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Abstract

The multimedia community has recently seen a tremen-

dous surge of interest in the fashion recommendation prob-

lem. A lot of efforts have been made to model the com-

patibility between fashion items. Some have also studied

users’ personal preferences for the outfits. There is, how-

ever, another difficulty in the task that hasn’t been dealt with

carefully by previous work. Users that are new to the sys-

tem usually only have several (less than 5) outfits available

for learning. With such a limited number of training exam-

ples, it is challenging to model the user’s preferences reli-

ably. In this work, we propose a new solution for personal-

ized outfit recommendation that is capable of handling this

case. We use a stacked self-attention mechanism to model

the high-order interactions among the items. We then em-

bed the items in an outfit into a single compact representa-

tion within the outfit space. To accommodate the variety of

users’ preferences, we characterize each user with a set of

anchors, i.e. a group of learnable latent vectors in the out-

fit space that are the representatives of the outfits the user

likes. We also learn a set of general anchors to model the

general preference shared by all users. Based on this rep-

resentation of the outfits and the users, we propose a simple

but effective strategy for the new user profiling tasks. Exten-

sive experiments on large scale real-world datasets demon-

strate the performance of our proposed method.

1. Introduction

Personalized outfit recommendation is the task of pre-

dicting whether a set of fashion items that constitute an

outfit are well matched and whether they fit the taste of a

specific user. It has wide applications in fashion oriented

social networks and online shopping. However, mining the

compatibility relationships between items and capturing the

diverse fashion preferences of different users can be very
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Figure 1: (a) Outfit style space. Each user is represented by

a set of anchors in the outfit style space. (b) Examples of

recommended results for new users with only one historical

outfit. The outfits in orange boxes are positive outfits and

those in blue boxes are negative outfits. Our method rec-

ommends compatible outfits that fit the taste of a user even

with very few learning examples.

challenging. Compared to visual similarity, both the com-

patibility and the personal preference relations are more im-

plicit and subtle.

Many previous works have studied the compatibility be-

tween a pair of fashion items [22, 36]. When it comes to

outfits that consist of multiple items, some works decom-
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pose the outfit into a set of pairwise interactions and resort

to the pairwise approaches [34, 32]. This strategy, however,

fails to capture the high-order relations among the items. To

address this limitation, some holistic approaches [6, 18, 33]

have been proposed. For example, Han el at. [6] take the

items in an outfit as a sequence and use recurrent networks

such as vanilla RNN and LSTM to model the compatibility

of an outfit. These methods are usually not permutation in-

variant and the results may be sensitive to the order of the

fashion items.

Furthermore, a user’s personal taste is also critical for

outfit recommendation. The outfits users like may have

a variety of styles. Some previous works [14, 20, 31]

have shown that by incorporating user’s preference, the out-

fit recommending performance can be greatly improved.

A widespread difficulty for personalized recommendation

problems is that the number of historical samples for each

user is usually very small [21]. To address this limitation,

researchers exploit collaborative learning techniques that

utilize rating data of other users to augment the data of cur-

rent user. However, previous methods for personalized out-

fit recommendation usually only combine data of different

users to model the content of fashion items. The parameters

that characterize users’ preferences are still learnt only with

each user’s own data. It would be difficult to learn these pa-

rameters well when the number of corresponding training

outfits is small. The situation becomes even worse for new

users that just join in and only have very few outfits rated.

This cold-start problem has not been carefully studied by

existing works on outfit recommendation.

In this work, we treat outfit compatibility prediction as

a problem with set-input [17, 41] and use the self-attention

mechanism [35] to model the interactions among fashion

items. As illustrated in Fig. 1a, we represent each outfit

as a point in the outfit style space. This outfit representa-

tion is compact, permutation invariant, and able to capture

the high-order relation among the items. And to better cap-

ture the diverse tastes of users, we introduce a learnable per-

sonalized anchor embedding (LPAE) approach. We model

the style preference of a user with a set of anchors, i.e. a

group of learnable latent vectors in the outfit style space.

We also learn a set of general anchors to model the general

preference shared by all users. Based on this representa-

tion of the outfits and the users, the user’s preference for

an outfit is measured by the anchor-outfit similarity. Sim-

ilarly, for new user modeling, the user’s profile is learnt

by assembling existing anchors based on the anchor-outfit

similarity, which is effective when training data is scarce.

We show two examples of the new user (cold start) prob-

lem [21] in Fig. 1b where each user only provides one outfit

as reference. Since the anchor-outfit similarity is learnt in a

metric-learning [13, 15] manner, it can serve as a bridge to

measure the outfit-to-outfit and user-to-user relations. This

similarity propagation process can introduce a certain de-

gree of interpretability into the recommendation results.

2. Related Works

Fashion-related problems have been extensively studied

in recent years [3, 19, 28]. We mainly focus on the fashion

recommendation tasks. The fashion recommendation task,

which is based on fashion compatibility learning, is to pre-

dict whether a set of fashion items are well matched. In

personalized fashion recommendation, not only should the

recommended items be compatible with each other, but the

outfit they constitute should also fit the taste of a specific

user. We discuss recent developments in fashion compati-

bility learning and introduce emerging applications built on

compatibility learning.

2.1. Fashion compatibility learning

Existing studies on fashion compatibility learning can

be divided into two categories: item-level and outfit-level

approaches. The item-level approaches mainly model the

compatibility between two fashion items. The pairwise in-

teraction decomposition can be seen as an explicit prior

structure [26] imposed on the outfit compatibility. In [37,

22], a single latent space was used for measuring the com-

patibility. However, the relationships between a pair of

items in different aspects (e.g. color, pattern, category) can

be quite different or even contradictory. To address the lim-

itation of using a single latent space, Veit et al. [36] pro-

posed the conditional similarity networks (CSN) that com-

pared different items in different conditions to improve the

performance. Tan et al. [32] improved the CSN method by

learning the multiple conditional embeddings. They also

used attention mechanism to discover the relative impor-

tance of different conditions. Another way to enhance the

item-item compatibility prediction is to learn an image em-

bedding that respects item type [34]. In this method, each

item pair are compared in the conditional subspaces to im-

prove the performance. For personalized outfit recommen-

dation, Hu [14] et al. used additional user-item pairs to

model the user’s preference towards items. They used inner

product instead of metric learning to measure the compat-

ibility between pairs. Song et al. [31] also considered the

personalized outfit recommendation problem. They char-

acterized the item-item and user-item interactions using a

matrix factorization method. When there are links between

items, a graph-based approach can be used to improve the

performance [4, 27]. Furthermore, Lu et al. [20] tackled the

efficiency problem by learning hash codes for both users

and items.

The outfit-level approaches treat the outfit as a whole

and model the high-order interactions among the items.

Tangseng et al. [33] learnt outfit embedding by concatenat-

ing all item features together. Han et al. [6] treated the outfit
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as an item sequence and learnt the compatibility with bidi-

rectional LSTM. Although these methods learnt the com-

patibility in outfit-level, they did not handle the outfit in a

permutation-invariant setting and the results may be sensi-

tive to the order of items. Li et al. [18] proposed an in-

stances pooling method to aggregate the item features to

predict the outfit quality. They use RNN to do instance

pooling to imporve the performance. The personalized out-

fit generation (POG) model in [2] was an approach for the

outfit generation task. They treated the task as translation

from an incomplete outfits to the remaining item and used

the Transformer architecture [35] without positional encod-

ing for outfit generation and recommendation. Different

from the item-level approaches, the outfit-level approaches

model outfit compatibility in an inexplicit way.

To extend the fashion recommendation system with side

information, Yang et al. [39] proposed a translation-based

network that learnt the compatibility with the category-

specific relations. Song et al. studied the compatibility

problem in the setting of the heterogeneous multi-modal

data [30] and used rich fashion domain knowledge [29].

2.2. Emerging applications

The compatibility learning has been studied in different

scenarios to solve practical problems. We conduct a brief

review on a few of recent works. To interpret the com-

patibility score, Wang et al. [38] explored the problem of

diagnosing the outfit compatibility on items by utilizing the

gradient information. Several recent works studied the com-

patibility problems considering the body shapes [9, 11, 8].

Hsiao et al. [12] propose Fashion++ to make minimal ad-

justments to a full-body outfit that have a maximal improve-

ment on its fashionability. The task of creating a set of out-

fits from personal wardrobes that are maximally compatible

and versatile has also been proposed recently [10]. Dong

et al. [5] extended this work with personalized information.

Yu et al. [40] considered fashion compatibly in the fashion

synthesizing problem.

3. Approach

Our learnable personalized anchor embedding (LPAE)

model, as shown in Fig. 2, contains two components: the

item aggregation network and the matching network. The

item aggregation network encodes a set of items into a com-

pact embedding in the outfit style space. The matching net-

work obtains the user preference score by computing the

similarities between an outfit embedding and a set of learn-

able personalized anchor embeddings.

3.1. Item aggregation model

An outfit, which consists of n items from different

categories, is represented as a packet of features X =
[x1,x2, . . . ,xn]

⊺ ∈ R
n×d where xk ∈ R

d is the feature

representation of the k-th item and d is the dimension of

item features. The item aggregation network is a transfor-

mation f : Rn×d → R
d that encodes n items X into an

outfit feature z ∈ R
d with a fixed length. The transforma-

tion f should take into account the compatibility relations

between the fashion items. Also, since the order of the items

in X should have no effect on the final prediction, the trans-

formation function f should be permutation invariant. In-

spired by the recent work [17] on problems with set-input,

we build the outfit embedding model using the self-attention

mechanism.

3.1.1 Multi-head attention

We first introduce the multi-head attention mechanism, a

basic component for updating item features and feature ag-

gregation. Given a set of n query vectors Q ∈ R
n×d, an

attention function [35] updates them via m key-value pairs

K ∈ R
m×d,V ∈ R

m×d. For brevity, we set the dimension

of all vectors to be the same as the query vectors. Each out-

put vector is a weighted sum of the value vectors in V with

the weights being computed by the inner product between

the query and the key vectors in K.

O = Attn(Q,K,V) = Softmax(
QK⊺

√
d

)V (1)

The multi-head attention extends the attention function

by projecting the triplet (Q,K,V) into h subspaces and

concatenating the outputs computed by the attention func-

tion (Eq. (1)) on each subspace. h is the number of heads.

MultiHead(Q,K,V) = Concat (O1, · · · ,Oh)W
O

where Oi = Attn(QW
Q
i ,KWK

i ,VWV
i )

(2)

where W
Q
i ∈ R

d×dk ,WK
i ∈ R

d×dk ,WV
i ∈ R

d×dv and

WO ∈ R
hdv×do are projection parameters. The choice for

the dimensions in this paper is dk = dv = d/h and do = d.

3.1.2 Outfit self-attention

Given the features X ∈ R
n×d of the n items in an outfit, we

compute the self-attentive output for them with multi-head

attention as follows:

SelfAttn(X) = LayerNorm(H+ σ(H))

where H = LayerNorm (X+ MultiHead(X,X,X))
(3)

σ(·) is a row-wise feedforward layer and LayerNorm(·) is

the layer normalization [1].

By applying the SelfAttn(·) function to X, we augment

existing pairwise methods for fashion outfit by relating each

item to all other items in the outfit concurrently. Follow-

ing [17], we stack the self-attention function (see Fig. 2) to

model the high-order relationships between items.

F = SelfAttn(SelfAttn(X)) ∈ R
n×d (4)
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Figure 2: The architecture of our model. We first model the interactions between the items in an outfit with a stacked self-

attention module. The items are then aggregated into a single outfit embedding using the outfit attentive pooling operation.

The fashion preference of each user is characterized by a set of u-anchors. We also learn a group of g-anchors to describe

the general preference. The LPAE-u model only uses the u-anchors for compatibility prediction and the LPAE-g model uses

both u-anchors and g-anchors to compute the compatibility score.

3.1.3 Outfit attentive pooling

To get a fixed length outfit representation regardless of the

number of items in it, we use a vector s ∈ R
d to aggregate

the output as follows:

z = LayerNorm(h+ σ(h))
where h = LayerNorm (s+ MultiHead(s,F,F))

(5)

where s is learnt as a model parameter. The outfit attentive

pooling produces a single compact vector z ∈ R
d for an

outfit. It can be easily seen that the transformation from n
items X to a single outfit embedding z is invariant to the

permutation of items.

3.2. Matching network

The outfits a user likes may be very variable in style.

Although it is rare for two users to have exactly the same

fashion taste, they may share a common view towards some

specific styles. This makes it inadequate to use a single style

vector to characterize a user. We therefore use multiple vec-

tors to describe the fashion preferences of users. Each user

is represented as a set of anchors scattered around the out-

fit space (see Fig. 1a). The number of anchors is set as a

hyper-parameter.

Formally, we use A = {Ai}mi=1
to represent groups of

anchors for m users, where Ai = [ai1, . . . ,ais] ∈ R
d×s

contains the anchors for the i-th user and aik ∈ R
d is the

k-th anchor in it. Each user is characterized by s learnable

anchors in the outfit space. We call them the u-anchors and

refer to the model that is built on them as LPAE-u as shown

in Fig. 2. Given an outfit embedding zj , the preference

score the i-th user has for it is obtained by computing the

similarities between zj the all u-anchors in Ai as follows:

ruij =
1

s

s
∑

k=1

a
⊺

ikzj ,

s.t. ‖aik‖2 = ‖zj‖2 = 1,

(6)

General anchors. The LPAE-u model only depends on

the user specific parameters u-anchors. It requires suffi-

cient user feedback to learn the u-anchors reliably. In the

new user problem, due to the small number of outfits that

are available for training, these user parameters may not be

sufficiently learnt. To address this problem and to improve

the performance in the cold start scenario, we add a gen-

eral compatibility by defining the general anchors which are

shared by all users. The general score indicates the overall

tendency users have for an outfit. For user i, the anchor set

is extended to:

A
g
i = [Ai,G] (7)

where Ai ∈ R
d×s1 contains the u-anchors for user i and

G ∈ R
d×s2 is shared by all users. We call the elements in

G the g-anchors and refer to the model that includes them

as LPAE-g. The resulting preference score is computed as
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follows:

rgij =
1

s1

s1
∑

k=1

a
⊺

ikzj +
1

s2

s2
∑

k=1

g
⊺

kzj ,

s.t. ‖aik‖2 = ‖gk‖2 = ‖zj‖2 = 1

(8)

where gk ∈ R
d is the k-th general anchor in G. We also

show the LPAE-g model in Fig. 2.

We can expect that with enough feedback, the user pref-

erence can be captured well without g-anchors, so in this

case LPAE-u and LPAE-g will have similar performance.

However, when the training data is not enough for new

users, the g-anchors can notably improve the results. And

by further analyzing on the results of LPAE-u and LPAE-g,

we can estimate the minimal number of outfits needed to

capture a user’s preference, i.e. on what level the recom-

mendation results deviate from the common preference and

mainly depend on user’s past selections.

3.3. Objective function

3.3.1 Orthogonal regularization

To avoid the collapse of anchor embeddings and learn dis-

criminative representatives for outfit contents, we use the

log-determinant divergence (LDD) [16] to regularize each

anchor matrix. Suppose L ∈ R
s×d is one of the anchor

matrices, and the LDD is computed as follows:

D(LL⊺, I) = tr(LL⊺)− log det(LL⊺)− s (9)

where I ∈ R
s×s is identity matrix.

3.3.2 Overall loss function

Suppose the outfits posted by each user is Z+
i . Since the

dataset usually contains implicit feedback, we sample a set

of outfits Z−

i to be the negative samples for user i. The

training set P contains a set of outfit pairs:

P ≡ {(i, j, k)|rij > rik, ∀zj ∈ Z+
i , zkl ∈ Z−

i } (10)

where (i, j, k) indicates that user i prefers outfit j over outfit

k. We eliminate the superscript in rij for conciseness. The

Bayesian personalized ranking (BPR) [25] criteria is used

to train our models. And the overall loss function is defined

as follows:

ℓ =
∑

(i,j,k)∈P

log (1 + exp(−(rij − rik)) + λ · ℓreg (11)

where ℓreg is the LDD regularizer in Eq. (9).

4. New user profiling task

The preference scores defined in Eq. (6) and Eq. (8) are

based on anchor-outfit similarities which pull the outfits a

user likes close to his/her anchors. And users who have

similar tastes get parts of their anchors embedded closely.

Hence, the u-anchors set A can be used for new user pro-

filing task by assembling anchors which are close to new

user’s outfits.

We define the anchor pool Q = {ql} =
⋃

i,k aik to

be the union of all u-anchors and Z = {zj} to be the

set of outfit embeddings of a given new user. A common

approach to do new user profiling is to re-train the user-

specific parameters P ∈ R
d×s [20]. Since the size of Z is

usually small, P learnt using this way is easy to overfit it.

In this section, we propose two learning by search strategies

for new users that avoid direct parameter optimization. The

strategies for learning P are summarized as follows:

• Learning by optimization (SO). We directly learn the user

parameters P by optimization with all other parameters

fixed as in [20].

• Learning by user-search (SU). We reuse Ai from existing

users whose taste is the closest to the new user, i.e. the i-
th user with which the sum of the preference scores ruij
for zj in Z is the largest. Mathematically, we have

argmax
i

∑

zj∈Z

ruij .

• Learning by anchor-search (SA). We rank all anchors in

Q according to the response score
∑

i z
⊺

i ql and select the

top s anchors to constitute P.

For convenience, we refer to the three strategies as SO, SU,

and SA respectively. Specially, for new users who only pro-

vide one outfit, we use all anchors with positive response

scores to reduce the variance of recommendation results in

strategy SA.

5. Experimental Design

Evaluation metrics. To evaluate the recommendation ac-

curacy, we consider the Area Under the ROC curve (AUC)

and the Normalized Discounted Cumulative Gain (NDCG)

used in previous works [20, 14]. Those metrics indicate

the quality of ranking a set of positive and negative outfits.

The ratio between positive and negative outfits is 1:10 in the

testing set, and the performance is averaged over all users.

Datasets. We consider two datasets: Polyvore-Us [20]

and IQON-3000 [31]. In Polyvore-Us datasets, where U
is the number of users, we use Polyvore-630/519 for evalu-

ating the performance on personalized outfit recommenda-

tion tasks and Polyvore-53/32 for the analysis of new users.

Each user has around 200 outfits for training and 40 outfits

for testing, and each outfit includes 3 items from 3 different

categories. For the IQON-3000 dateset, we filter out 608
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users - each user has 85 outfits for training and 20 for test-

ing. Each outfit contains 3∼8 items that belong to different

categories. We further divide the users into two groups and

end up in two subsets: IQON-550 and IQON-58.

Considered methods. We compare our models with several

state-of-the-art methods. The Bi-LSTM model [6] uses a

bidirectional LSTM to learn the compatibility of the outfits.

The Type-Aware Embedding method [34] embeds pairs of

items into type-specific spaces to learn the similarities. This

method is an extension of Conditional Similarity Networks

(CSN) [36] where each pair of items has two conditions.

The SCE-Net [32] learns multiple conditional embeddings

for items. The weights for each conditional embedding are

computed using the attention mechanism. The FHN [20]

learns the outfit compatibility and the user preference in a

pairwise manner. We train the FHN without using the bina-

rization operation for a more fair comparison.

In addition to our LPAE models, we also introduce a

plain latent factor model (LFM) as a baseline. It also uses

the outfit embedding as an outfit representation but uses a

single vector ui to characterize the i-th user. Given the i-th
user representation ui ∈ R

d and j-th outfit zj ∈ R
d, we

compute the prediction score as follows:

rLFM
ij = h⊺a

(

W(ui ⊙ zj) + b
)

(12)

where ⊙ denotes the element-wise product of vectors, a(·)
is a nonlinear activation function, W ∈ R

d×d and b,h ∈
R

d are learnable parameters.

Implementation details. The item features are extracted

from images with ResNet-34 [7] and used as the input for

all methods for fair comparison, i.e. the backbone is not

fine-tuned during training and testing. We set the latent di-

mension to 128 for all methods. We use s = 64 for our

LPAE-u and s1 = s2 = 32 for LPAE-g. SGD with mo-

mentum [24] is used to train all methods. The learning rates

are simply searched and reduced when the accuracy stops

increasing on validation set. Our methods are implemented

with PyTorch [23] and the code will be released for repro-

ducible research.

6. Experimental Results

In this section, we compare our approaches with state-

of-the-art methods and highlight our key experimental find-

ings. More results can be found in the supplementary mate-

rial.

6.1. Can the item aggregation model provide a bet­
ter representation for outfits?

From the results in Table 1, we can see that our LPAE

methods achieve better performances under all metrics

which shows that the set modeling method in Eq. 5 is help-

ful for learning the outfit embeddings. And the results for

both LFM and FHN are more convincing comparisons, be-

cause the main difference between the two methods lies in

the way they model items.

We believe that due to the self-attention mechanism we

use, the resulting outfit embedding can capture more sub-

tle relationships between the items. And a compact outfit

embedding is helpful for downstream tasks such as outfit

retrieval. Since the effectiveness of the self-attention block

has been discussed in the original work [17] and our key

motivation is to address the cold start problem, we omit

studies regarding the components of the item aggregation

model here.

6.2. How important are anchors for cold start prob­
lems?

The primary motivation for our LPAE approach is to im-

prove the cold start performance with anchors. This raises

the question of how well we can learn from such limited

data. Specifically, we test the performance when each new

user has only 1 or 5 outfits for learning. We compare our

LAPE models with non-personalized methods and report

the performance in Table 2. We only use the SA strategy for

LAPE since it is the most effective one in this extreme case.

The results show that our LPAE methods outperform those

non-personalized methods notably even with only one out-

fit available. Since our model reuses the existing anchors, it

can perform user modeling very efficiently.

Furthermore, we perform the new user profiling task

with different strategies and with different numbers of avail-

able outfits. And the results are shown in Table 3. Let N be

the number of positive outfits available for each user during

training, and when N < 10, we refer it as cold starter.For

cold starters, the SA strategy outperforms the SO strategy,

which shows the effectiveness of anchor embeddings. With

the increase of N , the SA strategy still shows performance

comparable to the optimization strategy. Compared to the

FHN baseline, our LAPE model with anchor search is su-

perior in almost all Ns.

The results of using the SU strategy are inferior to those

of other strategies. This may be due to the difficulty of

finding a single user who shares a very similar taste. How-

ever, it’s much easier to characterize a user by reorganizing

the taste representations learnt from other users, which con-

forms to idea of collaborative filtering.

6.3. How important are general anchors?

The general anchors learn non-personalized compatibil-

ity for outfits. By comparing the results of LPAE-u and

LPAE-g in Table 2 and Table 3, we find that the general an-

chors play an important role for cold starters. Similar find-

ings can be obtained when comparing LFM and FHN since

FHN also uses the general scores. With the increase of N ,

the contribution of g-anchors starts to diminish. An inter-
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Polyvore-519 Polyvore-630 IQON-550

Method AUC NDCG AUC NDCG AUC NDCG

Bi-LSTM [6] 0.7882 0.6306 0.7840 0.6328 0.8133 0.6678

Type-Aware [34] 0.7840 0.6162 0.7727 0.6023 0.7955 0.6427

SCE-Net [32] 0.7849 0.6167 0.7966 0.6524 0.8228 0.6823

FHN [20] 0.8992 0.8097 0.8701 0.7640 0.8765 0.7650

LFM 0.9104 0.8312 0.8872 0.7973 0.9161 0.8496

LPAE-u 0.9119 0.8359 0.9006 0.8186 0.9275 0.8727

LPAE-g 0.9119 0.8359 0.8995 0.8167 0.9253 0.8703

Table 1: Comparison of different methods on recommendation tasks.

Polyvore-32 Polyvore-53 IQON-58

# Outfits 1 5 1 5 1 5

Bi-LSTM [6] 0.8087 0.8087 0.7704 0.7704 0.7979 0.7979

Type-Aware [34] 0.7782 0.7782 0.7532 0.7532 0.7636 0.7636

SCE-Net [32] 0.7779 0.7779 0.7645 0.7645 0.7791 0.7791

LPAE-u (SA) 0.8383 0.8542 0.7894 0.8144 0.8514 0.8478

LPAE-g (SA) 0.8410 0.8511 0.7938 0.8299 0.8775 0.8904

Table 2: Comparison of different methods on new user tasks.

LPAE-u

New User

LPAE-g

LPAE-u

LPAE-g

Outfit A

 Outfit B

Figure 3: Examples for the new user problem. The orange

box indicates the positive outfit and the blue box indicates

the negative outfit.

esting finding is that, at around N = 50, the performance

of LPAE-u and LPAE-g starts to become similar. Mean-

while, the LFM model begins to beat FHN. We guess that

to properly capture a user’s preference, around 50 samples

are needed in this dataset.

Visualization. We visualize the recommendation results for

the new user profiling task in Fig. 3, where the number of

available outfits is 1. Outfits A and B are two example in-

put outfits for the new user. We show the corresponding

recommendation results for each outfit. For LPAE-u, since

there is no general anchors, the accuracy largely depends

on whether the outfit provided is the dominant style in test-

ing data. For outfit A, it is the minority style of the user, and

LPAE-g can play safer with the help of general anchors. For

outfit B, LPAE-u works much better than LPAE-g since the

user has many outfits similar to outfit B. Both methods learn

the user preferences via anchor-search and show results rel-

evant to the provided outfits.

1 4 8 16 32 64 128 256
Number of Anchors

0.70

0.75

0.80

0.85

0.90

AU
C

Test
Valid.

Cold Starters (n=1)
Cold Starters (n=5)

Figure 4: Performance for LPAE-u with different number

of anchors. We also show the performance for cold starters

under the SA strategy.
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Methods 1 5 10 20 50 100

FHN (SO) .7274 ± .0032 .7776 ± .0022 .7989 ± .0017 .8241 ± .0013 .8442 ± .0012 .8552 ± .0004

LFM (SO) .6252 ± .0049 .7351 ± .0038 .7840 ± .0017 .8113 ± .0021 .8470 ± .0013 .8643 ± .0007

LPAE-u (SU) .7467 ± .0024 .7917 ± .0025 .8073 ± .0018 .8159 ± .0009 .8258 ± .0013 .8252 ± .0011

LPAE-u (SA) .7894 ± .0011 .8144 ± .0017 .8332 ± .0020 .8470 ± .0008 .8594 ± .0005 .8623 ± .0004

LPAE-u (SO) .6886 ± .0039 .7897 ± .0016 .8281 ± .0020 .8501 ± .0013 .8701 ± .0006 .8783 ± .0005

LPAE-g (SU) .7622 ± .0031 .8106 ± .0014 .8214 ± .0014 .8303 ± .0011 .8382 ± .0014 .8407 ± .0006

LPAE-g (SA) .7938 ± .0009 .8299 ± .0017 .8433 ± .0016 .8530 ± .0009 .8602 ± .0006 .8627 ± .0004

LPAE-g (SO) .7840 ± .0023 .8195 ± .0015 .8431 ± .0011 .8572 ± .0008 .8725 ± .0006 .8812 ± .0003

Table 3: The AUC with different number of positive training outfits for the new user profiling task on Polyvore-53. We run

experiments 10 times and report the mean and standard deviation for different methods and different strategies. SO, SA and

SU are three strategies to model the preferences of new users.

6.4. Are multiple anchors useful?

To show the impact of the number of anchors s, we

trained LPAE-u with different numbers of anchors. The re-

sults are shown in Fig. 4. When the number of anchors s
is 1, the LPAE model tries to cluster outfit embeddings into

one class for each user. Since mapping all of the various

outfits into one class can lose a lot of information, the per-

formance is poor as expected. As s increases, the diverse

tastes of users can be properly captured with multiple an-

chors, and the performance is significantly improved. As s
continues to increase, the number of anchors becomes much

larger than the optimal number of clusters required, and the

performance begins to decline. To give an extreme example,

when s = 256, the number of anchors exceeds the number

of training outfits, and the performance drops dramatically.

6.5. Are the learnt outfit embeddings helpful to in­
terpret the results?

For each recommended outfit, we can retrieve similar

outfits from the user’s past selections to support the rec-

ommendation results. Since other baseline methods do not

establish the similarity measurements between outfits, we

only show examples of ours in Fig. 5. Outfits at the top are

the recommended ones, and outfits at the bottom are support

outfits from the training set. We also show the cosine sim-

ilarities between the recommended ones and support ones.

As we can see, the similar visual style of the support outfits

do help to interpret the recommendation results.

7. Conclusion

In this paper, we propose a learnable personalized an-

chor embedding (LPAE) approach for personalized outfit

recommendation and new user profiling. Our models en-

code the outfit into a compact embedding using the self-

attention mechanism to capture the high-order relationships

among fashion items. We model the fashion preference of

each user with a set of anchors and compute the prefer-

0.93 0.92 0.87 0.87 0.86 0.86 0.86 0.86 0.75 0.75

Recommended Outfits

Support Outfits

(a) User 1

0.89 0.85 0.840.81 0.79 0.79 0.78 0.74 0.74 0.74

Recommended Outfits

Support Outfits

(b) User 2

Figure 5: The outfit retrieval results.

ence score based on the similarity between the outfit em-

bedding to the user’s anchors. The outfits are encoded in

the outfit style space and the outfits with similar styles can

be retrieved via distance in the space. With the proposed

LPAE framework, we can characterize a new user’s pref-

erence by simply reusing the existing anchors and achieve

notably better performance when the data is scarce. Our

methods outperform the state-of-the-art methods in both an

ordinary setting and a cold start setting.
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