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Abstract

Previous point cloud semantic segmentation networks

use the same process to aggregate features from neighbors

of the same category and different categories. However, the

joint area between two objects usually only occupies a small

percentage in the whole scene. Thus the networks are well-

trained for aggregating features from the same category

point while not fully trained on aggregating points of dif-

ferent categories. To address this issue, this paper proposes

to utilize different aggregation strategies between the same

category and different categories. Specifically, it presents

a customized module, termed as Category Guided Aggre-

gation (CGA), where it first identifies whether the neigh-

bors belong to the same category with the center point or

not, and then handles the two types of neighbors with two

carefully-designed modules. Our CGA presents a general

network module and could be leveraged in any existing se-

mantic segmentation network. Experiments on three differ-

ent backbones demonstrate the effectiveness of our method.

1. Introduction

3D sensor plays an important role in perceiving the en-

vironment geometry, it’s widely equipped in home service

robots, autonomous cars and even some mobile devices.

Point cloud is an efficient data type to represent the 3D

scene. Recently, lots of scene understanding works [22,

23, 30, 15, 27, 34, 35, 3] are committed to designing point-

cloud-based neural networks to analyze the semantic label

for each point. They usually use an ”Encoder-Decoder” ar-

chitecture. The encoder extracts features for every point by

aggregating features from neighbors progressively. And the

decoder combines the low-level features and the propagated

neighboring features to parse the representations to seman-

tic labels.

In a real scene, some objects are distinctive, like tables,

chairs, and planes. We can classify its category by aggre-

gating the features from the object itself. Some objects are
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Figure 1. An illustration of our method. We find k neighbors for

the center point, and identify the probability that they belong to

the same or different categories with the center point. Red arrows

implies a directly augmentation to the center point. ”Green-Red”

dash line means a co-occurrence relation between neighbors and

the center.

easily confused, like the cup and vase, windows and doors.

Because they are very similar in 3D contour. Since in a real

scene, there is a certain dependency between multiple ob-

jects, we can leverage the neighbor context to identify those

categories.

For those points located in the center area of an object, its

context mainly focus on the object itself. In the joint area of

two different categories objects, each point gathers features

from both the same and different categories. The features

of the same category should be similar and serve as compo-

nents for object classification together. Meanwhile, the fea-

tures from the neighbor objects of different categories serve

as relation to infer co-occurrence. The learning process for

the two types features are different in principle. However,

previous works [23, 30, 15, 3] prefer to use a unified op-

erator to cover the two types feature learning. Although

the network has strong fitting ability, joint areas only oc-

cupy a small percentage in the whole scene, the network

tends to learn a group of biased parameters which are more

friendly to those areas who keep away from the joint areas,

which leading to more ambiguous features in the joint ar-

eas. JSENet [6] emphasizes the particularity of edges and

designs modules to detect the edge area. It’s useful and ob-

tains better results. However, the features for edge detection

are different from the semantic segmentation in essence, we

think that only detecting the edge is not enough.
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In this paper, we propose a neighbor category-guided-

aggregation method to augment the representation from any

backbones for semantic segmentation. It explicitly models

inter-relations between two objects of different categories

and enhance intra-consistency in one object. The input are

the point-wise representations from any semantic segmenta-

tion backbones. First, we find k nearest neighbors for each

point. With the local context, we identify whether a point

and its neighbors belong to the same category. For those

who belonging to the same category, we augment the fea-

ture of the center point by a weighted sum of neighbors.

For those with different classes, we design a new module to

learn how the information from different objects supports

the feature learning of the center point. We have conducted

several experiments on different datasets and different back-

bones. All of the results are improved and we achieve new

state of the art in these datasets. Visualized results demon-

strate that our method improves both the joint areas and

object with internal noise. The key contributions of this

paper are as follows,

• We propose a two-path feature augmentation architec-

ture to handle the information from the same category

and the different categories separately.

• A relational module is proposed to explicitly gather

support from objects of different categories.

• Several experiments prove the effectiveness of our

method.

2. Related Works

Semantic segmentation is a fundamental task in point

cloud, aiming to densely predict a semantic label for each

point. Since the PointNet [22] is proposed, it becomes a

convention for every new point cloud backbone to test on

semantic segmentation. Because this task has high demands

on the robust feature extraction, local details information

preserving and global scene context understanding. Ac-

cording to the type of point cloud backbone, we introduce

some related works as follows.

2.1. Point­wise MLP Methods

This type of method is constructed by shared MLP lay-

ers. Benefiting from the parallel computing, the MLP mod-

ule is quite efficient. However, MLP module lacks the

ability of describing the local geometry structure of point

cloud. Thus, many works are dedicated in designing a

local aggregation module to gather features in local area.

PointNet++ [23] queries point within multi-scale spheres.

ShellNet [40] simplifies it into concentric spherical shells.

To handle the imbalance of point cloud in different direc-

tions, PointSIFT [9] proposes to query neighbors in 8 oc-

tants. Results on indoor semantic segmentation show that

this is quite suitable for capturing the local structure. Ex-

cept for these methods that well-design a search area, other

methods just find neighbors using a naive KNN or fixed-

radius ball query to aggregate local features. Max pooling

is the most commonly used symmetric function to aggre-

gate features from neighbors. Some works [5, 42, 17, 2, 41]

propose to learn the weights for aggregating local fea-

tures. Li et al. [16] proposes a simple PosPool module in

the CloserLook3D, which achieves comparable results with

those well-designed methods.

2.2. Point Convolution Methods

Inspired by the 2D convolution on image [18], some

works design point-cloud-based convolution operations [14,

24, 21]. In Pointwise CNN [7], a convolution kernel is cen-

tered at each point of a point cloud, and neighbors within

the kernel support can contribute to the center point. KP-

Conv [30] designs a set of kernel points uniformly dis-

tributed in Euclidean space. It has excellent performance

in capturing local structure and robust to the varying den-

sity. The positions of kernel points is determined by an op-

timization process. For specific task, the position of those

kernel points can be shifted through learning, which is a de-

formable version. Another deformable work is Deformable-

Filter [37], it can concentrate on the most related area. Ac-

cording to the image-based segmentation, a large receptive

field beneficial for capturing semantic information. DPC [4]

designs a dilated convolution operator for point cloud and

gets good result. PointConv [36] learns a dynamic filter to

generate weights for convolution. It provides detailed math

process for how the convolution works and how to imple-

ment the proposed process efficiently.

2.3. Other Methods

Except for the above point-based methods, some works

project the point onto a structural grid [27, 26, 3] and con-

duct a grid-based convolution. Some works [10, 11, 43, 32,

19] connect the point to construct a graph and learn feature

with graph-based methods. ASIS [33] propose to jointly

learn semantic segmentation along with the instance seg-

mentation. JSENet [6] proposes to jointly learn an edge

detection and fuses the feature from the edge path to the se-

mantic path. Point cloud sequence semantic segmentation

task emerges with the popularity of 3D sensors. Minkowsk-

iNet [3] and MeteorNet [15] are able to handle point cloud

sequence directly. And we conduct experiments on such

4D data, which proves that our proposed module is not only

suitable for 3D data but also applicable in 4D data.

3. Our Method

Point cloud semantic segmentation task assigns each

point in a point cloud with a semantic label li, where li is

one of K pre-defined classes. Lots of neural networks are
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Figure 2. The full architecture of our CGA. Inputs are the representations from the backbone and the xyz positions. For each point, the KNN

finds k nearest neighbors and gathers the associated features. The binary module identifies whether neighbors belong to the same category

with its center point. ’1’ implies the same category, and the features will be sent to the SAM module to augment the center point. ’0’

implies a different category and will be sent to the DRM module to build a relation with its center point. The Fusion module concatenates

the outputs of the SAM module, DRM module, and the coarse representation from the backbone, and calculate a final augmented feature

for each point. Both the coarse representations and the augmented representations are supervised by the segmentation loss, and the Binary

module is supervised by a binary classification loss.

designed to learn representations for each point. We pro-

pose the category-guided aggregation (CGA for short), to

handle the imbalance inside this backbones. Our method is

independent of these backbones, can be plug-in any point

cloud semantic segmentation neural network in theory.

We find the k nearest neighbors of each point, and iden-

tify whether those neighbors have the same label with the

center point. For those with the same label, we aggregate

their feature vectors to get a local consistent feature for the

center point. For those with different labels, we construct a

relation-based module to leverage those different-category

points to find clues to support the classification of the cen-

ter point. By aggregating features from both the same and

the different categories, we get an enhanced representation

for each point. On the one hand, the enhanced representa-

tion reduces the inconsistency among the same category in

a local area, especially for those edge areas. On the other

hand, it discovers the contextual relations across different

categories. The full pipeline is depicted in Fig 2. All super-

vision signals we use are the semantic labels of all points.

We will explain each module in detail in the following sec-

tions.

3.1. Details of Each Sub­module

3.1.1 Coarse Feature

We denote the input point cloud of n points as P ∈
R

n×(3+c), with position (x, y, z) and other auxiliary infor-

mation, including the color (r, g, b). A certain backbone

assigns each point pi in P with a coarse feature vector fi.

We denote the whole feature vector of P as F ∈ R
n×d. Ac-

cording to the feature vector, a coarse classifier predicts the

probability of pi belonging to each category. We choose the

category with the highest probability as the final prediction.

The predicted labels of P is denoted as L̂ ∈ N
n×1. The

above processes are formulated as follows:

F = Net(P ),

P rob = Softmax(Clscoarse(F )),

L̂ = Argmax(Prob),

(1)

where Net(*) is the backbone and Clscoarse(∗) is the coarse

classifier. The output probability Prob ∈ R
n×K is super-

vised with a cross-entropy loss as follows,

Lcoarse
seg = −

K∑

i=1

yilog(Probi), (2)

where y is the ground truth label.

3.1.2 Binary Module

This module identifies whether the local neighbors belongs

to the same category with the center point or not. We first

finds k nearest neighbors for all points, denoted as Np, and

gathers the features of neighbors, denoted as NF . We con-

catenate the feature F of the center point, neighboring fea-

tures NF , and the position difference between the center

point and the neighboring points, e.g. P − NP to obtain

an edge descriptor Es ∈ R
n×k×(d+d+3). A binary classi-

fication function BC outputs the possibility of each point

belonging to the same category with the center point ac-

cording to the edge descriptor as follows,

Es = Concat(F,NF , P −NP ),

B = SoftMax(BC(Es)),
(3)

B ∈ R
n×k×2. BC is a fully connected layer with no ac-

tivate function. The neighboring points NP are then par-

titioned into two soft collections: {Nsame, Ndiff}, as de-

picted in Fig 1. This module is supervised by the neighbor-

ing category consistency mask, which is generated from the
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Figure 3. Details of the Same-Category-Aggregation Module.

ground truth label. ’1’ denotes the neighboring point has

the same label with the center point, ’0’ denotes different

labels. This binary classification loss is as follows,

Lbinary = −

1∑

i=0

milog(Bi), (4)

where m is the ground truth mask.

3.1.3 Same-Category-Aggregation Module

The soft collections Nsame is selected by the

Bsame = B[:, :, 1], (5)

The values of Bsame measure how many common parts ev-

ery neighbor has with the center point. The features of the

same category in a local area should not change rapidly. So

the common parts in the neighbors should be similar to the

center points. We strengthen the feature of the center by col-

lecting the influence of those same category features. The

influence on the center point is a weighted sum as follows,

F same =

∑
Bsame ∗NF∑

Bsame
, (6)

The denominator
∑

Bsame is for scaling the influence to

a unified range with the center feature to avoid unstable

training. Then, the feature been influenced by the soft

same-category collections is computed by concatenating

the aggregated feature and the original feature and using a

conv1×1 layer S to transform the concatenated vector to a

new feature as follows,

F sameaug = S(Concat(F, F same)), (7)

F sameaug represents how the center features are influenced

by the soft collections Nsame. In the view of self-attention,

it’s a process of local same-category-oriented self-attention.

And the soft collections Bsame serves as the similarity ma-

trix. Details are in Fig 3.

3.1.4 Different-Category-Relation Module

Different category objects provide with co-occurrence in-

formation to help classifying the center point. Thus we aim

to model the relationship between the center point and the

neighboring point with different labels. The soft collections

Ndiff is selected by

Bdiff = B[:, :, 0]. (8)

To measure how the neighbors contribute to the center,

we construct a new descriptor Ed for the edge between

neighbor and center point by subtracting their features and

positions. A global relation layer R lifts such descriptor to a

relation vector F rel to describe how the relations of neigh-

boring points influence the center point as follows,

Ed = Concat(F −NF , P −NP ),

F rel = R(Ed).
(9)

Point-pairs in different positions or between different

categories shares the same parameters. Aided by the re-

lation, neighboring points offer strong support in identify-

ing the categories to each other. We compute the total sur-

rounding support by a weighted sum of the individual rela-

tion since the more confident that the two points belong to

different categories, the more reliable the learned relation

should be.

F diff =

∑
Bdiff ∗ F rel

∑
Bdiff

, (10)

The denominator
∑

Bdiff scales the relation-based feature

to a unified range, it makes this module stable during train-

ing. Bdiff reflects how the context influences the center

point. And the final influenced feature is transformed as

follows,

F diffaug = D(Concat(F, F diff )). (11)

3.1.5 Fusion Module

The final feature is computed with a conv1×1 layer A by

concatenating the original feature and the augmented fea-

tures from the two soft collections as follows,

F aug = A(F, F sameaug, F diffaug), (12)

F aug has the same dimensions with the coarse representa-

tion F . Then, we re-compute the probability of semantic

label by

Probaug = SoftMax(Clsaug(F aug)). (13)

Clsaug is a classifier for the augmented feature. The out-

put probability Probaug ∈ R
n×K is also supervised by the

ground truth label with a cross entropy loss as follows

Laug
seg = −

K∑

i=1

yilog(Prob
aug
i ). (14)
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Figure 4. Details of the Different-Category-Relation Module.

3.2. Implementation details

3.2.1 Backbone

The proposed module is independent of a certain backbone,

it can be appended after any backbones who can output the

feature of each point for semantic segmentation. Main-

stream backbones include pointwise-MLP-based network

and pseudo-grid-based point convolution. The former di-

rectly learn feature with shared MLP layers, which is very

efficient. To aggregate local context, some techniques like

neighboring feature pooling and attention-based aggrega-

tion are proposed. However, MLP fails to incorporate spa-

tial prior in its design. The point convolution methods aim

to design an operator similar to the image convolution for

point clouds. It often has an advantage in grasping the ge-

ometry of the input space while they rely on a well-designed

pseudo grid and the hyper-parameters of the grid often have

a big impact. To test the generality of our method, we do

experiments on both types of backbones. To further prove

the effectiveness, we do experiments on a point cloud se-

quence semantic segmentation task. During the whole pro-

cess, the backbones only output a coarse representation for

each point, with which we predict the initial category prob-

ability for each point. Then, we concatenate the initial rep-

resentation with the position of each point and feed them

into our proposed feature augmentation module.

3.2.2 CGA Module

In order to avoid using some tricks in the CGA module,

we implement all the sub-modules as simple as possible.

For each fully connected layer, we directly adopt the imple-

mentation from the backbone itself. For those layers using

an activation function, we use the same one (ReLU, Leaky

ReLU etc.) as the one used most frequently in the back-

bone. As to the number of neighbors, for a dense dataset,

we only choose half of the number adopted by the back-

bone to aggregate local features, for a sparse dataset we use

the same number. This is for avoiding this augmentation

module occupying too much computation resources. Such

simple design criteria is for ensuring that the augmentation

results only depend on the architecture, rather than some

carefully adjusted details. Furthermore, it shows that this

method can be easily migrated to other backbones as a fea-

ture augmentation module.

3.2.3 Losses

The output of the binary module is directly put into the Soft-

Max to get the category consistency probability, without

any activations. Both the initial representation and the aug-

mented representation are processed by a linear function for

the semantic predictions. They are supervised by the same

ground truth labels. The labels for the binary module is gen-

erated from the ground truth labels. For all backbones, the

total loss is as follows,

Ltotal = Lcoarse
seg + Laug

seg + Lbinary, (15)

for simplicity, we fix the weights for all losses to 1.0.

4. Experiments

All experiments are conducted on a server with 4 RTX

2080Ti GPUs. And we use python and C to code all of

our projects. We choose TensorFlow as our deep learning

platform. To study the advantages and limitations of our

method, we conduct lots of experiments on a 3D indoor

point cloud dataset and an outdoor point cloud sequence

dataset. We totally test 3 backbones: RandLA-Net [5],

CloserLook3D [16] and MeteorNet [15]. The first two are

designed for single frame 3D data. The MeteorNet [15] is

used for point cloud sequence task. We will first introduce

the experiments on a 3D dataset. Results show that both

backbones benefit from the feature augmentation module.

And we achieve a new state of the art among all fully su-

pervised methods on the dataset. In section 4.2, we will in-

troduce the experiment on a sequence segmentation dataset.

we also achieve a new state of the art in this dataset. In sec-

tion 4.3, we will present detailed ablation studies to show

the effect of each sub-module.
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Method mIoU(%) ceil. floor wall beam col. wind. door chair table book. sofa board clut.

PointNet [22] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

SegCloud [29] 48.9 90.1 96.1 69.9 0.00 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6

Eff 3D Conv [39] 51.8 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1

TangentConv [28] 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8

RNN Fusion [38] 53.4 95.2 98.6 77.4 0.8 9.8 52.7 27.9 78.3 76.8 27.4 58.6 39.1 51.0

PointCNN [13] 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SPGraph [11] 58.0 89.4 969 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

ParamConv [31] 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2

SPH3D-GCN [12] 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7

HPEIN [8] 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4

MinkowskiNet [3] 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 89.8 81.6 74.9 47.2 74.4 58.6

KPConv(deformable) [30] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

KPConv(rigid) [30] 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1

CT2 [20] 67.4 93.6 97.5 83.6 0.0 34.5 54.5 78.2 89.1 79.5 73.4 69.1 64.6 58.5

JSENet [6] 67.7 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4

RandLA-Net [5] 62.5 92.3 97.7 80.5 0.0 20.9 62.0 35.3 77.7 86.8 74.7 68.8 65.0 50.8

RandLA-Net(aug) 65.4 92.1 98.1 82.2 0.0 33.4 62.6 55.8 75.7 88.4 66.4 70.1 73.8 51.6

CloserLook3D(pseudo-grid) [16] 65.7 93.9 98.3 82.0 0.0 18.2 56.6 68.0 91.2 80.3 75.3 58.4 70.6 60.8

CloserLook3D(aug) 68.6 94.5 98.3 83.0 0.0 25.3 59.6 71.0 92.2 82.6 76.4 77.7 69.5 61.5

Table 1. Comparisons with state of the art on area 5 of S3DIS [1]. *(aug) denotes augmentation by the CGA module. Red numbers mean

better results than the baseline, Red and black numbers denote the best results among all methods.

Method #Frames mIoU(%) Bldng Road Sdwlk Fence Vegitn Pole Car T.sign Pdstr Bycyc Lane T.light

PointNet++ [23] 1 79.35 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17

MinkowskiNet [3] 3 82.76 91.99 98.93 92.30 87.49 99.38 97.96 95.15 85.55 95.16 0.00 77.73 71.45

MeteorNet [15] 3 81.80 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60

MeteorNet(aug) 3 83.75 98.24 98.49 93.26 96.14 97.44 97.89 96.32 83.02 87.59 0.00 76.30 80.33

Table 2. Comparison with baseline and state of the art on Synthia. *(aug) denotes augmentation by the CGA module. Red numbers mean

better results than the baseline, Red and black numbers denote the best results among all methods.

4.1. Semantic Segmentation on Point Cloud

4.1.1 Datasets

S3DIS [1] is a high quality indoor dataset, recorded by Mat-

terport camera. It consists of 6 large areas. Each area con-

tains several scenes, like offices, storages, hallway, confer-

ence rooms, and so on. The whole dataset has around 273

million points annotated with 13 semantic labels. We use

the Area 5 as a testing set and the rest 5 areas as a training

set.

4.1.2 Baselines

RandLA-Net [5] is a point-wise-MLP-based backbone,

which is proposed to handle the large scale scene. It re-

places the farthest point sampling module with random

sampling, which significantly speeds up the processing on

large-scale scenes. A novel attentive local feature aggrega-

tion module is used to increase the receptive field to over-

come the drawbacks caused by the random sampling pro-

cess.

CloserLook3D [16] is a comprehensive work which re-

searches how the different local aggregators influence the

feature learning of point cloud. It includes point-wise MLP,

pseudo grid, adaptive weights and a novel PosPool meth-

ods. In this paper, we choose the pseudo-grid method as

our backbone, because it’s a good reimplementation of the

classic KPConv [30] and the results are more stable.

4.1.3 Training Settings

For fair comparisons with the original backbones, we ap-

ply the same training settings with the backbones. Both of

RandLA-Net [5] and CloserLook3D [16] downsample the

S3DIS [1] with a grid size of 4cm. RandLA-Net uses the

aligned version, it randomly samples 40960 points for each

block to put into the network. The difference is that Closer-

Look3D [16] uses the non-aligned version of S3DIS [1],

and randomly samples points within a sphere with 2m ra-

dius. Besides, a lot of data augmentation tricks, like ran-

domly scaling, randomly rotation, Gaussian noise, are ap-

plied in CloserLook3D [16]. We use the same hyper-

parameters and optimizer with the baseline’s original set-

ting. As for the number of nearest neighbors for the pro-

posed feature augmentation module, we use half of the

k used in the original baseline’s local aggregation mod-

ule, e.g. for RandLA-Net [5] it’s 16
2 = 8, for Closer-

Look3D [16] it’s 26
2 = 13.

4.1.4 Testing Process

Area 5 contains about 80 million points, which cannot be

put into the network together. We randomly select a point
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(a) Input (b) Ground truth (c) Baseline (d) Ours (e) Improved Area

Figure 5. Qualitative results of S3DIS. From the left to the right is: input, ground truth, baseline(CloserLook3D), ours(CloserLook3D aug)

and the improved areas. Green areas in the last column means that Ours have a better result than the baseline.

from the area as a center point, then we collect its neighbor-

ing points (for RandLA-Net [5] it’s 40960 neighbors, for

CloserLook3D [16] it’s all points within a radius of 2m) to

put into the network. Then, we find a new center point far

away from the previous center points and collecting new

block data. The process is repeated until all points have

been fed into the network several times. Finally, a smooth

combination module calculates the final probability of each

point’s category by considering all previous predictions.

4.1.5 Quantitative Results and Analysis

We compare the result of our methods with the baselines

and some classical works in this task. And we adopt mIoU

on S3DIS [1] Area5 as the evaluation metric.

Comparisons with baselines are presented in Table 1.

According to the results, our feature augmentation module

improves both the point-wise-MLP-based backbone and the

pseudo-grid-based backbone, which prove its effectiveness

and powerful generality. Since there are few points on small

objects, it is difficult to learn discriminative features from

the small object itself. According to the Table 1, most of

the small objects get a better segmentation with the help of

the local context.

Quantitative comparisons with state-of-the-art methods

are also posted in Table 1. The results of RandLA-Net [5]

and CloserLook3D [16] are obtained by re-implementation,

and they achieve comparable results with the official ver-

sion. The results of other methods are directly cited from

public reports. We get new a state-of-the-art result among

all fully supervised point-cloud-based methods. Qualitative

results of S3DIS are illustrated in Fig 5. The improved areas

are mainly located in the joint area between two objects.

4.2. Semantic Segmentation on Point Cloud Se­
quences

4.2.1 Dataset

Synthia dataset [25] records 6 sequences of driving scenar-

ios in different weather conditions. The raw data is RGB-D

image sequences and it is reconstructed into a point cloud.

The scene is cropped by 50m×50m×50m bounding box

and each scene is downsampled to 16384 points. We use

the same train/val/test split as MeteorNet [15], each split

contains 19888, 815, 1886 frames separately. During the

experiments, we use a sequence length of 3 frames, each

frame with 8192 randomly sampled points.

4.2.2 Baseline

MeteorNet [15] is a point-wise MLP network for pro-

cessing point cloud sequence. It’s an enhanced version of

PointNet++ [23], which enables the basic module of Point-

Net++ [23] to deal with time sequences. It aggregates

features through a so-called meteor module, which groups

point through direct-grouping or chained-flow-grouping.

The direct grouping performs well in point cloud sequence

semantic segmentation task. Thus we use it as our back-

bone.

4.2.3 Comparisons with Baseline

During the implementation of CGA for MeteorNet [15], we

search 16 nearest neighbors for every point from the point

cloud itself, without searching neighbors from the neighbor

frame. The results are posted in Table 2. We get a mIoU

of 83.75% for this dataset, which is a new state of the art.

Compared with the baseline, we have a clear improvement
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0 Coarse Seg Binary Loss SAM DRM Aug Seg mIoU(%)

1 X 65.7

2 X X 66.7

3 X X X X 67.5

4 X X X X 67.8

5 X X X X 66.5

6 X X X X 64.9

7 X Cosine X X X 66.6%

8 X GT X X X 70.1%

9 X X X X X 68.6

Table 3. Losses combinations.

in the small category, like pedestrian and lane. Because the

dataset is sparse, the contours of the small categories are not

obvious. Thus they benefit more from the contextual feature

augmentation module.

4.3. Ablation Study

To explore how each module influences the full architec-

ture, we conduct some ablation studies on Area 5 of S3DIS

with CloserLook3D [16]. All of the following experiments

are conducted under the same configurations, except for the

controlled conditions.

4.3.1 Module Combinations

The SAM is designed to gather features from the same cat-

egory and the DRM is designed to model the support from

neighbors of different categories. According to Table 3, the

absence of any one of them will result in a lower result.

Although the results are improved, the two modules also

introduce new parameters. A question emerges naturally:

whether the improvement on mIoU comes from more pa-

rameters? Thus we design a comparison experiment by re-

placing the SAM with DRM because DRM even has more

parameters than SAM. According to Table 4, the more pa-

rameters don’t lead to a better result. In addition, we try to

replace the DRM with SAM. The result also suffers a drop.

The above two experiments prove that the improvements

are not coming from the increase of parameters’ number,

but the well-designed structure.

4.3.2 Loss choices

We have 3 losses in total to train our network. In this part,

we study how each loss influences the whole method. Re-

sults are posted in Table 3. According to the comparison,

the initial segmentation module for coarse representation

plays a very important role. It provides reasonable features

to identify whether two points belong to the same category.

When we remove the binary loss, the output of the binary

module serves as an attention-like module, it slightly im-

proves the result. Because the imbalance between joint area

and the center area will make the naive attention to perform

bad in the joint area. With the full losses combination, we

achieve the best result. The ”Cosine” means to replace the

supervised Binary module with an unsupervised cosine sim-

ilarity measure and its performance is worse than the super-

1

mIoU(%) 0
SAM DRM

SAM 66.2 68.6

DRM - 67.2

Table 4. Replace module with the other.

Relation Concat Addition Subtraction

mIoU(%) 67.4 67.5 68.6

Table 5. Analysis on DRM.

vised manner. To further prove the usefulness of our SAM

and DRM module, we replace the Binary module with the

ground truth binary label (i.e. no binary loss in training).

We achieve a mIoU of 70.1%, which could serve as the per-

formance upper bound.

4.3.3 More analysis on DRM

In the process of designing this module, we have tried sev-

eral configurations, like replacing the subtraction with con-

catenation and addition. And the experiment results in Ta-

ble 5 show that the current subtraction operation is slightly

better than others. We think it is due to the subtraction op-

eration explicitly extracts the difference between features of

adjacent regions with different semantics. Thus, these con-

trast features will be helpful to yield more clear prediction

boundary (i.e. different prediction across boundary). Be-

sides, the concatenation operation causes more parameters,

and for addition operation, it is hard to explain its physical

meaning.

5. Conclusions

In this paper, we propose a feature augmentation archi-

tecture. It can select different paths for different neighbor

points according to the consistency between the categories

of neighbors and the center point. When with the same

category, the neighbors augment the center point according

to the similarity. When with different categories, a DRM

module explicitly models the relation between the different

categories. We conduct experiments on 2 datasets using 3

different backbones and achieve the state of the arts on the

two datasets. This fully demonstrates the effectiveness and

generality of our method. Our method only adjusts features

according to the nearest neighbors, which is difficult to deal

with areas where the error area is large. How to adaptively

enlarge the neighboring area is our next goal.
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