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Abstract

We study the problem of unsupervised discovery and seg-
mentation of object parts, which, as an intermediate lo-
cal representation, are capable of finding intrinsic object
structure and providing more explainable recognition re-
sults. Recent unsupervised methods have greatly relaxed
the dependency on annotated data which are costly to ob-
tain, but still rely on additional information such as object
segmentation mask or saliency map. To remove such a de-
pendency and further improve the part segmentation perfor-
mance, we develop a novel approach by disentangling the
appearance and shape representations of object parts fol-
lowed with reconstruction losses without using additional
object mask information. To avoid degenerated solutions, a
bottleneck block is designed to squeeze and expand the ap-
pearance representation, leading to a more effective disen-
tanglement between geometry and appearance. Combined
with a self-supervised part classification loss and an im-
proved geometry concentration constraint, we can segment
more consistent parts with semantic meanings. Comprehen-
sive experiments on a wide variety of objects such as face,
bird, and PASCAL VOC objects demonstrate the effective-
ness of the proposed method.

1. Introduction

Object parts and landmarks are two widely used interme-
diate representations of object local structures, which have
received increasing attention recently for their robustness
to the variations of viewpoint and appearance [12]. While
there have been many related works on object landmark de-
tection by either supervised learning [41, 25] or unsuper-
vised discovery [ 13, 40] , semantic part segmentation is rel-
atively less studied [12] due to the costly efforts required
for data annotation.
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Figure 1: Semantic consistency of object parts. Segmenta-
tion regions of the same part should be semantically con-
sistent across object instances and robust to appearance and
shape changes. Best view in colors.

This paper primarily focuses on unsupervised seman-
tic part segmentation, as object parts provide richer infor-
mation about intrinsic object structures which are comple-
mentary to landmark points. To alleviate the efforts in an-
notations, we investigate the unsupervised learning strat-
egy for automatic semantic part segmentation [12]. It has
also shown an encouraging impact on single-view 3D ob-
ject reconstruction by using self-supervised learned seman-
tic parts which enforces semantic consistency between the
reconstructed 3D mesh and original 2D images [18].

A good object part segmentation should satisfy two es-
sential constraints on semantics and geometry, which corre-
spond to object appearance and shape, respectively. The
semantic constraint means that segmentation regions of
the same part should be semantically consistent across ob-
ject instances and robust to appearance and shape changes.
The geometric constraint means a part segmentation region
should be locally connected and the union of all parts should
entirely cover the corresponding object. These two con-
straints can be seen in Fig. 1, in which the parts with the
same semantic information (e.g., heads of bird) are cov-
ered by the same segmentation color (e.g., red) in different
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images, and the union of all parts provides a good cover-
age over an object. Hung et al. [12] also discuss similar
constraints including geometric concentration, robustness
to variations, semantic consistency, and objects as union of
parts, and accordingly develop an unsupervised solution for
semantic part segmentation. However, for the objects-as-
union-of-parts constraint, their solution lacks a principled
way to enforce such a constraint and has to take a depen-
dency on saliency map, which is not always reliable and
has to be replaced with object segmentation mask in some
cases !. This dependency makes it hard to scale up with
more data or to other object categories.

To relax the dependency on saliency map (or object seg-
mentation mask) and further improve the performance of
part segmentation, we develop a novel unsupervised learn-
ing approach by disentangling the appearance and shape
representations of semantic parts, followed with reconstruc-
tion losses without using any additional object segmentation
mask or saliency map 2. The idea of disentanglement and
synthesis is inspired by [13], despite that it was proposed
for automatic landmark point discovery whereas this work
is for semantic part segmentation. By disentangling the ap-
pearance and shape representations of a target object cate-
gory, we can effectively add semantic and geometric con-
straints on the appearance part and the shape part, respec-
tively.

More specifically, our framework is an encoder-decoder
based deep neural network. The network firstly takes a pair
of images which only differ by geometric transformations,
and then uses two encoders to extract the appearance and
shape representations of the two images. After exchanging
the appearance representations between two images, a de-
coder is used to reconstruct the input images to close the
loop for unsupervised learning. To avoid degenerated solu-
tions, we design a bottleneck block to squeeze and expand
the appearance representation, leading to a more complete
disentanglement between appearance and shape, which in
return yields a better shape representation for part segmen-
tation. On the squeezed appearance representation, we ap-
ply a classification loss to learn distinctive part features
while enforcing cross-instance semantic consistency. On
the disentangled shape representation, we use an improved
geometric concentration loss with a special treatment for
background pixels. This concentration loss, together with
the reconstruction loss, essentially ensures the geometric
constraint. To validate the effectiveness of the proposed

'For example, for CUB-Birds, the open-source implementation of
SCOPS uses ground truth silhouettes rather than saliency maps and crops
birds w.r.t bounding boxes rather than using the original images. See
https://github.com/NVlabs/SCOPS#scops—on-caltech—
ucsd-birds

2Note that we still assume the availability of object bounding boxes,
which are used in all unsupervised object landmark/part learning works to
bound the learning problem to single object images.

framework, we perform comprehensive experiments on a
wide variety of objects such as face, bird, and PASCAL
VOC objects, and obtain superior part segmentation results
compared to previous works.

Our contribution can be summarized as follows:

* To our best knowledge, this is the first attempt that can
unsupervised learn semantic part segmentation with-
out using any addition object segmentation mask (or
saliency map).

* By utilizing a squeeze-and-expand bottleneck block,
the proposed method can effectively disentangle the
appearance and shape representations of objects and
remove the dependency of using additional segmenta-
tion masks.

2. Related Work
2.1. Unsupervised Landmark Discovery

There have been many efforts to learn landmarks in a
supervised manner [43, 42, 39, 37, 30, 3, 25, 35]. How-
ever, supervised landmark detection is largely limited by
the availability of annotated data and mainly works for pop-
ular categories, such as face [21, 23], bird [32], etc. To
avoid relying massive annotated data, unsupervised land-
mark discovery has attracted much more attention in recent
years. Thewlis et al. [29] proposed to address landmark
discovery by using the equivariance constraint and then ex-
panding the formulation to a dense situation [28]. Jakab
et al. [13] proposed to learn landmarks by first disentan-
gling pose and appearance of an image and then recombin-
ing them for synthesizing a new image. We term this ap-
proach as a disentanglement and synthesis paradigm. This
work shows that combining disentanglement with synthe-
sis can effectively lead to the desired equivariance prop-
erty, which has inspired many follow-up works, including
this paper. Many subsequent works suggest improvement
upon [!3]. For example, Thewlis et al. [27] proposed
to add a vector exchanging procedure for better semantic
consistency across instances. Jakab er al. [14] then tried
to learn human-interpretable landmarks from unpaired la-
bels and Xu et al. [38] designed a cycle framework to learn
from unpaired data. Nevertheless, such works are limited to
landmark discovery, whereas our work is to obtain part seg-
mentation from unlabeled data, which is a more challenging
problem.

2.2. Part Segmentation

Our work is closely related to weakly supervised ob-
ject co-segmentation. Co-segmentation aims at identi-
fying pixels of interested foreground objects from back-
ground. There have been many related works on this sub-
ject [11, 16, 1,26, 2,24, 10], but they mainly deal with se-
mantic information at the object level rather than at the part
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level. Besides, most works need to take a whole dataset
as input and perform co-segmentation, while we are more
interested in learning a model that can predict part level se-
mantic information, shown as a part segmentation map, for
each image.

Several recent works have attempted to learn part-level
information in an unsupervised manner. Hung et al. [12]
proposed to learn part features that are semantically consis-
tent across images and have achieved good results in their
paper. However, it takes a dependency on object saliency
map, which is not always reliable and has to be replaced
with object segmentation mask in some cases, to distinguish
a foreground object from background. In this work, we re-
move this dependency and make semantic part segmenta-
tion applicable to more object categories. Lorenz et al. [22]
proposed to disentangle object shape and appearance to ob-
tain a part modeling result, which has a similar goal to this
work. However they make an elliptical assumption for each
part and do not assign a part label for each pixel. Thus this
approach does not work well for images whose main object
occupies a large area, like human faces, as it cannot gener-
ate a complete segmentation map.

3. Methodology

As discussed in Sec. 1, we hope the learned part segmen-
tation results could meet both the semantic constraint and
geometry constraint without additional saliency map or seg-
mentation mask. To apply the two constraints on the appear-
ance and shape features separately, we leverage an encoder-
decoder neural network with a squeeze-and-expand bottle-
neck block in the middle to disentangle the appearance and
shape representations, which will be described in Sec. 3.1.
To ensure the semantic constraint, we use a reconstruction
loss and a classification loss, which will be detailed in Sec.
3.2 and Sec. 3.3 respectively. For the geometry constraint,
we improve the concentration loss and describe the details
in Sec. 3.4.

3.1. Overall Framework

The overall framework is an encoder-decoder based deep
neural network, which includes three modules: a part seg-
mentation encoder F;, an appearance encoder F,, and a
decoder D for image generation. Between the two encoders
and the decoder, a bottleneck block is designed to squeeze
and expand the appearance representation, for a more effec-
tive disentanglement between appearance and shape. The
whole framework is shown in Fig. 2.

To learn such a neural network, we assume an image
collection of the interested object category is available as
training data. Given an image from the training dataset, we
firstly construct a pair of images which only differ by ge-
ometric transformations. That is, the transformed objects
included in the two images have the same appearance but

different shape representations. As suggested in previous
works [13, 22], we use the thin-plate-spline transformation
(TPS) [7, 23] to obtain two transformed images =1, z(?).
Using (1) and 2(?) as inputs, we can extract an appearance
feature map A € REXHXW and a part segmentation map
S € RIEH)XHXW (corresponding to shape) by E, and F,
for each image as

AW = B, (), 8O =E, (%), i=1,2 (1)
where K denotes the number of object parts, L denotes the
dimension of appearance features, and H x W is the reso-
lution of two output tensors, including both the appearance
feature map and the part segmentation map. The O-th chan-
nel is used for representing the background region and the
1-st to K-th channels are used for representing K object
parts. For notational convenience, we denote K/ = K + 1.
Moreover, each part segmentation map S(*), i = 1,2 is nor-
malized along the channel dimension by softmax.

Appearance Transfer Bottleneck. To disentangle the
appearance and shape representations, reconstruction is nor-
mally performed to provide a self-supervised loss * after ex-
changing the shape (or appearance) representations between
two input samples. However, directly performing recon-
struction will lead to a degenerated solution. For example,
the part segmentation map S may contain some appearance
information as well as shape information, making itself ca-
pable of reconstructing the original image, which is an un-
desired trivial solution. Inspired by [13] and [22], we de-
sign a simple appearance transfer bottleneck to squeeze and
expand the part appearance features, aiming at generating a
rendered appearance feature map that contains appearance
feature from only one image and shape information from
another image.

In the squeeze step (Eq. (2)), each channel in the part seg-
mentation map can be regarded as an attention map, which
is used to weighted average the learned appearance features
over all pixels. This step reduces the dimension of the ap-
pearance feature and squeezes out the shape information of
2. In the expand step (Eq. (3)), the squeezed part ap-
pearance feature of (1) is expanded according to the part
segmentation map of z(?), treating each response channel
as an attention map to generate a rendered appearance fea-
ture map. This appearance transfer bottleneck, as well as
the reconstruction, effectively helps avoid degenerated dis-
entanglement learning.

For the sake of simplicity, we only write out the process
of transferring the appearance of z(!) to combine with the
shape of 2(?), and it is straightforward to generalize to the
inverse direction.

3In the paper, we mainly use “self-supervised” to refer to a specific loss,
but use “unsupervised” to refer to the overall part segmentation problem
which does not require supervised annotations.
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Figure 2: The overall framework of our model. The network firstly takes a pair of images which only differ by geometric
transformations and then uses two encoders to extract the appearance A (), i = 1,2 and shape representation S(9,i = 1,2 of
the two images. In the middle are two bottleneck blocks, each for squeezing the appearance representation and combining it
with the shape representation of another image by an expansion operation. After exchanging the appearance representations
between two images, a decoder is used to reconstruct the input images to close the loop for unsupervised learning.

First, we reshape the part segmentation map S to
SM e RE™*(HW) and the appearance feature map A}
to A e REXMHW) for notational convenience. Then, we
squeeze the part appearance feature by using the part seg-
mentation map to obtain F(!) € RE"<L g5 follows to push
out any shape information:

D = diag(SM1xw),

F) — D 1§ (AM)T, )

where 1w is a vector of ones with dimension HW and
D! is to perform row normalization on S™).

For the next step, we expand the squeezed part appear-
ance feature F(1) of (1) according to the shape (part seg-
mentation map) of the other image =(2). After reshaping
S®@ to §@ e RE'*X(HW) e can obtain the rendered ap-
pearance feature map A' 72 € REX(HW) a9

Al—)Q — (F(l))TS(2) (3)

By reshaping A'~2 back to A'72 ¢ RIXHXW e
get the rendered appearance feature map A'~2 which con-
tains the appearance information of image =(*) only and the
shape information of x(?) alone, as we expected. The in-
verse direction for A2~! can be derived in a similar way.

Image Generation. Using the rendered appearance fea-
ture maps A2~! and A'™? as inputs, we can obtain two
reconstructed images using the decoder D, as shown in the
right part of Fig. 2.

) = DAY, 2% =DA'™?). )

3.2. Reconstruction Loss

To ensure the semantic constraint being applied effec-
tively on the disentangled appearance and shape represen-
tations, we use reconstruction as self-supervised signals.
Some previous works [13, 22] have shown that the disen-
tangling and synthesis paradigm could help learn features
with the desired semantic consistency property, which is
also termed as equivariance. Our reconstruction loss is de-
fined as

Lrce =P, 20) + P, 23), ©)

where P represents the perceptual loss [
works [13, 38].

, 4] as in previous

3.3. Part Classification Loss

Similar to semantic segmentation, part segmentation can
also be considered as a multi-class classification problem to
assign a class label to each pixel. Although we do not have
part labels for each pixel, we can perform classification on
the squeezed part appearance feature F € R¥ %L That s,
the k-th part feature F;, € R should be classified correctly
to the k-th class.

Such a self-supervised classification loss not only helps
learn distinctive features for different parts, but also implies
semantic consistency across object instances, which leads to
the desired feature invariance property. Inspired by recent
progress in face recognition feature learning [36, 19, 34, 9,

], to further reduce the intra-class variance, we adopt the
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ArcFace loss [6], which can be formulated as:

1 K es(cos(@,;,i—}-m))
£cls = K Zzzl IOg es(cos(9¢,¢+m)) + Z]I'(:Lj;éi escosb;; .
(6)

The background channel is excluded from the loss for
its inconsistency across instances. To implement this loss
function, we add a linear classification layer in the model,
which has parameters W € RE*L representing K feature
basis of dimension L. In the loss function, §; ; is the angle
between part feature £; € RL and basis W; € RE, and
s and m are two constants representing radius scaling and
angular margin penalty.

Unlike previous image-level constraints, we apply self-
supervised classification constraints directly on object parts.
To our best knowledge, this is the first time such a constraint
is used in unsupervised keypoint discovery or part segmen-
tation. The use of this constraint effectively leads to dis-
tinctive part features while keeping cross-instance semantic
consistency, which further helps improve the part segmen-
tation performance as demonstrated in Sec. 4.2.

3.4. Foreground/Background Concentration Loss

As mentioned in Sec. 1, the learned segmentation map
should meet the geometry constraint as well. Our method
requires each pixel to be assigned with a part label. Hence
the requirement of an object being entirely covered by the
union of all parts is easy to implement.

For the concentration constraint which requires each ob-
ject part to be locally connected, we follow the concentra-
tion loss as proposed in [12] for foreground object pixels
but make a special modification for background pixels as
they are scattered around an object and do not follow the
concentration constraint. For foreground pixels:

1 & u ck
_ = %
e= 22| -]
k=1 u,v
where c¥ and c* are the coordinates of the k-th part center

along axis u, v, and zj, is a normalization term. c¥, c¥, and
2}, can be calculated as follows:

k k
Cy :Zu'sk,u,v/zka Cy :Z'U'Sk,u,v/zka ®
w,v u,v

2

: Skm,v/zlw (7)
2

2 =min{» _ Sguw, 1} )

Note that Eq. (9) is slightly different from the definition of

z in [12], as we found it works better for avoiding degen-
erated solutions in our framework.

The foreground concentration loss works well for fore-

ground pixels, but it is inappropriate for background pix-

els which are scattered around an object and lack semantic

consistency. [12] is not suffered from this issue because
it has an extra input of saliency map to bound the region
of interested object. However, as we want to remove the
dependency on an extra saliency map input, we propose a
background concentration loss as follows to separate out
background pixels. As the channel 0 of S is regraded as
background, we can write the loss as:

Log = h((u,0)* - Sou/ 20, (10)

u,v

where h((u,v)) is the distance between the pixel (u, v) and
its nearest boundary which can be calculated as

h({u,v)) = min{u, W — u,v, H — v}. (11)

Compared with the foreground concentration loss as in
Eq. (7), this constraint encourages background pixels to be
close to image boundaries. This constraint is also based on
the assumption that the target object has been cropped and
roughly centered with the help of an object bounding box,
as mentioned in Sec. 3.1, which is a commonly used as-
sumption in unsupervised object part learning. Since it is
hard to apply a semantic consistency constraint for diverse
background regions, this geometric constraint helps the pro-
posed algorithm focus on the main object in the center of an
image.

3.5. Final Loss Function

The overall training loss is to minimize the weighted
combination of all the losses in Eq. (5), (6), (7), and (10):

£sum = )\Tec‘crec + )\cls['cls + )\fgﬁfg + )\bg['bgy (]2)

where Arec, Acis, Afg and Ayg are hyper parameters for bal-
ancing the final loss.

4. Experiments

To evaluate the proposed approach, we conduct ex-
periments on several datasets, including CelebA [21] and
AFLW [23] for human faces, CUB [&] for birds, and PAS-
CAL VOC [31] for other common object categories. As
there is no ground truth for unsupervised part segmenta-
tion, we mainly follow recent works [29, 40, 12] and use
landmark regression as a proxy metric to evaluate the per-
formance of part segmentation for datasets with landmark
annotations, e.g. CelebA, AFLW, and CUB. For PASCAL
VOC which does not have landmark annotations, we eval-
uate the aggregated part segmentations with the foreground
segmentation using the IOU (intersection over union) met-
ric.

The experiments on human faces (including CelebA and
AFLW) and common objects (including CUB and VOC) are
detailed in Sec. 4.2 and Sec. 4.3, respectively. We also
present qualitative results of appearance and shape disen-
tanglement and transfer on DeepFashion [20] in Sec. 4.4.
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4.1. Implementation Details

As mentioned in Sec 3, our framework consists of three
modules: a part segmentation encoder E,, an appearance
encoder E,, and a decoder D, all of which are implemented
as deep convolutional networks using PyTorch.

We use all layers before layer4 (as denoted in the Py-
Torch implementation) of an unpretrained ResNet34 as the
appearance encoder, except that we set the stride of layer3
to 1. For the part segmentation encoder, we replace the
backbone model with ResNetl18 (using all layers before
layer4 and setting the stride of layer3 to 1 as well) and add
an extra 1 x 1 convolution layer at the end of the backbone.
We resize all the images to 128 x 128 as input resolution,
and the size of the output tensor is H x W = 32 x 32.
For different tasks, we will use different K. Our generator
is composed of seven convolution blocks, each containing
a convolution or transposed convolution layer, a batch nor-
malization layer and a ReLU layer, and an extra 3 X 3 con-
volution layer at the end of the generator. Of these seven
blocks, the second and fourth contain 4 x 4 transposed con-
volution layers for upsampling, and the rest contains 3 x 3
convolution layers.

We initialize all model weights with random Gaussion
noise (sigma = 0.01), and use Adam [17] as our optimizer,
with (31, B2) = (0.9,0.999), a weight decay of 5 x 1074,
and a learning rate of 1 x 10~%. For the ArcFace loss, we
set the constants s to 20 and m to 0.5. More implementation
details are available in the supplementary materials.

4.2. Evaluation on Human Faces

We first test our method on two commonly used hu-
man face dataset: CelebA [21] and AFLW [23]. CelebA
is a large-scale face dataset containing more than 200K im-
ages of celebrities collected from Internet. Each image in
CelebA has 40 binary annotations, a bounding box and five
landmark coordinates for each face. Our setting is the same
as that in [12]. We use the wild image for training and
testing, and filter out the images with face covering less
than 30% of the pixel area. Since unsupervised results can-
not be measured directly, most previous works [28, 13, 22]
use proxy tasks for evaluation, such as landmark regres-
sion. Following [12], we first convert part segmentations
into landmarks by taking part centers as in Eq. (8) and then
learn a linear regressor to map the converted landmarks to
ground truth landmarks and evaluate the regression error on
test data. The result can be found in Table 1.

The result shows that our method, without using any ad-
ditional information, outperforms all other methods, includ-
ing SCOPS which uses an additional saliency map. Al-
though this is a proxy evaluation metric, it in some ways
illustrates the good semantic consistency of our approach.
To visualize the part segmentation result, we show some re-
sulting images from CelebA in Fig. 3.

Method K=4 K=8

ULD [29] - 3130
Zhang et al. [40] - 40.82
IMM [13] 1942 8.74
Lorenz et al. [22] 1549 11.41

SCOPS [12](w/o saliency) | 46.62 22.11
SCOPS [12](with saliency) | 21.76  15.01
Ours 15.39 12.26

Table 1: Landmark regression results on wild CelebA. We
report the landmark regression error in terms of mean L2
distance normalized by inter-ocular distance. Note that the
first three methods are specially designed for landmarks dis-
covery and Lorenzet et al. is not for precise part segmenta-
tion for its elliptical shape assumption. We list them for
reference.

w/0 L¢. |Full model Raw image

w/o Lgg

w/o Ly

PR

w/o ‘CCIS

Figure 3: Visualization and ablation studies on wild
CelebA. It shows that all the £,.., Ly, and Ly, are essen-
tial for avoiding a degenerated solution and the classifica-
tion loss further improves the distinctiveness of parts.

In addition to CelebA, we also test our method on an-
other human face dataset: AFLW [23]. AFLW contains
25K faces, each of which is annotated with 21 landmarks.
AFLW is a more challenging dataset because the variation
across pictures is even larger. Some other works [27] pro-
vide a subset of AFLW and select five face annotations for
each face. We uses their unaligned dataset for testing. We
compare our method with relevant works in Table 2. In
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Method Mean Error
IMM [13] 13.31
Lorenzet al. [22] 13.60

SCOPS [12](w/o saliency) 56.08
SCOPS [12](with saliency) 16.05
Ours 13.13

Table 2: Landmark regression results on unaligned AFLW.
All methods are in the setting of K = 8.

the setting of K = 8, we achieve a mean error of 13.13,
whereas SCOPS achieves 16.05 even with a saliency prior.
The comparisons on two different datasets demonstrate the
superiority of our proposed method in terms of semantic
consistency of object parts.

Ablation Study. To validate the effectiveness of each
loss function, we conduct ablation studies on CelebA. Ta-
ble 3 shows the contribution of each loss function by ex-
cluding one loss function each time. For a more intuitive
understanding, the visual results of each ablation study are
shown in the Fig. 3. The results show that the combina-
tion of the reconstruction loss, the foreground loss, and the
background loss can effectively help avoid a degenerated
result. When any constraint is missing, the regression mean
error increases dramatically. The visualization in Fig. 3 can
show the impact of each loss more intuitively. The recon-
struction loss L. is the key to close the loop for unsuper-
vised learning and ensure semantic consistency. Without
Lyrec, the segmentation results are no better than uniform
squares. Without the foreground loss L s, the parts learned
are scattered all over an image. If we remove the back-
ground loss Ly, the result leads to another trivial solution,
with one part covering the whole object and others covering
the background. The classification loss L.;s helps further
improve the distinctiveness of the learned part features and
enforce cross-instance semantic consistency. After adding
L5, the mean error is further reduced from 14.38 to 12.26
as in Table 3. Without L., the part learned may cover
some semantically unrelated regions. For example, the fa-
cial area contains some pixels from neck and clothes.

As we discussed in Sec. 3, the whole framework is based
on an encoder-decoder structure, with the reconstruction
loss to setup unsupervised learning tasks. The reconstruc-
tion loss helps ensure both the semantic constraint and the
geometry constraint. The squeeze-and-expand bottleneck
block makes it possible to further add the classification loss
for improving the semantic consistency and add the fore-
ground and background losses for satisfying the geometry
constraint. The ablation studies demonstrate that all the four
losses are essential and effective for good segmentation re-
sults.

4.3. Evaluation on Common Objects

To test the generalization ability of our method, we
also evaluate it on other two datasets: CUB-200-2011 [¥],

Method K=4 K=8
w/0 L 49.32  46.01
wlo Ly 4577 41.42

w/o Lyg 31.83 29.93
w/o Ls 17.20 14.38
Full Model | 15.39 12.26

Table 3: Ablation study on CelebA. The results shows that
all the four losses are essential for semantically consistent
part segmentation.

Raw
image

Overlay
image

Segmap

Raw
image

Overlay
image

Segmap

BEE HEK

(b) PASCAL VOC

Figure 4: Visualization on CUB and PASCAL VOC. Each
instance (shown in one column) has three images: the input
image in the first row, the segmentation map in the last row,
and the overlay of segmentation result on the input image in
the second row.

termed as CUB for short, and PASCAL VOC [31], termed
as VOC in the following paragraphs.

CUB [8] is a dataset with 11,788 photos of 200 bird
species in total. This dataset is challenging due to the large
variation in bird attitudes. In this experiment, we follow
[12] and select the photos from the first 3 categories for
segmentation. Similar to the previous experiments for hu-
man faces, to quantify the performance of our result, we
use the expected coordinates of each part as a key point po-
sition estimation for landmark regression, where we use the
annotated 15 part locations as the ground truth landmarks.
We show the mean error of landmark regression in Table 4,
where CUB-1, CUB-2 and CUB-3 represents the results of
three categories of birds. Similarly, our results are superior
to other methods, which indicates that our method keeps a
good semantic consistency for objects with large variations.
Visualization of CUB is shown in Fig. 4a.
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Method CUB-1 CUB-2 CUB-3
zhang et al. [40] | 30.12 29.36 28.19
DFF [5] 2242 21.62 21.98
SCOPS [12] 18.50 18.82 21.07
Ours 18.15 17.54 19.40

Table 4: Landmark regression results on CUB. We report
the mean error of landmark regression, where the horizontal
and vertical coordinates are normalized by the width and
height of ground truth bounding box, respectively.

category sheep bus motor horse cow areo car

DFF [5] 51.03 58.63 54.80 49.51 5639 4838 56.48
SCOPS [12] | 56.95 73.82 5853 55.76 60.79 69.02 65.18
Ours 64.87 7817 5998 53.65 65.60 52.82 70.49

Table 5: Evaluation results on PASCAL VOC. We report
IOU of part-aggregated segmentation compared with the
ground truth mask.

Next, we test our method on PASCAL VOC [31] for
more object categories. VOC is a large-scale dataset which
has been widely used for object detection and semantic seg-
mentation tasks. It contains more than 10, 000 images of 20
categories in total, and about 7,000 object instances anno-
tated with segmentation maps. We follow [12] and select
seven categories to test our method. As VOC does not have
landmark annotations, we use the ground truth segmenta-
tion masks of object instances and report in Table 5 the IOU
of our part-aggregated segmentation result compared with
the ground truth mask. The part-aggregated segmentation
is simply taken as the union of all the learned foreground
parts. It is worth noting that, as SCOPS [12] explicitly uses
an additional saliency map (or silhouette), this is not a fair
comparison to some extends. Nevertheless, our results still
outperforms previous methods on most categories, and are
better than DFF [5] on all categories. Visualization of VOC
is shown in Fig. 4b. Note that while our method performs
well in terms of image transformation and large appearance
variance, we find it still struggles with distinguishing be-
tween orientations of near-symmetric objects. Distinguish-
ing flipped object parts remains a challenging task for self-
supervised learning and deserves dedicated studies in our
future work.

4.4. Disentanglement on DeepFashion

To illustrate the effect of disentanglement, which is a key
component in our framework, we evaluation our method on
DeepFashion [20] dataset, which contains over 800, 000 di-
verse images. In our experiment, we select full-body images
of their “in-shop clothes retrieval benchmark” for learning.

We visualize the part segmentation results and appear-
ance transfer results in Fig. 5. Every generated image is
synthesized by the appearance taking from one image in the
leftmost column and the shape taking from one image in the
topmost row. The visualization is mainly to show if the ap-
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Figure 5: Appearance and shape disentanglement on Deep-
Fashion. Images in the same column have the same posture,
but their appearances come from the leftmost images.
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pearance and shape representations are well disentangled,
rather than showing high-quality synthesis images.

5. Conclusion

In this paper, we have presented an unsupervised method
that can learn part segmentation without supervised annota-
tions by disentangling appearance and shape. We consid-
ered two essential constraints: semantic constraint and ge-
ometry constraint for a good part segmentation result, and
accordingly developed an encoder-decoder neural network
with a squeeze-and-expand bottleneck in the middle for dis-
entangling the appearance and shape appearances. This de-
sign effectively removes the dependency on a saliency map
or object segmentation mask, yet leads to an improved re-
sult. Comprehensive experiments on a wide variety of ob-
jects such as human faces, birds, and PASCAL VOC objects
verified the effectiveness of the proposed method in terms
of both segmentation quality and disentanglement result.
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