

Bleeding 279

Camera out 352

Table 2. Clinical surgical events used in this study.

plot the distribution of the GRS over the 20 videos. This

dataset is also annotated with the proxy score of field clear-

ness [31], as well as comprehensive surgical events. There

are 41 classes of surgical events in total, including procedu-

ral events, adverse events, video events, etc. The statistics of

our dataset are summarized in Table 1 and more details are

given in the supplementary material. We use the 15 event

classes listed in Table 2 in this study.

4.2. Experiment Setup

To keep consistent with existing literature, we adopt both

four-fold cross-validation (4-Fold) and leave-one-user-out

cross-validation (LOUO) when evaluating on JIGSAWS.

The four-fold splits provided by [48] and the LOUO splits

associated with the JIGSAWS dataset are used. On our clin-

ical dataset, three-fold cross-validation is adopted.

Following prior works, we choose Spearman’s rank cor-

relation (SROCC) as the evaluation metric. For the JIG-

SAWS dataset, the average correlation across the three sur-

gical tasks is computed by Fisher’s z-value [40]. Besides,

experiment results are averaged over multiple runs.

4.3. Framework Instantiation

4.3.1 Instantiation of input features

Input features to the paths in our framework are instantiated

differently to carry aspect-specific information as follows.

Visual path input XV. We leverage the semantic fea-

tures extracted from ResNet-101 [22] pre-trained on Ima-

geNet as XV. The feature dimension DV is 2048.

Tool path input XT. On the clinical dataset, to capture

the surgical tool movement, we first apply an unsupervised

tool segmentation method [32]. Then XT is spatial his-

tograms of the segmentation masks. Specifically, the mask

in each frame is divided into 3 ˆ 3, 4 ˆ 4, and 5 ˆ 5 spatial

grids. The percentage of pixels belonging to surgical tools

in each grid cell is taken as the feature. The feature dimen-

sion DT thus equals 9` 16` 25 “ 50. Since the segmenta-

tion method is unsupervised, XT does not involve extra data

or annotations. On the simulated dataset, the robotic kine-

matic data associated with the dataset is used as XT. We

use DT “ 14 dimensions, including the 3D positions, 3D

velocities, and gripper angles of the two patient-side ma-

nipulators.

Proxy path input XP. On the clinical dataset, the field

clearness is used as a skill proxy. The frame-level scores

of the proxy are extracted from a re-implementation of [31]

as XP. The training and testing of method [31] follow the

same cross-validation settings as in Section 4.2. Since the

field clearness only works for clinical data, we employ an-

other simple skill proxy for the simulated dataset, i.e., task

completion time [11]. The XP is set as a sequence with

a constant value inversely proportional to the video length.

On the simulated dataset, XP does not involve extra data or

annotations. DP is 1 on both datasets.

Event path inputXE. For the event path, we train Multi-

Stage Temporal Convolutional Networks (MS-TCN) [14] to

detect surgical events on the clinical dataset or surgical ges-

tures on the simulated dataset. The event detection models

are trained under the same cross-validation settings as in

Section 4.2. The XE is then set as the frame-level probabil-

ities of events or gestures. Its dimension DE, which equals

the number of classes, is 10 for suturing, 8 for needle-

passing, 6 for knot-tying on the simulated dataset, or 15 on

the clinical dataset.

4.3.2 Instantiation of functions

The aggregation function ψ is instantiated with the concate-

nation of the feature dimension. For all paths except the
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Clinical Simulated 4-Fold

Method Ó 3-Fold SU NP KT Avg.

Ours (V) 0.201 0.642 0.666 0.729 0.681

Ours (T) 0.250 0.765 0.566 0.662 0.673

Ours (P) 0.469 0.396 0.333 0.803 0.554

Ours (E) 0.241 0.603 0.200 0.762 0.560

Ours (VT) 0.268 0.735 0.737 0.706 0.726

Ours (VTP) 0.525 0.791 0.761 0.784 0.779

Ours (VTPE) 0.565 0.834 0.756 0.819 0.805

Table 3. Ablation study on framework paths.

Clinical Simulated 4-Fold

Method Ó 3-Fold SU NP KT Avg.

Full Model 0.565 0.834 0.756 0.819 0.805

Without ω 0.509 0.808 0.681 0.754 0.752

Without ψ 0.522 0.766 0.555 0.777 0.712

Without σ 0.414 0.853 0.676 0.797 0.786

Table 4. Ablation study on framework components.

Clinical 3-Fold Simulated 4-Fold (Acc. %)

(mAP %) SU NP KT Avg.

75.4 88.8 78.3 85.4 84.2

Table 5. Mean average precision (mAP) of surgical event detection

and accuracy of surgical gesture detection.

proxy path, the encoding functions φ are instantiated with

Temporal Convolutional Networks (TCN) [28]. The score

functions λ, weight functions ω, predicting functions σ are

chosen as frame-wise multilayer perceptrons (MLP). For

the proxy path, since the input feature already represents

the skill, the encoding function φP and the score function

λP are set as identity functions, and the weight function ωP
is a constant function giving uniform weights at all time

steps. The contrastive loss and the predicting function are

removed from the proxy path.

4.3.3 Other implementation details

The proposed framework is implemented using Py-

Torch [43]. Model parameters are trained using mini-batch

stochastic gradient descent with the Adam optimizer [27].

The embedding sizes D̄V, D̄T, D̄P, D̄E are set to 20, 4, 1, 4

respectively. We freeze the input features after extraction.

This allows the model to have a larger temporal receptive

field covering more video frames, which is necessary when

handling the extremely long clinical videos and when learn-

ing long-term event patterns. The simulated videos are sam-

pled at 5 FPS and the clinical videos are sampled at 0.5 FPS.

The GRS is normalized within 0 and 1 during training. Our

codes will be released to offer other details.

Method SROCC

USDL [48] 0.161

Ours (VT) 0.268

MICCAI 2019 [31] 0.469

Ours (VTP) 0.525

Ours (VTPE) 0.565

Table 6. Comparison to the state-of-the-art on our clinical dataset.

Methods in the same vertical slot can be directly compared.

Method Input SU NP KT Avg.

USDL [48] V 0.64 0.63 0.61 0.63

Ours (VP) V 0.68 0.71 0.80 0.73

MUSDL [48] ˚ V 0.71 0.69 0.71 0.70

ST-GCN [39, 59] VK 0.31 0.39 0.58 0.43

TSN [39, 11, 53] VK 0.34 0.23 0.72 0.46

JRG [39] VK 0.36 0.54 0.75 0.57

AIM [17] VK 0.63 0.65 0.82 0.71

Ours (VTP) VK 0.79 0.76 0.78 0.78

Ours (VTPE) VK 0.83 0.76 0.82 0.80

Table 7. Comparison to the state-of-the-art methods on the simu-

lated dataset under the 4-Fold setting. Methods in the same verti-

cal slot can be directly compared. V: Surgical videos. K: Robotic

kinematics. ˚: Extra fine-grained skill annotations are used.

4.4. Ablation Studies

Effects of framework paths. A set of comparative ex-

periments are performed on both datasets to inspect the ef-

fect of each skill aspect. The results of using every single

path and combinations of multiple paths are reported in Ta-

ble 3. When using a single path, the proxy path achieves

higher results than other paths on the clinical data. In gen-

eral, combining multiple paths improves performance. On

both two datasets, the best average performance is obtained

when all the paths are included. It is noticed that the event

path performs badly on the needle-passing task, probably

due to the inferior gesture detection accuracy on this task.

The accuracy of gesture detection and the mean average pre-

cision (mAP) of event detection are reported in Table 5.

Effects of framework components. In Table 4, the re-

sults of our framework with one of the following compo-

nents removed are presented: 1) weight functions ω, 2) ag-

gregation function ψ, 3) predicting function σ. The con-

trastive loss is also discarded when the σ is removed. In

general, all components contribute positively to the best

performance. Besides, the predicting function σ for con-

trastive learning is especially important when the data is

highly scarce, i.e., on the clinical data. On the simulated

suturing task, the contrastive learning yields no improve-

ment possibly because sufficient training data is available.

The encoding and score functions are not ablated over since

they lie in the backbone of our framework.
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   “Using right hand to help tighten suture”    “Pushing needle through tissue”“Pulling suture with left hand”

Time

“Bleeding” 
“LN dissection of HLR” “LN dissection of SP” “LN dissection of LGR” “Camera out”
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of the drains”
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Figure 5. Result visualization. The upper part shows the result on a simulated surgery and the lower part on a clinical surgery. The weighted

score sequences SmWm from each path m P tV, T, P, Eu are visualized. The higher score reflects the better surgical skill and vice versa.

Corresponding surgical gestures or events are marked on the selected frames. SPWP is not plotted for the simulated surgery because it is a

constant sequence. Note that for each sequence the integral over time equals a video-level skill prediction.

Method Input SU NP KT Avg.

DTC+DFT+ApEn [63] K 0.37 0.25 0.60 0.41

Ours (TP) K 0.40 0.63 0.55 0.53

JRG [39] VK 0.35 0.67 0.19 0.40

AIM [17] VK 0.45 0.34 0.61 0.47

Ours (VTP) VK 0.45 0.62 0.58 0.56

MTL-VF (ResNet) [54] ˚ V 0.68 0.48 0.72 0.64

MTL-VF (C3D) [54] ˚ V 0.69 0.86 0.83 0.80

Ours (VTPE) VK 0.45 0.65 0.59 0.57

Table 8. Comparison to the state-of-the-art methods on the simu-

lated dataset under the LOUO setting. Methods in the same verti-

cal slot can be directly compared. V: Surgical videos. K: Robotic

kinematics. ˚: Extra surgical experience annotations are used.

4.5. Comparisons to StateoftheArt

Clinical dataset. Due to the lack of existing results on

our clinical dataset, two state-of-the-art methods are im-

plemented to compare with, i.e., USDL [48] and MICCAI

2019 [31]. Specifically, we run the public code of USDL

and re-implement the method [31]. Moreover, for fairness,

paths involving extra annotations are removed from our

framework respectively in each comparison. We remove the

proxy and event paths while comparing with USDL, and re-

move the event path while comparing with MICCAI 2019.

Our method achieves promising performance as shown in

Table 6.

Simulated dataset. Table 7 and Table 8 show the com-

parisons between the experimental results of our method

and other approaches on the simulated dataset. Note that

previous methods could adopt different modalities as input,

some of which use extra annotations. Therefore, methods

using the same data and annotation are grouped together for

comparison. When comparing our framework with others,

we remove the paths involving extra annotations. In each

comparison, our method outperforms other counterparts re-

spectively.

4.6. Visualization

We choose two videos from the simulated dataset and our

clinical dataset to visualize the weighted score sequences

SmWm P R
Lˆ1 for each path m P tV, T, P, Eu in Fig-

ure 5. For example, in the video from the simulated dataset,

frames with number 1 record a miss of right robot hand

while the surgeon is tightening suture, which leads to a si-

multaneous fall of event score. This error causes event rep-

etition and interrupts the normal workflow of suturing. On

the other hand, in the video from our clinical dataset, the

frame with number 2 presents a detected bleeding event and

a concurrent fall of event score. In addition, the frame with

number 3 shows a camera out event with low tool scores.

The camera out event likely corrupts the surgical tool seg-

mentation algorithm, which can be regarded as a failure
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case. A video demo is attached in the supplementary.

5. How the Model Understands Surgical Skills

To investigate what the model learns about surgical

skills, the model outputs are analyzed quantitatively. Note

that some input feature sequences are of medical or physical

meanings, such as the XE on the simulated dataset indicat-

ing the probabilities of surgical gestures. Therefore, we can

get some insights by temporally correlating the weighted

score sequences SmWm P R
Lˆ1 to these meaningful input

feature sequences. If take XE on the simulated dataset as an

example, the correlation between model outputs and a chan-

nel c in XE is defined as R
pcq
E

by the following equation:

R
pcq
E

“
1

3

ÿ

m

|sroccpSmWm, X
pcq
E

q|,m P tV, T, Eu (10)

where X
pcq
E

P R
Lˆ1 is the selected channel of the in-

put. SROCCs between this channel and weighted score se-

quences from different paths are computed and averaged.

The resultant R
pcq
E

P r0, 1s indicates to what extent the skill

predictions are correlated to the surgical gesture c. In the

equation above, we take the absolute value of the SROCC

since we care about the correlation regardless of whether it

is positive or negative. The SPWP is excluded from the com-

putation since it is a constant sequence. Apart from XE, the

tool feature sequence XT also has physical meanings on the

simulated data and RT can be similarly computed.

The bar plots of RE and RT for the simulated suturing

task are given in Fig. 6. For RE, it is interesting that the

model outputs are most correlated to the surgical gesture

“Pushing needle through tissue”, which is also an intu-

itively critical gesture for suturing. Model outputs are less

correlated to transitional gestures such as “Moving to cen-

ter with needle in grip” and “Moving to end points”. For

RT, it is noticed that the model outputs are most correlated

to the gripper angles and the position-z of the left manip-

ulator, which are also highly active factors during suturing

in practice. These findings are consistent with the human

understanding of suturing.

Similarly, the RE on the clinical data is also computed

and visualized in Fig. 7. The SPWP is included in the com-

putation now. Currently, no remarkable correlation between

the surgical event and the model output is observed, with

all correlations are lower than 0.1. This demonstrates the

simulated-clinical gap and thus the importance of clinical

data. A larger number of clinical surgeries may lead to more

evident findings in the future. More results are in the sup-

plementary.

6. Conclusion and Future Work

This paper proposes a flexible and general framework to

automatically assess surgical skills from multiple aspects.

Position-X Left Manipulator  

  Position-Y Left Manipulator  

  Position-Z Left Manipulator  

  Position-X Right Manipulator

  Position-Y Right Manipulator

  Position-Z Right Manipulator

  Velocity-X Left Manipulator  

  Velocity-Y Left Manipulator  

  Velocity-Z Left Manipulator  

  Velocity-X Right Manipulator

  Velocity-Y Right Manipulator

  Velocity-Z Right Manipulator 

GripperAngle Left Manipulator 

GripperAngle Right Manipulator
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Positioning needle  

Pushing needle through tissue  

Transferring needle from left to right  
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Pulling suture with left hand  

Orienting needle  

Using right hand to help tighten suture  

Loosening more suture  

Moving to end points  
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Figure 6. Blue: Correlations between model outputs and surgical

gestures on the simulated suturing (RE). Red: Correlations be-

tween model outputs and tool features on the simulated suturing

(RT).

Abdominal cavity exploration

Dissection of fusion tissue

Dissection of the greater omentum

LN dissection of SR

LN dissection of HLR

LN dissection of SP

LN dissection of LC

LN dissection of LGR

Resection of the distal stomach

Specimen removal

Gastro-jejunal anastomosis

Jeujo-jejunal anastomosis

Irrigation and placement of the drains

Bleeding

Camera out

0.00 0.05 0.10

Figure 7. Correlations between model outputs and surgical events

on the clinical data (RE).

The effectiveness of the proposed framework is validated

by the experiments on both simulated and clinical surgery

datasets. Within this framework, future works could focus

on more advanced input features and composing functions.

Our framework is also extendable to include more skill as-

pects beyond those used in this study. Future works could

also research the flexible choice of paths and the adaptive

fusion of paths. Besides, it is also desirable to have more

data from the clinical environment for surgical skill assess-

ment in the future.
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