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Figure 1: Radar-camera depth completion: (a) an image with 0.3 seconds (5 sweeps) of radar hits projected onto it, (b) enhanced radar

depths at confidence level 0.9 eliminate occluded pixels and expand visible hits, and (c) final predicted depth through depth completion.

Abstract

While radar and video data can be readily fused at

the detection level, fusing them at the pixel level is poten-

tially more beneficial. This is also more challenging in

part due to the sparsity of radar, but also because auto-

motive radar beams are much wider than a typical pixel

combined with a large baseline between camera and radar,

which results in poor association between radar pixels and

color pixel. A consequence is that depth completion meth-

ods designed for LiDAR and video fare poorly for radar

and video. Here we propose a radar-to-pixel association

stage which learns a mapping from radar returns to pix-

els. This mapping also serves to densify radar returns.

Using this as a first stage, followed by a more traditional

depth completion method, we are able to achieve image-

guided depth completion with radar and video. We demon-

strate performance superior to camera and radar alone

on the nuScenes dataset. Our source code is available at

https://github.com/longyunf/rc-pda.

1. Introduction

We seek to incorporate automotive radar as a contribut-

ing sensor to 3D scene estimation. While recent work fuses

radar with video for the objective of achieving improved ob-

ject detection [4, 33, 26, 32, 35], here we aim for pixel-level

fusion of depth estimates, and ask if fusing video with radar

can lead to improved dense depth estimation of a scene.

Up to the present, outdoor depth estimation has been

dominated by LiDAR, stereo, and monocular techniques.

The fusion of LiDAR and video has lead to increasingly ac-

curate dense depth completion [17]. At the same time, radar

has been relegated to the task of object detection in vehicle’s

Advanced Driver Assistance Systems (ADAS) [30]. How-

ever, phased array automotive radar technologies have been

advancing in accuracy and discrimination [14]. Here we in-

vestigate the suitability of using radar instead of LiDAR for

the task of dense depth estimation. Unlike LiDAR, automo-

tive radars are already ubiquitous, being integrated in most

vehicles for collision warning and similar tasks. If success-

fully fused with video, radar could provide an inexpensive

alternative to LiDARs for 3D scene modeling and percep-

tion. However, to achieve this, attentive algorithm design

is required in order to overcome some of the limitations of

radar, including coarser, lower resolution, and sparser depth

measurements than typical LiDARs.

This paper proposes a method to fuse radar returns with

image data and achieve depth completion; namely a dense

depth map over pixels in a camera. We develop a two-stage

algorithm. The first stage builds an association between

radar returns and image pixels, during which we resolve

some of the uncertainty in projecting radar returns into a

camera. In addition, this stage is able to filter occluded

radar returns and “densify” the projected radar depth map

along with a confidence measure for these associations (see

Fig. 1 (a,b)). Once a faithful association between radar hits

and camera pixels is achieved, the second stage uses a more
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standard depth completion approach to combine radar and

image data and estimate a dense depth map, as in Fig. 1(c).

A practical challenge to our fusion goal is the lack of

public datasets with radar. KITTI [12], the dataset used

most extensively for LiDAR depth completion, does not in-

clude radar and nor do the Waymo [43] or ArgoVerse [5]

datasets. The main exception is nuScenes [3] and the

small Astyx [31] which have radar, but unfortunately do

not include a dense, pixel-aligned depth map as created by

Uhrig et al. [45]. Similarly, the Oxford Radar Robot Car

dataset [1] includes camera, LiDAR and raw radar data, but

no annotations are available for scene understanding. As a

result, all experiments of this work will use the nuScenes

dataset along with its annotations. However, we find single

LiDAR scans insufficient to train depth completion, and so

accumulate scans to build semi-dense depth maps for train-

ing and evaluating depth completion.

The main contributions of this work include:

• Radar-camera pixel depth association that upgrades the

projection of radar onto images and prepares a densi-

fied depth layer.

• Enhanced radar depth that improves radar-camera

depth completion over raw radar depth.

• LiDAR ground truth accumulation that leverages op-

tical flow for occluded pixel elimination, leading to

higher quality dense depth images.

2. Related Work

Radar for ADAS. Frequency Modulated Continuous Wave

radars are inexpensive and all-weather, and have served as

the key sensor for modern ADAS. Ongoing advances are

improving radar resolution and target discrimination [14],

while convolutional networks has been used to add dis-

criminative power to radar data, moving beyond target de-

tection and tracking to include classifying road environ-

ments [24, 41], and seeing beyond-line-of-sight targets [40].

Nevertheless, the low spatial resolution of radar means that

the 3D environment, including object shape and classifica-

tion, are only coarsely obtained. A key path to upgrading

the capabilities of radar is through integration with addi-

tional sensor modalities [30].

Radar-camera fusion. Early fusion of video with radar,

such as [21], relied on radar for cueing image regions for

object detection or road boundary estimation [19], or used

optical flow to improve radar tracks [11]. With the advent

of deep learning, much more extensive multi-modal fusion

has become possible [9]. However, to the best of our knowl-

edge, no prior work has conducted pixel-level dense depth

fusion between radar and video.

Radar-camera object detection. Object detection is a key

task in 3D perception [2]. There has been significant recent

interest in combining radar with video for improved object

detection. In [4], ResNet blocks [15] are used to combine

both color images and image-projected radar returns to im-

prove longer-range vehicle detection. In [26], an FFT ap-

plied to raw radar data generates a polar detection array

which is merged with a bird’s eye projection of the camera

image, and targets are estimated with a single shot detec-

tor [27]. In [32], features from both images and a bird’s-

eye representation of radar enter a region proposal network

that outputs bounding boxes [42]. An alternative model for

radar hits is a 3m vertical line on the ground plane which

is projected into the image plane by [35], and combined

with VGG blocks to classify vehicle detections at multiple

scales. Our work differs fundamentally from these methods

in that our goal is dense depth estimation, rather than object

classification. But we do share similarity in radar represen-

tation: we project radar hits into an image plane. However,

the key novelty in our work is that we learn a neighborhood

pixel association model for radar hits, rather than relying on

projected circles [4] or lines [35].

LiDAR-camera depth completion. Our task of depth esti-

mation has the same goal as LiDAR-camera depth comple-

tion [20, 36, 48, 17, 16]. However, radar is far sparser than

LiDAR and has lower accuracy, which makes these meth-

ods unsuitable for this task. Our radar enhancement stage

densifies the projected radar depths, followed by a more tra-

ditional depth completion architecture.

Monocular depth estimation. Monocular depth infer-

ence may be supervised by LiDAR or self-supervised.

Self-supervised methods learn depth by minimizing pho-

tometric error between images captured by cameras with

known relative positions. Additional constrains such as se-

mantics segmentation [50, 37], optical flow [18, 46], sur-

face normal [49] and proxy disparity labels [47] improve

performance. Recently, self-supervised PackNet [13] has

achieved competitive results. Supervised methods [10, 8]

include continuous depth regression and discrete depth clas-

sification. BTS [23] achieves state of the art by improving

upsampling via additional plane constraints, and more re-

cently [38] combines supervised and self-supervised meth-

ods. Our goal is not monocular depth estimation, but rather

to improve what is achievable from monocular depth esti-

mation through fusion with radar.

3. Method

While there are a variety of data-spaces in which radar

can be fused with video, the most natural, given our ob-

jective of estimating a high resolution depth map, is in the

image space. But this immediately presents a problem: to

which pixel in an image does a radar pixel belong? By radar

pixel we mean a simple point projection of the estimated 3D

radar hit into the camera. The nuScenes dataset [3] provides

extrinsic and intrinsic calibration parameters needed to map
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Figure 2: Our two-stage architecture. Network 1 learns N -channel radar-camera pixel depth association (RC-PDA), here illustrated for

two radar pixels (marked with white squares) on their neighboring pixels (white boxes). The RC-PDA is converted into a multi-channel

enhanced radar (MER), and input to Network 2 which performs image-guided depth completion.

Figure 3: Examples of radar hits projected into a camera. While

the hits project into the vicinity of the target that they hit, their

image position can be quite different from their actual location.

For example, radar depths in the yellow/red box are larger/smaller

than corresponding image depths (meters).

the radar point clouds from the radar coordinates system to

the egocentric and camera coordinate systems.

Assuming that the actual depth of the image pixel is the

same as the radar pixel depth turns out to be fairly inaccu-

rate. We describe some of the problems with this model, and

then propose a new pixel association model. We present a

method for building this new model and show its benefit by

incorporating it into radar-camera depth completion. Fig. 2

shows the diagram of the proposed method.

3.1. Radar Hit Projection Model

Single-row scanning automotive radars can be modeled

as measuring points in a plane extending usually horizon-

tally (relative to the vehicle platform) in front of the vehi-

cle, as in [4]. While radars can measure accurate depth,

often the depth they give when projected into a camera is

incorrect, as can be seen in the examples in Fig. 3. An im-

portant source of this error is the large width of radar beams

which means that the hits extend well beyond the assumed

horizontal plane. In other words, the height of measured

radar hits is inaccurate [34].

In addition to beam width, another source of projected

point depth difference is occlusion caused by the signifi-

cant baseline between radars on the grill, and cameras on

the roof or driver mirror. Further, these depth differences

only increase when radar hits are accumulated over a short

interval, and thus more opportunity for occlusions.

In addition to pixel association errors, we are faced with

the problem that automotive radars generate far sparser

depth scans than LiDAR. There is typically a single row

of returns, rather than anywhere up to 128 rows in LiDAR,

and the azimuth spacing of radar returns can be an order of

magnitude greater than LiDAR. This sparsity significantly

increases the difficulty in depth completion. One solution

is to accumulate radar pixels over a short time interval, and

to account for their 3D position using both ego-motion and

radial velocity. Nevertheless, this accumulation introduces

additional pixel association errors (in part from not having

tangential velocity) and more opportunities for occlusions.

3.2. Radar­Camera Pixel Depth Association

In using radar to aid depth estimation we face the prob-

lem of determining which, if any, point in the image does

a radar return correspond to? This radar pixel to camera

pixel association is a difficult problem, and we do not have

ground truth to determine this. Thus we reformulate this

problem slightly to make it more tractable.

The new question we ask is: “Which pixels in the vicin-

ity of the projected radar pixel have the same depth of that

radar return?” We call this Radar-Camera Pixel Depth As-

sociation: RC-PDA or simply PDA. It is a one-to-many

mapping, rather than one-to-one mapping, and has four key

advantages. First, we do not need to distinguish between

many good but ambiguous matches and rather can return

many pixels with the same depth. This simplifies the prob-

lem. Second, by associating the radar return with multiple

pixels, our method explicitly densifies the radar depth map,

which facilitates the second stage of full-image depth esti-
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Figure 4: Illustration of depth differences between camera and radar, and how our proposed association method (Pixel Depth Association:

RC-PDA) can address this. (a) Radar hits are modeled on a ground-parallel plane (dashed black line). Actual returns may be outside

this plane, as illustrated with orange stars A,B,C at depths DA, DB , DC respectively. We project the corresponding in-plane points,

Ap, Bp, Cp (green diamonds), into the camera, and call these the radar pixels. (b) The camera view showing the radar pixels Ap, Bp, Cp.

Now the true image depth of these pixels is DA, the front of the truck, which agrees only with Ap which is visible, and not for Bp and

Cp which are occluded. This illustrates why radar pixel depths are often incorrect from the camera perspective. Finding associations from

radar pixels to the projected true points A,B,C would solve this, but is difficult. Rather, we seek a neighborhood depth association for

each radar pixel, that specifies which pixels within a neighborhood (dashed blue regions) have the same depth as the radar pixel, shown here

by the orange regions. For example, the orange pixels in the neighborhood of Ap have a RC-PDA of 1 while the remaining neighborhood

pixels have a RC-PDA of 0, all relative to Ap. See Sec. 3.2 for details.

(a) (b) (c)

Figure 5: Overview of our radar depth representation. (a) Radar

pixels indicate sparse depth in image space. (b) For each radar

pixel, a Pixel Depth Association (RC-PDA) probability over

neighboring pixels is calculated, indicated with shaded contours.

(c) Radar pixel depths are propagated to neighboring pixels to cre-

ate a Multi-channel Enhanced Radar (MER) image. Each channel

is a densified depth at a given confidence level.

mation. Third, our question simultaneously addresses the

occlusion problem; if there are no nearby pixels with that

depth, then the radar pixel is automatically inferred to be

occluded. Fourth, we are able to leverage a LiDAR-based

ground-truth depth map as the supervision, rather than a

difficult-to-define “ground truth” pixel association. Fig. 4

illustrates image depths obtained from raw radar projections

and RC-PDA around each radar pixel. It shows the height

errors of measured radar points and how some hits visible

to the radar are occluded from the camera.

3.2.1 RC-PDA Model

We model RC-PDA over a neighborhood around the pro-

jected radar pixel in the color image. At each radar pixel we

define a patch around the radar location and seek to classify

each pixel in this patch as having the same depth or not as

the radar pixel, within a predetermined threshold. A sim-

ilar connectivity model has been used for image segmen-

tation [22]. Radar pixels and the patches around them are

illustrated in Figs. 5(a) and (b), respectively.

The connection to each pixel in a h × w neighborhood

has N = wh elements, and can be encoded as an N -

channel RC-PDA which we label A(i, j, k), where k =
1, · · · , N . Here (i, j) is the radar pixel coordinate, and the

k’th neighbor has offset (ik, jk) from (i, j). Now the la-

bel for A(i, j, k) is 1 if the neighboring pixel has the same

depth as radar pixel and 0 otherwise. More precisely, if

Eijk = d(i, j)−dT (i+ik, j+jk) is the difference between

radar pixel depth, d(i, j), and the neighboring LiDAR pixel

depth, dT (i + ik, j + jk), and Ẽijk = Eijk/d(i, j) is the

relative depth difference, then:

A(i, j, k) =

{

1, if (|Eijk| < Ta) ∧ (|Ẽijk| < Tr)

0, otherwise.
(1)

We note that labels A(i, j, k) are only defined when there is

both a radar pixel at (i, j) and a LiDAR depth dT (i+ik, j+
jk). We define a binary weight w(i, j, k) ∈ {0, 1} to be 1
when both conditions are satisfied and 0 otherwise. Dur-

ing training we minimize the weighted binary cross entropy

loss [22] between labels A(i, j, k) and predicted RC-PDA:

LCE =
∑

i,j,k

w(i, j, k)[−A(i, j, k)z(i, j, k)

+ log(1 + exp(z(i, j, k)))].

(2)

The network output, z(i, j, k), is passed through a Sigmoid

to obtain Â(i, j, k), the estimated RC-PDA.

Our network thus predicts a RC-PDA confidence in a

range of 0 to 1 representing the probability that each pixel

in this patch has the same depth as the radar pixel. This

prediction also applies to the image pixel at the same coor-

dinates as the radar pixel, i .e. (i, j), as like other pixels, the

depth at this image pixel may differ from the radar depth for

a variety of reasons, including those illustrated in Fig. 4.
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3.3. From RC­PDA to MER

The RC-PDA gives the probability that neighboring pix-

els have the same depth as the measured radar pixel. We can

convert the radar depths along with predicted RC-PDA into

a partially filled depth image plus a corresponding confi-

dence as follows. Each of N neighbors to a given radar pixel

is given depth d(i, j) and confidence Â(i, j, k). If more

than one radar depth is expanded to the same pixel, the radar

depth with the maximum RC-PDA is kept. The expanded

depth is represented as D(i, j) with confidence Â(i, j).
Now many of the low-confidence pixels will have incor-

rect depth. Instead of eliminating low-confidence depths,

we convert this expanded depth image into a multi-channel

image where each channel l is given depth D(i, j) if its con-

fidence Â(i, j) is greater than a channel threshold Tl, where

l = 1, · · · , Ne and Ne is the total number of channels of the

enhanced depth. The result is a Multi-Channel Enhanced

Radar (MER) image with each channel representing radar-

derived depth at a particular confidence level (see Fig. 5(c)).

Our MER representation for depth can correctly encode

many complex cases of radar-camera projection, a few of

which are illustrated in Fig. 4. These cases include when

radar hits are occluded and no nearby pixels have similar

depth. They also include cases where the radar pixel is just

inside or just outside the boundary of a target. In each case,

those nearby pixels with the same depth as the radar can be

given the radar depth with high confidence, while the re-

maining neighborhood pixels are given low confidence, and

their depth are specified on separate channels of the MER.

The purpose of using multiple channels for depths with

different confidences in MER is to facilitate the task of Net-

work 2 in Fig. 2 in performing the dense depth completion.

High confidence channels give the greatest benefit, but low

confidence channels may also provide useful data. In all

cases they densify the depth beyond single radar pixels, eas-

ing the depth completion task.

3.4. Estimating RC­PDA

We next select inputs to Network 1 in Fig. 2 from which

it can learn to infer the RC-PDA. These are the image, the

radar pixels with their depths as well as the image flow and

the radar flow from current to a neighboring frame. Here

we briefly explain the intuition for each of these.

The image provides scene context for each radar pixel, as

well as object boundary information. The radar pixels pro-

vide depth for interpreting the context and a basis for pre-

dicting the depth of nearby pixels. As radar is very sparse,

we accumulate radar from a short time history, 0.3 sec-

onds, and transform it into the current frame using both ego-

motion and the radial velocity similar to that done in [35].

Now a pairing of image optical flow and radar scene flow

provides an occlusion and depth difference cue. For static

objects, the optical flow should exactly equal radar scene

(a) Radar depth (b) Optical flow (c) Radar flow

Figure 6: An example of how radar scene flow and optical flow

differences are used to infer occlusions of radar pixels. The radar

flows are plotted as yellow if the L2 norm of radar/optical flow

differences are larger than a threshold. Note that we do not explic-

itly filter radar, rather provide flow to Network 1 in Fig. 2 so that

it can implicitly filter radar while estimating RC-PDA.

(a) (b) (c)

Figure 7: We noticed that when LiDAR with a regular scan pat-

tern, as in (b) for image (a), is used to train depth completion, our

network learns to predict the LiDAR points well, but not the re-

maining pixels. This leaves large artifacts, as in (c), and motivates

us to create a semi-dense depth LiDAR training set.

flow, when the pixel depth is the same as radar pixel depth.

Conversely, radar pixels that are occluded from the camera

view will have different scene flow from the optical flow

of a static object occluding them (Fig. 6). Similarly, ob-

jects moving radially will have consistent flow. By provid-

ing flow, we expect that Network 1 will learn to leverage

flow similarity in predicting RC-PDA for each radar pixel.

3.5. LiDAR­based Supervision

To train both the RC-PDA and the final dense depth es-

timate, we use a dense ground truth depth. This is because,

as illustrated in Fig. 7, training with sparse LiDAR leads

to significant artifacts. We now describe how we build a

semi-dense depth image from LiDAR scans.

3.5.1 LiDAR Accumulation

To our knowledge, there is no existing public dataset spe-

cially designed for depth completion with radar. Thus

we create a semi-dense ground truth depth from nuScenes

dataset, a public dataset with radar data and designed for ob-

ject detection and segmentation. We use the 32-ray LiDAR

as depth label and notice that the sparse depth label gener-

ated from a single frame will lead to a biased model predict-

ing depth with artifacts, i.e., only predictions for pixels with

ground truth are reasonable. Thus, we use semi-dense Li-

DAR depth as label, which is created by accumulating mul-

tiple LiDAR frames. With ego motion and calibration pa-

rameters, all static points can be transformed to destination
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(a) LiDAR depth (b) Optical flow (c) LiDAR flow

Figure 8: An example of how LiDAR scene flow and optical flow

differences are used to infer occlusions of LiDAR pixels. LiDAR

flows are plotted as yellow if the L2 norm of LiDAR/optical flow

differences are larger than a threshold. This is used in the accumu-

lation of LiDAR for building ground-truth depth maps, see Fig. 9.

(a) (b)

Figure 9: An example of using LiDAR flow and optical flow con-

sistency to filter occluded pixels. (a) Accumulated LiDAR depth,

and (b) Accumulated LiDAR depth with flow consistency filtering.

image frame. Moving points are compensated by bounding

box poses at each frame, which are estimated by interpolat-

ing bounding boxes provided by nuScenes in key frames.

3.5.2 Occlusion Removal via Flow Consistency

When a foreground object occludes some of the accumu-

lated LiDAR points, the resulting dense depth may include

depth artifacts as the occluded pixels appear in gaps in

the foreground object. KITTI [45] takes advantages of the

depth from stereo images to filter out such occluded points.

As no stereo images are available in nuScenes, we propose

detecting and removing occluded LiDAR points based on

optical-scene flow consistency.

The scene flow of LiDAR points, termed LiDAR flow, is

computed by projecting LiDAR points into two neighboring

images and measuring the change in their coordinates. On

moving objects, the point’s positions are corrected with the

object motion. On static visible objects, LiDAR flow will

equal optical flow, while on occluded surfaces LiDAR flow

is usually different from the optical flow at the same pixel,

see Fig. 8. We calculate optical flow with [44] pretrained on

KITTI, and measure the difference between the two flows at

the same pixel via the L2 norm of their difference. Points

with flow difference larger than a threshold Tf are discarded

as occluded points. Fig. 9 shows an example of using flow

consistency to filter out occluded LiDAR depths.

(a) Car image (b) Semantic seg. & bound. box

(c) Depth before filtering (d) Depth after filtering

Figure 10: For small flow instances and some movers, flow consis-

tency is insufficient to remove accumulated but occluded LiDAR

pixels, see (a,c). To remove these occluded pixels, we first find ve-

hicle pixels as the intersection between semantic segmentation and

2D bounding box, see (b). From the 3D bounding box we know

the maximum depth of the vehicle, and so can filter out all accu-

mulated depths greater than this that are actually occluded, see (d).

3.5.3 Occlusion Removal via Segmentation

Flow-based occluded pixel removal may fail in two cases.

When there is little to no parallax, both optical and scene

flow will be small, and their difference becomes not measur-

able. This occurs mostly at long range or along the motion

direction. Further, LiDAR flow on moving objects can in

some cases be identical to the occluded LiDAR flow behind

it. In both of these cases flow consistency is insufficient to

remove occluded pixels from the final depth estimate.

To solve this problem, we use a combination of 3D

bounding boxes and semantic segmentation to remove oc-

cluded points appearing on top of objects. First, accurate

pixel region of an instance is determined by the intersection

of 3D bounding box projection and semantic segmentation.

The maximum depth of bounding box corners is used to de-

cide whether LiDAR points falling on the object are on it

or behind it. Points within the semantic segmentation and

closer than this maximum distance are kept, while points in

the segmentation and behind the bounding box are filtered

out as occluded LiDAR points. Fig. 10 shows an example of

removing occluded points appearing on vehicle instances.

We use a semantic segmentation model [6] pre-trained with

CityScape [7] to segment vehicle pixels.

3.6. Algorithm Summary

We propose a two-stage depth estimation process, as in

Fig. 2. The Stage 1 estimates RC-PDA for each radar pixel,

which is transformed into our MER representation as de-

tailed in Sec. 3.3 and fed into Stage 2 which performs con-

ventional depth completion. Both stages are supervised

by the accumulated dense LiDAR, with pixels not having

a LiDAR depth given zero weight. Network 1 uses an

encoder-decoder network with skip connections similar to

U-Net [39] and [28] with details in supplementary material.
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(a) (b) (c) (d) (e) (f) (g)

Figure 11: (a) Raw radar depths (b) Each color pixel with a maximum RC-PDA > 0.6 is marked with a color indicating which radar pixel

it is associated with. (c) The RC-PDA score with values > 0.6 for each pixel. (d) The MER channel with RC-PDA > 0.6. (e) Our final

predicted depth. (f) Depth from monocular input to Stage 2. (g) Depth from monocular and raw radar input to Stage 2.

4. Experimental Results

Dataset We train and test on a subset of images from the

nuScenes dataset [3], including 12, 610, 1, 628 and 1, 623
samples for training, validation and testing, respectively.

The data are collected with moving ego vehicle so flow cal-

culation described in Sec. 3.5.2 can be applied. The depth

range for training and testing is 0-50 meters. Resolutions of

inputs and outputs are 400× 192. As described in Sec. 3.5,

we build semi-dense depth images by accumulating LiDAR

pixels from 21 subsequent frames and 4 previous frames

(sampled every other frame), and use these for supervision.

Implementation details For parameters, we use Ta = 1m

and Tr = 0.05 for Eq. 1. In Sec. 3.5.2 we use Tf = 3 to de-

cide flow consistency. MER has 6 channels with T1 to T6 set

as 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95, respectively. At Stage 1,

we use a U-Net with 5 levels of resolutions and 180 output

channels, corresponding to 180 pixels in a rectangle neigh-

borhood with size w = 5 and h = 36. As the radar points

are typically on the lower part of image, to fully leverag-

ing the neighborhood, the neighborhood center is below the

rectangle center with 30 pixel above, 5 pixels below and

2 pixels on left and right to provide more space for radar

points to extend upwards. At Stage 2, we employ two exist-

ing depth completion architectures, [29] and [25], originally

designed for LiDAR-camera pairs.

4.1. Visualization of Predicted RC­PDA

The predicted RC-PDA and estimated depths from Stage

2 [29] are visualized in Fig. 11. Column (a) shows the raw

radar pixels plotted on images and often include occluded

radar pixels. Column (b) shows how image pixels are as-

sociated with different radar pixels according to their maxi-

mum RC-PDA. Radar pixels and their associated neighbor-

ing pixels are marked with the same color. Notice in column

(c) that RC-PDA is high within objects and decreases after

crossing boundaries. Occluded radar depth are mostly dis-

carded as their predicted RC-PDA is low. In column (e),

the dense depths predicted from MER are improved over

predictions from (g) raw radar and/or (f) monocular. For

example, in Row 2 of Fig. 11, our predicted pole depth in

(e) has better boundaries than monocular-only in (f), and

monocular plus raw radar in (g). How we achieve this can

be intuitively understood by comparing raw radar in (a) with

our MER in (d), the output of Stage 1. While raw radar has

many incorrect depths, MER selects correct radar depths

and extends these depths along the pole and background,

enabling improved final depth inference.

4.2. Accuracy of MER

To be useful in improving radar-camera depth comple-

tion, the enhanced radar depth in the vicinity of radar points
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(a) (b) (c) (d)

Figure 12: Qualitative depth completion comparison showing gains from using MER over raw radar. (a) Raw radar on top of image versus

(b) A MER channel with RC-PDA > 0.8 on top of image. Depth completion (c) without and (d) with using MER.

Network 2 Input MAE Abs Rel RMSE RMSE log

Image 2.385 0.110 3.505 0.150
Ma et al. [29] Image, radar 1.609 0.078 2.865 0.126

Image, radar, MER 1.229 0.058 2.651 0.114

Li et al. [25]
Image, radar 1.759 0.084 3.039 0.133

Image, radar, MER 1.274 0.061 2.670 0.116

None
MER 1.251 0.059 2.701 0.117
Radar 7.369 0.475 10.900 0.448

Table 1: Depth error (m) in image regions around non-occluded

radar returns, defined as regions with RC-PDA > 0.9.
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Figure 13: Image area and depth error of enhanced radar in MER

for regions with minimal RC-PDA at 6 confidence levels.

should be better than alternatives. We compare the depth

error of the MER in regions where RC-PDA is > 0.9, with

a few baseline methods and results are shown in Tab. 1. The

enhanced radar depth from Stage 1 improves over not only

raw radar depth but also depth estimates from Stage 2 using

monocular as well as monocular plus radar. In compari-

son, Stage 2 keeps the accuracy of the enhanced radar depth

when using it for depth completion. The depth error for raw

radar depth is very large since many of them are occluded

and far behind foreground. About 35% of radar points in

the test frames have a maximum RC-PDA smaller than T1

in their neighborhood and are discarded as occluded points.

Further, Fig. 13 shows the depth error and per-image aver-

age area of expanded depth from 6 MER channels, respec-

tively. It shows, as confidence increases, higher RC-PDA

corresponds to higher accuracy and smaller expanded areas.

4.3. Comparison of Depth Completion

To evaluate effectiveness of the enhanced radar depth

in depth completion, we compare the depth error with and

without using MER as input for Network 2, and show per-

Network 2 Input MAE Abs Rel RMSE RMSE log

Image 1.808 0.102 3.552 0.160
Ma et al. [29] Image, radar 1.569 0.090 3.327 0.152

Image, radar, MER 1.472 0.085 3.179 0.144

Li et al. [25]
Image, radar 1.821 0.107 3.650 0.170

Image, radar, MER 1.655 0.094 3.463 0.159

Table 2: Full-image depth estimation/completion errors (m).

Network 2 Input MAE Abs Rel RMSE RMSE log

Image 2.673 0.153 4.259 0.202
Ma et al. [29] Image, radar 2.263 0.134 4.028 0.194

Image, radar, MER 2.078 0.124 3.864 0.183

Li et al. [25]
Image, radar 2.515 0.154 4.266 0.211

Image, radar, MER 2.189 0.132 3.943 0.193

Table 3: Depth estimation/completion errors (m) in the low-height

region (0.3-2 meters above ground).

formance in Tabs. 2 and 3. The results show that includ-

ing radar improves depth completion over monocular, while

using our proposed MER further improves the accuracy of

depth completion for the same network.

Qualitative comparisons between depth completion [29]

with and without using MER are shown in Fig. 12. This

shows improvement from MER in estimating object depth

boundaries including close objects (such as the traffic sign

on the bottom image) and far objects.

5. Conclusion

Radar-based depth completion introduces additional

challenges and complexities beyond LiDAR-based depth

completion. A significant difficulty is the large ambigu-

ity in associating radar pixels with image pixels. We ad-

dress this with RC-PDA, a learned measure that associates

radar hits with nearby image pixels at the same depth. From

RC-PDA we create an enhanced and densified radar image

called MER. Our experiments show that depth completion

using MER achieves improved accuracy over depth com-

pletion with raw radar. As part of this work we also create a

semi-dense accumulated LiDAR depth dataset for training

depth completion on nuScenes.
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