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Abstract

In this paper, we present CLCC, a novel contrastive learn-

ing framework for color constancy. Contrastive learning

has been applied for learning high-quality visual represen-

tations for image classification. One key aspect to yield

useful representations for image classification is to design

illuminant invariant augmentations. However, the illuminant

invariant assumption conflicts with the nature of the color

constancy task, which aims to estimate the illuminant given

a raw image. Therefore, we construct effective contrastive

pairs for learning better illuminant-dependent features via

a novel raw-domain color augmentation. On the NUS-8

dataset, our method provides 17.5% relative improvements

over a strong baseline, reaching state-of-the-art performance

without increasing model complexity. Furthermore, our

method achieves competitive performance on the Gehler

dataset with 3× fewer parameters compared to top-ranking

deep learning methods. More importantly, we show that

our model is more robust to different scenes under close

proximity of illuminants, significantly reducing 28.7% worst-

case error in data-sparse regions. Our code is available at

https://github.com/howardyclo/clcc-cvpr21.

1. Introduction

The human visual system can perceive the same canon-

ical color of an object even under different illuminants.

This feature can be mimicked by computational color con-

stancy, an essential task in the camera pipeline that processes

raw sensor signals to sRGB images. Conventional meth-

ods [10, 20, 21, 40, 60] utilize statistical properties of the

scene to cope with this ill-posed problem, such as the most

widely used gray world assumption. Such statistical meth-

ods, however, often fail where their assumptions are violated

in complex scenes.

* Indicates equal contribution.
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Figure 1: Our main idea of CLCC: The scene-invariant,

illuminant-dependent representation of the same scene under

different illuminants should be far from each other, while

different scenes under the same illuminant should be close

to each other.

Until recently, deep learning based methods [31, 48, 66,

67] have been applied to the color constancy problem and

achieve considerable quality improvements on challenging

scenes. Yet, this ill-posed and sensor-dependent task still

suffers from the difficulty of collecting massive paired data

for supervised training.

When learning with insufficient training data, a com-

mon issue frequently encountered is the possibility of learn-

ing spurious correlations [62] or undesirable biases from

data [59]: misleading features that work for most training

samples but do not always hold in general. For instance,

previous research has shown that a deep object-recognition

model may rely on the spuriously correlated background

instead of the foreground object to make predictions [65] or

be biased towards object textures instead of shapes [24]. In

the case of color constancy, outdoor scenes often have higher

correlations with high color temperature illuminants than

indoor scenes. Thus, deep learning models may focus on

scene related features instead of illuminant related features.
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This leads to a decision behavior that tends to predict high

color temperature illuminants for outdoor scenes, but suffers

high error on outdoor scenes under low color temperature

illuminants. This problem becomes worse when the sparsity

of data increases.

To avoid learning such spurious correlations, one may

seek to regularize deep learning models to learn scene-

invariant, illuminant-dependent representations. As illus-

trated in Fig.1, in contrast to image classification problem,

the representation of the same scene under different illu-

minants should be far from each other. On the contrary,

the representation of different scenes under the same illumi-

nant should be close to each other. Therefore, we propose

to learn such desired representations by contrastive learn-

ing [13, 27, 30], a framework that learns general and robust

representations by comparing similar and dissimilar samples.

However, conventional self-supervised contrastive learn-

ing often generates easy or trivial contrastive pairs that are

not very useful for learning generalized feature represen-

tations [37]. To address this issue, a recent work [13] has

demonstrated that strong data augmentation is crucial for

conducting successful contrastive learning.

Nevertheless, previous data augmentations that have been

shown effective for image classification may not be suitable

for color constancy. Here we illustrate some of them. First,

most previous data augmentations in contrastive learning are

designed for high-level vision tasks (e.g., object recognition)

and seek illuminant invariant features, which can be detri-

mental for color constancy. For example, color dropping

converts an sRGB image to a gray-scale one, making the

color constancy task even more difficult. Moreover, the color

constancy task works best in the linear color space where

the linear relationship to scene radiance is preserved. This

prevents from using non-linear color jittering augmentations,

e.g., contrast, saturation, and hue.

To this end, we propose CLCC: Contrastive Learning for

Color Constancy, a novel color constancy framework with

contrastive learning. For the purpose of color constancy, ef-

fective positive and negative pairs are constructed by exploit-

ing the label information, while novel color augmentations

are designed based on color domain knowledge [2, 49, 36].

Built upon a previous state-of-the-art [31], CLCC pro-

vides additional 17.5% improvements (mean angular er-

ror decreases from 2.23 to 1.84) on a public benchmark

dataset [14], achieving state-of-the-art results without in-

creasing model complexity. Besides accuracy improvement,

our method also allows deep learning models to effectively

acquire robust and generalized representations even when

learning from small training datasets.

Contribution We introduce CLCC, a fully supervised con-

trastive learning framework for the task of color constancy.

By leveraging label information, CLCC generates more di-

verse and harder contrastive pairs to effectively learn feature

representations aiming for better quality and robustness. A

novel color augmentation method that incorporates color do-

main knowledge is proposed. We improve the previous state-

of-the-art deep color constancy model without increasing

model complexity. CLCC encourages learning illuminant-

dependent features rather than spurious scene content fea-

tures irrelevant for color constancy, making our model more

robust and generalized, especially in data-sparse regions.

2. Related Work

2.1. Contrastive learning

Contrastive learning is a framework that learns general

and robust feature representations by comparing similar and

dissimilar pairs. Inspired from noise contrastive estimation

(NCE) and N-pair loss [26, 45, 55], remarkable improve-

ments on image classification are obtained in several recent

works [13, 27, 30, 43, 57, 61, 63]. Particularly, a mutual in-

formation based contrastive loss, InfoNCE [61] has become a

popular choice for contrastive learning (see [44, 47] for more

discussion). Furthermore, recent works [3, 7, 16, 29, 37, 58]

have shown that leveraging supervised labels not only im-

proves learning efficiency by alleviating sampling bias (and

hence reducing the need for large batch size training) but also

improves generalization by learning task-relevant features.

2.2. Data augmentation

Data augmentations such as random cropping, flipping,

and rotation have been widely used in classification [28, 51],

object detection [42], and semantic segmentation [12] to

improve model quality. Various works rely on manually

designed augmentations to reach their best results [13, 52].

To ease such efforts, strategy search [17, 18] or data syn-

thesis [46, 68] have been used to improve data quality and

diversity. However, popular data augmentation strategies for

image recognition [13, 17, 34, 50] (e.g., color channel drop-

ping, color channel swapping, HSV jittering) may not be

suitable for the color constancy task. Thus, we incorporate

color domain knowledge [2, 36, 49] to design data augmen-

tation suitable for contrastive learning on color constancy.

2.3. Color constancy

Color constancy is a fundamental low-level computer

vision task that has been studied for decades. In general, cur-

rent research can be divided into learning-free and learning-

based approaches. The former ones use color histogram and

spatial information to estimate illuminant [10, 20, 21, 40, 60].

Despite the efficiency of these methods, they do not perform

well on challenging scenes with ambiguous color pixels.

The latter ones adopt data-driven approaches that learn to

estimate illuminant from training data [4, 6, 19, 22, 32].

These learning-based approaches outperform learning-free
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Figure 2: An overview of our CLCC: Besides the main color

constancy task, we propose to incorporate contrastive learn-

ing to learn generalized and illuminant-dependent feature

representations.

methods and have become popular in both academic and

industry fields. In addition, recent works have shown that

features learned from deep neural networks are better than

hand-crafted ones [39, 41, 50]. Consequently, deep learn-

ing based color constancy research has gradually received

more and more attention. Recently, FC4 uses ImageNet-

pretrained backbones [31, 39] to prevent over-fitting and

estimate illuminant with two additional convolutional lay-

ers. RCC-Net [48] uses a convolutional LSTM to extract

features in both spatial and temporal domains to estimate

illuminants. C4 [67] proposes a cascaded, coarse-to-fine

network for color constancy, stacking three SqueezeNets

to improve model quality. To mitigate the issue that the

learned representation suffers from being sensitive to im-

age content, IGTN [66] introduces metric learning to learn

scene-independent illuminant features. From a different per-

spective, most learning based methods strongly bind to a

single sensor’s spectral sensitivity and thus cannot be gener-

alized to other camera sensors without fine-tuning. Several

works [1, 33, 64] have attempted to resolve this issue by

training on multiple sensors simultaneously. We note that

multi-sensor training is out of the scope of this work, hence

we do not compare to this line of research.

3. Preliminaries

Image formation model A raw-RGB image can be

viewed as a measurement of scene radiance within a par-

ticular range of spectrum from a camera sensor:

Iraw(x) =

∫

ω

Rc(λ)S(x, λ)L(λ)dλ (1)

where λ denotes the wavelength, ω ∈ [380, 720] (nm) is

the visible spectrum, Rc is the spectral sensitivities of the

sensor’s color channel c ∈ {r, g, b}. The term S(x, λ) de-

notes the scene’s material reflectance at pixel x and L(λ) is

the illuminant in the scene, assumed to be spatially uniform.

Notably, Iraw values are linearly proportional to the scene

radiance, making color constancy easier to work with.

Color space conversions Usually Iraw undergoes two

color space conversions in the camera pipeline:

IsRGB = GXYZ→sRGB(Fraw→XYZ(Iraw)) (2)

where F(·) involves linear operations including white bal-

ance and full color correction. F(·) maps a sensor-specific

raw-RGB to a standard perceptual color space such as CIE

XYZ. G(·) involves non-linear photo-finishing procedures

(e.g., contrast, hue, saturation) and eventually maps XYZ

to the sRGB color space (we refer to [35] for a complete

overview of camera imaging pipeline).

White balance and full color correction Given Iraw,

white balance (WB) aims to estimate the scene illuminant

L = [Lr, Lg, Lb], i.e., the color of a neutral material cap-

tured with a physical color checker placed in the scene.

Knowing that a neutral material equally reflects spectral

energy at every wavelength regardless of different illumi-

nants, we can apply a 3 × 3 diagonal matrix MWB with

the diagonal entries [Lg/Lr, 1, Lg/Lb] on Iraw to obtain a

white-balanced image IWB:

IWB = IrawMWB (3)

After WB, a neutral material should appear achormatic (i.e.,

“gray”). Because WB only corrects achromatic colors, a 3×3
full color correction matrix MCC is further applied to correct

chromatic colors (in practice, those chromatic patches with

known CIE XYZ values on color checker). Note that MCC is

illuminant-specific due to error introduced by the estimated

MWB

IXYZ = IWBMCC (4)

Such IXYZ is sensor-agnostic since the illuminant cast is

completely removed for both achromatic and chromatic col-

ors.

4. Methodology

We start with our problem formulation and review con-

ventional self-supervised contrastive learning in Section 4.1.
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Next, we introduce CLCC, our fully-supervised contrastive

learning framework for color constancy in Section 4.2. Fi-

nally, we describe our color augmentation for contrastive

pair synthesis in Section 4.3. How these sections fit together

is illustrated in Fig. 2.

4.1. Formulation

The learning problem Our problem setting follows the

majority of learning-based color constancy research which

only focuses on the white balance step of estimating the

illuminant L from the input raw image Iraw:

L̂ = fφ(hθ(Iraw)) (5)

where hθ is the feature extractor that produces visual repre-

sentations for Iraw, fφ is the illuminant estimation function,

and L̂ is the estimated illuminant. Both hθ and fφ are param-

eterized by deep neural networks with arbitrary architecture

design, where θ and φ can be trained via back-propagation.

The learning objectives The overall learning objective

can be decomposed into two parts: (1) illuminant estimation

for color constancy and (2) contrastive learning for better

representations (as shown in Fig. 2):

Ltotal = λLilluminant + βLcontrastive (6)

For the illuminant estimation task, we use the commonly

used angular error as:

Lilluminant = arccos (
L̂ · L

‖L̂‖ · ‖L‖
) (7)

where L̂ is the estimated illuminant and L is the ground-truth

illuminant.

Since the datasets for color constancy are relatively small

because it is difficult to collect training data with correspond-

ing ground-truth illuminants. Training a deep learning model

with only the supervision Lilluminant usually does not gener-

alize well. Therefore, we propose to use contrastive learning,

which can help to learn a color constancy model that gener-

alize better even with a small training dataset. Details of the

contrastive learning task are described as follows.

The contrastive learning framework The proposed

CLCC is built upon the recent work SimCLR [13]. There-

fore, we discuss self-supervised constrative learning for color

constancy in this section, and then elaborate on our extended

fully-supervised contrastive learning in the next section. The

essential building blocks of contrastive learning are illus-

trated here:

• A stochastic data augmentation t(·) ∼ T that augments

a sample image I to a different view t(I). Note that t(·)
is required to be label-preserving, meaning that I and

t(I) still share the same ground-truth illuminant L.

• A feature extraction function hθ that extracts the rep-

resentation of t(I). hθ is further used for downstream

color constancy task as defined in the Eq. (5).

• A feature projection function gψ that maps the repre-

sentation hθ(t(I)) to the projection z that lies on a unit

hypersphere. gψ is typically only required when learn-

ing representations and thrown away once the learning

is finished.

• A similarity metric function s(·) that measures the sim-

ilarity between latent projections (zi, zj).

• Contrastive pair formulation: anchor I, positive I
+

and negative I
− samples jointly compose the positive

pair (I, I+) and the negative pair (I, I−) for contrastive

learning. For the color constancy task, a positive pair

should share the same illuminant label L, while a nega-

tive pair should have different ones.

• A contrastive loss function Lcontrastive that aims to

maximize the similarity between the projection of the

positive pair (z, z+) and minimize the similarity be-

tween that of the negative pair (z, z−) in the latent

projection space.

Self-supervised contrastive learning Given two random

training images Ii and Ij with different scene content, one

can naively form a positive contrastive pair with two ran-

domly augmented views of the same image (t(Ii), t
′(I+i )),

and a negative contrastive pair with views of two different

images (t(Ii), t
′(I−j )).

Such naive formulation introduces two potential draw-

backs. One is the sampling bias, the potential to sample a

false negative pair that shares very similar illuminants (i.e.,

Li ≃ Lj). The other is the lack of hardness, the fact that the

positive t(I+i ) derived from the same image as the anchor

t(Ii) could share similar scene content. This alone suffices

to let neural networks easily distinguish from negative t′(I−j )
with apparently different scene content. Hence, as suggested

by [13], one should seek strong data augmentations to regu-

larize such learning shortcut.

To alleviate sampling bias and increase the hardness of

contrastive pairs, we propose to leverage label information,

extending self-supervised contrastive learning into fully-

supervised contrastive learning, where the essential data

augmentation is specifically designed to be label-preserving

for color constancy task.

4.2. CLCC: Contrastive learning for color constancy

We now describe our realization of each component in the

proposed fully-supervised contrastive learning framework,

as depicted in Fig. 3

Contrastive pair formulation Here, we define IXA as a

linear raw-RGB image captured in the scene X under the illu-
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Figure 3: The proposed formation for contrastive pairs and color augmentation.

minant LA. Let us recapitulate our definition that a positive

pair should share an identical illuminant while a negative

pair should not. Therefore, given two randomly sampled

training images IAX and IBY, we construct our contrastive

pairs as follows:

• An easy positive pair (t(IXA), t
′(I+

XA
))—with an iden-

tical scene X and illuminant LA.

• An easy negative pair (t(IXA), t
′(I−

YC
))—with differ-

ent scenes (X, Y) and different illuminants (LA, LC).

• A hard positive pair (t(IXA), t
′(I+

YA
))—with different

scenes (X, Y) but an identical illuminant LA.

• A hard negative pair (t(IXA), t
′(I−

XC
))—with an iden-

tical scene X but different illuminants (LA, LC).

IYC, IYA and IXC are synthesized by replacing one scene’s

illuminant to another. Note that we define the novel illumi-

nant LC as the interpolation or extrapolation between LA

and LB, thus we do not need a redundant hard negative sam-

ple IXB. More details are explained in Section 4.3. t is

a stochastic perturbation-based, illuminant-preserving data

augmentation composed by random intensity, random shot

noise, and random Gaussian noise.

Similarity metric and contrastive loss function Once

the contrastive pairs are defined in the image space, we use

hθ and gψ to encode those views t(·) to the latent projection

space z. Our contrastive loss can be computed as the sum of

InfoNCE losses for properly elaborated contrastive pairs:

Lcontrastive = LNCE(zXA, z
+
XA

, z−
YC

)

+ LNCE(zXA, z
+
XA

, z−
XC

)

+ LNCE(zXA, z
+
YA

, z−
YC

)

+ LNCE(zXA, z
+
YA

, z−
XC

)

(8)

The InfoNCE loss LNCE can be computed as:

LNCE = − log

[

exp(s+/τ)

exp(s+/τ) +
∑N

n=1
exp(s−/τ)

]

(9)

where s+ and s− are the cosine similarity scores of positive

and negative pairs respectively:

s+ = s(z, z+)

s− = s(z, z−)
(10)

Equation (9) could be viewed as performing a (N + 1)-way

classification realized by cross-entropy loss with N negative

pairs and 1 positive pair. τ is the temperature scaling factor.

4.3. Raw­domain Color Augmentation

The goal of our proposed color augmentation is to synthe-

size more diverse and harder positive and negative samples

by manipulating illuminants such that the color constancy

solution space is better constrained. As shown in Fig. 4,

for example, given two randomly sampled (IXA, LA), and

(IYB, LB) from training data, we go through the following

procedure to synthesize IYC, IYA and IXC, as defined in

Section 4.2.

Color checker detection We extract 24 linear-raw RGB

colors CA ∈ R
24×3 and CB ∈ R

24×3 of the color checker

from IXA and IYB respectively using the off-the-shelf color

checker detector.

Color transformation matrix Given CA and CB, we can

solve a linear mapping MAB ∈ R
3×3 that transform CA to

CB by any standard least-square method. The inverse map-

ping MBA can be derived by solving the M−1
AB

. Accordingly,

we can augment IXB and IYA as:

IXB = IXAMAB

IYA = IYBMBA

(11)

Novel illuminant synthesis The above augmentation pro-

cedure produces novel samples IXB and IYA, but using only

pre-existing illuminants LA and LB from the training data.

To synthesize a novel sample IXC under a novel illuminant

LC that does not exist in the training dataset, we can syn-

thesize CC by channel-wise interpolating or extrapolating
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Figure 4: An illustration of our proposed color augmentation. The left hand side shows the generation of positive/negative

samples by swapping pre-existing illuminants from a pair of images via estimated color mapping matrices MAB and MBA.

The right hand side shows the augmented samples with novel illuminants via interpolation (w = +0.5) and extrapolation

(w = −1.5 and w = +1.5) using the detected color checkers CA and CB.

from the existing CA and CB as:

CC = (1− w)CA + wCB (12)

where w can be randomly sampled from a uniform distri-

bution of an appropriate range [wmin, wmax]. Note that w
should not be close to zero in avoidance of yielding a false

negative sample IXC = IXA for contrastive learning.

To more realistically synthesize IXC (i.e., more accurate

on chromatic colors), we need the full color transformation

matrix MAC that maps IXA to IXC:

IXC = IXAMAC

IYC = IYBMBC

(13)

where MAC can be efficiently computed from the identity

matrix ✶ and MAB without solving least-squares as:

MAC = (1− w)✶+ wMAB

MBC = w✶+ (1− w)MBA

(14)

Equation (14) can be derived from Eq.(12) and Eq.(13).

From full color mapping to neutral color mapping Our

synthesis method could be limited by the performance of

color checker detection. When the color checker detection is

not successful, the full colors CA and CB could be reduced

to the neutral ones LA and LB, meaning that the color trans-

formation matrix MAB is reduced from a full matrix to a

diagonal matrix. This is also equivalent to first perform WB

on IA with LA, and subsequently perform an inverse WB

with LB.

We provide the ablation study of this simplified version

in our experiment, where we term the full color mapping as

Full-Aug and the simplified neutral color mapping as WB-

Aug. We show that even though chromatic colors cannot be

correctly mapped, WB-Aug could still obtain performance

improvement over the baseline.

5. Experiment

5.1. Network training

Following FC4 [31], we use ImageNet-pretrained

SqueezeNet as the backbone and add a non-linear projec-

tion head with three-layer MLP with 512 hidden units for

contrastive learning. Note that the projection head is thrown

away once the learning is finished. We use Adam [38] op-

timizer with β1 = 0.9 and β2 = 0.999. The learning rate

is 0.0003 and batch size is 16. We use dropout [56] with

probability of 0.5 and L2 weight decay of 0.000057 for reg-

ularization. The loss weights for illuminant estimation and

contrastive learning heads (λ, β) is (0.1, 1.0) for the first

5000 epochs, (1.0, 0.1) for the rest 5000 epochs in learning

objective (6). The number of negative samples N is 12 and

the temperature scaling factor τ is 0.87 for InfoNCE loss (9).

Note that we do not train our illuminant estimation head

with contrastive pairs. They are only used for training the

contrastive learning head as depicted in Fig. 2.

5.2. Data augmentation

We follow the default data augmentations used by FC4

with several differences. We resize the crop to 256× 256 to

speed-up training. For perturbation-based augmentations in

contrastive learning, the range of intensity gain is [0.8, 1.2],
and the ranges of standard deviation of Guassian noise and

shot noise are [0, 0.04] and [0.02, 0.06] for [0, 1]-normalized

images respectively. The (wmin, wmax) for novel color syn-

thesis (12) are (−5.0,−0.3) and (+0.3,+5.0).

5.3. Dataset and evaluation metric

There are two standard public datasets for color con-

stancy task: the reprocessed [53] Color Checker Dataset [23]

(termed as the Gehler dataset in this paper) and the NUS-8

Dataset [14]. The Gehler dataset has 568 linear raw-RGB
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(a) On the NUS-8 dataset, CLCC achieves the best results and the most

light-weighted model of all comparable methods.

(b) On the Gehler dataset, without increasing model complexity, CLCC

improves SqueezeNet-FC4 to achieve comparable results.

Figure 5: Model complexity versus mean angular error.

CLCC improves SqueezeNet-FC4 by 0.39 (17.5%) on the

NUS-8 dataset as the state-of-the-art, and by 0.21 (12.5%)

on the Gehler dataset as a comparable method.

images captured by 2 cameras and the NUS-8 dataset has

1736 linear raw-RGB images captured by 8 cameras. In

color constancy studies, three-fold cross validation is widely

used for both datasets. Several standard metrics are reported

in terms of angular error in degrees: mean, median, tri-mean

of all the errors, mean of the lowest 25% of errors , and mean

of the highest 25% of errors.

5.4. Evaluation

Quantitative evaluation Following the evaluation proto-

col, we perform three-fold cross validation on the NUS-8

and the Gehler datasets. We compare our performance with

Mean Median Tri. Best-25% Worst-25%

White-Patch [9] 10.62 10.58 10.49 1.86 19.45

Edge-based Gamut [4] 8.43 7.05 7.37 2.41 16.08

Pixel-based Gamut [4] 7.70 6.71 6.90 2.51 14.05

Intersection-based Gamut [4] 7.20 5.96 6.28 2.20 13.61

Gray-World [10] 4.14 3.20 3.39 0.90 9.00

Bayesian [23] 3.67 2.73 2.91 0.82 8.21

NIS [25] 3.71 2.60 2.84 0.79 8.47

Shades-of-Gray [20] 3.40 2.57 2.73 0.77 7.41

1st-order Gray-Edge [60] 3.20 2.22 2.43 0.72 7.36

2nd-order Gray-Edge [60] 3.20 2.26 2.44 0.75 7.27

Spatio-spectral (GenPrior) [11] 2.96 2.33 2.47 0.80 6.18

Corrected-Moment (Edge) [19] 3.03 2.11 2.25 0.68 7.08

Corrected-Moment (Color) [19] 3.05 1.90 2.13 0.65 7.41

Cheng et al. [14] 2.92 2.04 2.24 0.62 6.61

CCC (dist+ext) [5] 2.38 1.48 1.69 0.45 5.85

Regression TreeTree [15] 2.36 1.59 1.74 0.49 5.54

DS-Net (HypNet + SelNet) [54] 2.24 1.46 1.68 0.48 6.08

FFCC-4 channels [6] 1.99 1.31 1.43 0.35 4.75

AlexNet-FC4 [31] 2.12 1.53 1.67 0.48 4.78

SqueezeNet-FC4 [31] 2.23 1.57 1.72 0.47 5.15

IGTN (vanilla triplet loss) [66] 2.02 1.36 - 0.45 4.70

IGTN (no triplet loss) [66] 2.28 1.64 - 0.51 5.20

IGTN (no learnable histogram) [66] 2.15 1.52 - 0.47 5.28

IGTN (full) [66] 1.85 1.24 - 0.36 4.58

C4 [67] 1.96 1.42 1.53 0.48 4.40

CLCC w/ Full-Aug 1.84 1.31 1.42 0.41 4.20

Table 1: Angular error of various methods on the NUS-8

dataset. CLCC gets the best results on the mean tri-mean and

worst-25% metrics, and comparable results on the others.

Notably, although IGTN gets the best result on the median

metric, its model complexity is the largest.

Mean Median Tri. Best-25% Worst-25% Extra data

Gray World [10] 6.36 6.28 6.28 2.33 10.58

General Gray World [60] 4.66 3.48 3.81 1.00 10.58

White Patch [9] 7.55 5.68 6.35 1.45 16.12

Shades-of-Gray [20] 4.93 4.01 4.23 1.14 10.20

Spatio-spectral (GenPrior) [11] 3.59 2.96 3.10 0.95 7.61

Cheng et al. [14] 3.52 2.14 2.47 0.50 8.74

NIS [25] 4.19 3.13 3.45 1.00 9.22

Corrected-Moment (Edge) [19] 3.12 2.38 - 0.90 6.46

Corrected-Moment (Color) [19] 2.96 2.15 - 0.64 6.69

Exemplar [32] 3.10 2.30 - - -

Regression Tree [15] 2.42 1.65 1.75 0.38 5.87

CNN [8] 2.36 1.95 - - -

CCC (dist+ext) [5] 1.95 1.38 1.22 0.35 4.76

DS-Net(HypNet+SelNet) [54] 1.90 1.12 1.33 0.31 4.84

FFCC-4 channels [6] 1.78 0.96 1.14 0.29 4.29

FFCC-2 channels [6] 1.67 0.96 1.13 0.26 4.23 +S

FFCC-2 channels [6] 1.65 0.86 1.07 0.24 4.44 +M

FFCC-2 channels [6] 1.61 0.86 1.02 0.23 4.27 +S +M

AlexNet-FC4 [31] 1.77 1.11 1.29 0.34 4.29

SqueezeNet-FC4 [31] 1.65 1.18 1.27 0.38 3.78

IGTN (vanilla triplet loss) [66] 1.73 1.09 - 0.31 4.25

IGTN (no triplet loss) [66] 1.78 1.13 - 0.34 4.31

IGTN (no learnable histogram) [66] 1.85 1.10 - 0.31 4.91

IGTN (full) [66] 1.58 0.92 - 0.28 3.70

C4 [67] 1.35 0.88 0.99 0.28 3.21

CLCC w/ Full-Aug 1.44 0.92 1.04 0.27 3.48

Table 2: Angular error of various methods on the Gehler

dataset. The use of semantic data or meta-data are denoted by

“S” or ”M”. The result shows that SqueezeNet-FC4 plugging

in our approach, which keeps the same model complexity

and without meta data can achieve comparable performance.

previous state-of-the-art approaches. As shown in Fig. 5a,

the proposed CLCC is able to achieve state-of-the-art mean

angular error on the NUS-8 dataset, 17.5% improvements

compared to FC4 with similar model size. Other competi-

tive methods, such as C4 and IGTN, use much more model

parameters (3× and more than 200×) but give worse mean

angular error. Table 1 shows comprehensive performance
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comparisons with recent methods on the NUS-8 dataset [14].

Our CLCC provides significant improvements over the base-

line network SqueezeNet-FC4 across all scoring metrics and

reach the best mean metric, as well as the best worst-25%

metric. This indicates that the proposed fully-supervised con-

trastive learning not only improves the overall performance

when there is no massive training data, but also improves

robustness via effective constrastive pairs constructions. For

the Gehler dataset, as shown in Fig. 5b, our CLCC stays

competitive with less than 0.1 performance gap behind the

best performing approach C4 [67], whose model size is 3×
larger. Table 2 shows detailed performance of state-of-the-

art methods on the Gehler dataset. It is shown that methods

achieving better scores than CLCC either require substan-

tially more complexity (C4), or utilize supplemental data

(FFCC). C4 has three times more parameters which may fa-

cilitate remembering more sensor features than ours. FFCC

needs meta-data from camera to reach the best median met-

ric. If no auxiliary data is used, CLCC performs better than

FFCC-4 channels on all metrics.

Ablation for color augmentation Recap that our pro-

posed color augmentation methods for contrastive learning

includes Full-Aug and WB-Aug mentioned in Section 4.3.

As shown in Table 3, even when the color checker is not suc-

cessfully detected for full color mapping (Full-Aug), the re-

duced neutral color mapping (WB-Aug) is still able to signifi-

cantly decrease the mean angular error from 2.23 to 1.93 and

the worst-case error from 5.15 to 4.30 over the SqueezeNet-

FC4 baseline, which are substantial relative improvement

13.5% and 16.5% respectively. Furthermore, when Full-

Aug is considered, the mean angular error can be decreased

from 1.93 to 1.84 with an additional relative improvement

5.1%. This shows that correctly mapped chromatic colors

for synthesizing contrastive pairs can improve the quality of

contrastive learning, resulting a improved model.

Mean Median Best-25% Worst-25%

FC4 [31] 2.23 1.57 0.47 5.15

+ CLCC w/ WB-Aug 1.93 1.38 0.44 4.30

+ CLCC w/ Full-Aug 1.84 1.31 0.41 4.20

Table 3: The results show CLCC is able to improve

SqueezeNet-FC4 quality by contrastive learning with two

different data augmentations on the NUS-8 dataset.

Worst-case robustness In this section, we are also inter-

ested in whether CLCC can provide improvements on ro-

bustness for worst-cases. To illustrate the robustness in more

finegrained level, we propose to evaluate our model under

K grouped data on the Gehler dataset via clustering the illu-

minant labels with K-means. K is selected as 5 for example.

Each group represents different scene contents under similar

Figure 6: Per-cluster error metrics on the Gehler dataset. We

show that CLCC achieves better performance on all clusters,

especially the worst-case performance (i.e. worst-25%). No-

tably, in the sparse data regime (cluster colored with pink

that contains only 16 data points), CLCC trades best-case per-

formance (i.e., best-25%) with the worst-case one, leading

to better robustness (i.e., lower test error standard deviation).

illuminants. As shown in Fig. 6, CLCC greatly improves on

all scoring metrics among all clusters (except for best-25%
in pink cluster). Remarkably, we demonstrate that, when the

amount of cluster data decreases from higher one (e.g., pur-

ple cluster) to lower one (e.g., pink cluster), as shown in the

data distribution on top-left side in Fig. 6), the improvement

over worse-case performance increases. Especially in the

region that suffers from data sparsity (e.g., 16 data points

in pink cluster), CLCC significantly reduces the worse-case

error from 3.24 to 2.31, which achieves 28.7% relative im-

provement. This finding supports our contrastive learning

design which aims to learn better illuminant-dependent fea-

tures that are robust and invariant to scene contents.

6. Conclusion

In this paper, we present CLCC, a contrastive learn-

ing framework for color constancy. Our framework dif-

fers from conventional self-supervised contrastive learning

on the novel fully-supervised construction of contrastive

pairs, driven by our novel color augmentation. We improve

considerably over previous strong baseline, achieving state-

of-the-art or competitive results on two public benchmark

datasets, without additional computational costs. Our design

of contrastive pairs allows model to learn better illuminant

features that are particularly robust to worse-cases in data

sparse regions.
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