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Abstract

We present a probabilistic model for point cloud gen-

eration, which is fundamental for various 3D vision tasks

such as shape completion, upsampling, synthesis and data

augmentation. Inspired by the diffusion process in non-

equilibrium thermodynamics, we view points in point clouds

as particles in a thermodynamic system in contact with

a heat bath, which diffuse from the original distribu-

tion to a noise distribution. Point cloud generation thus

amounts to learning the reverse diffusion process that trans-

forms the noise distribution to the distribution of a desired

shape. Specifically, we propose to model the reverse dif-

fusion process for point clouds as a Markov chain condi-

tioned on certain shape latent. We derive the variational

bound in closed form for training and provide implemen-

tations of the model. Experimental results demonstrate

that our model achieves competitive performance in point

cloud generation and auto-encoding. The code is available

at https://github.com/luost26/diffusion-

point-cloud.

1. Introduction

With recent advances in depth sensing and laser scan-

ning, point clouds have attracted increasing attention as a

popular representation for modeling 3D shapes. Signif-

icant progress has been made in developing methods for

point cloud analysis, such as classification and segmenta-

tion [16, 17, 23]. On the other hand, learning generative

models for point clouds is powerful in unsupervised rep-

resentation learning to characterize the data distribution,

which lays the foundation for various tasks such as shape

completion, upsampling, synthesis, etc.

Generative models such as variational auto-encoders

(VAEs), generative adversarial networks (GANs), normal-
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Figure 1. Top: The diffusion process that converts noise to some

shape (left to right). Middle: Generated point clouds from the

proposed model. Bottom: Latent space interpolation between the

two point clouds at both ends.

izing flows, etc., have shown great success in image gen-

eration [13, 8, 5, 6]. However, these powerful tools can-

not be directly generalized to point clouds, due to the ir-

regular sampling patterns of points in the 3D space in con-

trast to regular grid structures underlying images. Hence,

learning generative models for point clouds is quite chal-

lenging. Prior research has explored point cloud generation

via GANs [1, 22, 19], auto-regressive models [21], flow-

based models [25] and so on. While remarkable progress

has been made, these methods have some inherent limita-

tions for modeling point clouds. For instance, the training

procedure could be unstable for GANs due to the adver-

sarial losses. Auto-regressive models assume a generation

ordering which is unnatural and might restrict the model’s

flexibility.

In this paper, we propose a probabilistic generative

model for point clouds inspired by non-equilibrium thermo-

dynamics, exploiting the reverse diffusion process to learn

the point distribution. As a point cloud is composed of dis-

crete points in the 3D space, we regard these points as parti-

cles in a non-equilibrium thermodynamic system in contact

with a heat bath. Under the effect of the heat bath, the posi-

tion of particles evolves stochastically in the way that they
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diffuse and eventually spread over the space. This process

is termed the diffusion process that converts the initial dis-

tribution of the particles to a simple noise distribution by

adding noise at each time step [12, 20]. Analogously, we

connect the point distribution of point clouds to a noise dis-

tribution via the diffusion process. Naturally, in order to

model the point distribution for point cloud generation, we

consider the reverse diffusion process, which recovers the

target point distribution from the noise distribution.

In particular, we model this reverse diffusion process as

a Markov chain that converts the noise distribution into the

target distribution. Our goal is to learn its transition ker-

nel such that the Markov chain can reconstruct the desired

shape. Further, as the purpose of the Markov chain is mod-

eling the point distribution, the Markov chain alone is in-

capable to generate point clouds of various shapes. To this

end, we introduce a shape latent as the condition for the

transition kernel. In the setting of generation, the shape la-

tent follows a prior distribution which we parameterize via

normalizing flows [5, 6] for strong model expressiveness.

In the setting of auto-encoding, the shape latent is learned

end-to-end. Finally, we formulate the training objective as

maximizing the variational lower bound of the likelihood

of the point cloud conditional on the shape latent, which

is further formulated into tractable expressions in closed

form. We apply our model to point cloud generation, auto-

encoding and unsupervised representation learning, and re-

sults demonstrate that our model achieves competitive per-

formance on point cloud generation and auto-encoding and

comparable results on unsupervised representation learning.

Our main contributions include:

• We propose a novel probabilistic generative model for

point clouds, inspired by the diffusion process in non-

equilibrium thermodynamics.

• We derive a tractable training objective from the vari-

ational lower bound of the likelihood of point clouds

conditioned on some shape latent.

• Extensive experiments show that our model achieves

competitive performance in point cloud generation and

auto-encoding.

2. Related Works

Point Cloud Generation Early point cloud generation

methods [1, 7] treat point clouds as N × 3 matrices, where

N is the fixed number of points, converting the point cloud

generation problem to a matrix generation problem, so that

existing generative models are readily applicable. For ex-

ample, [7] apply variational auto-encoders [13] to point

cloud generation. [1] employ generative adversarial net-

works [8] based on a pre-trained auto-encoder. The main

defect of these methods is that they are restricted to gener-

ating point clouds with a fixed number of points, and lack

the property of permutation invariance. FoldingNet and At-

lasNet [26, 10] mitigate this issue by learning a mapping

from 2D patches to the 3D space, which deforms the 2D

patches into the shape of point clouds. These two methods

allow generating arbitrary number of points by first sam-

pling some points on the patches and then applying the map-

ping on them. In addition, the points on the patches are

inherently invariant to permutation.

The above methods rely on heuristic set distances such as

the Chamfer distance (CD) and the Earth Mover’s distance

(EMD). As pointed out in [25], CD has been shown to in-

correctly favor point clouds that are overly concentrated in

the mode of the marginal point distribution, and EMD is

slow to compute while approximations could lead to biased

gradients.

Alternatively, point clouds can be regarded as samples

from a point distribution. This viewpoint inspires explo-

ration on applying likelihood-based methods to point cloud

modeling and generation. PointFlow [25] employs conti-

nous normalizing flows [4, 9] to model the distribution of

points. DPF-Net [14] uses affine coupling layers as the nor-

malizing flow to model the distribution. PointGrow [21] is

an auto-regressive model with exact likelihoods. More re-

cently, [2] proposed a score-matching energy-based model

ShapeGF to model the distribution of points.

Our method also regards point clouds as samples from a

distribution, but differs in the probabilistic model compared

to prior works. We leverage the reverse diffusion Markov

chain to model the distribution of points, achieving both

simplicity and flexibility. Specifically, the training process

of our model involves learning the Markov transition ker-

nel, whose training objective has a simple function form.

By contrast, GAN-based models involve complex adversar-

ial losses, continuous-flow-based methods involve expen-

sive ODE integration. In addition, our model is flexible,

because it does not require invertibility in contrast to flow-

based models, and does not assume ordering compared to

auto-regressive models.

Diffusion Probabilistic Models The diffusion process

considered in this work is related to the diffusion proba-

bilistic model [20, 11]. Diffusion probabilistic models are

a class of latent variable models, which also use a Markov

chain to convert the noise distribution to the data distribu-

tion. Prior research on diffusion probabilistic models fo-

cuses on the unconditional generation problem for toy data

and images. In this work, we focus on point cloud genera-

tion, which is a conditional generation problem, because the

Markov chain considered in our work generates points of a

point cloud conditioned on some shape latent. This condi-

tional adaptation leads to significantly different training and

sampling schemes compared to prior research on diffusion

probabilistic models.
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3. Diffusion Probabilistic Models for Point

Clouds

In this section, we first formulate the probabilistic model

of both the forward and the reverse diffusion processes for

point clouds. Then, we formulate the objective for training

the model. The implementation of the model will be pro-

vided in the next section.

3.1. Formulation

We regard a point cloud X(0) = {x(0)
i }Ni=1 consisting of

N points as a set of particles in an evolving thermodynamic

system. As discussed in Section 1, each point xi in the point

cloud can be treated as being sampled independently from

a point distribution, which we denote as q(x
(0)
i |z). Here, z

is the shape latent that determines the distribution of points.

Physically, as time goes by, the points gradually diffuse

into a chaotic set of points. This process is termed the diffu-

sion process, which converts the original meaningful point

distribution into a noise distribution. The forward diffusion

process is modeled as a Markov chain [12]:

q(x
(1:T )
i |x(0)

i ) =

T∏

t=1

q(x
(t)
i |x(t−1)

i ), (1)

where q(x
(t)
i |x(t−1)

i ) is the Markov diffusion kernel. The

kernel adds noise to points at the previous time step and

models the distribution of points at the next time step. Fol-

lowing the convention of [20], we define the diffusion ker-

nel as:

q(x(t)|x(t−1)) = N (x(t)|
√

1− βtx
(t−1), βtI), t = 1, ..., T,

(2)

where β1 . . . βT are variance schedule hyper-parameters

that control the diffusion rate of the process.

Our goal is to generate point clouds with a meaningful

shape, encoded by the latent representation z. We treat

the generation process as the reverse of the diffusion pro-

cess, where points sampled from a simple noise distribution

p(x
(T )
i ) that approximates q(x

(T )
i ) are given as the input.

Then, the points are passed through the reverse Markov

chain and finally form the desired shape. Unlike the for-

ward diffusion process that simply adds noise to the points,

the reverse process aims to recover the desired shape from

the input noise, which requires training from data. We for-

mulate the reverse diffusion process for generation as:

pθ(x
(0:T )|z) = p(x(T ))

T∏

t=1

pθ(x
(t−1)|x(t), z), (3)

pθ(x
(t−1)|x(t), z) = N

(
x(t−1)

∣
∣µθ(x

(t), t, z), βtI
)
, (4)

where µθ is the estimated mean implemented by a neural

network parameterized by θ. z is the latent encoding the

target shape of the point cloud. The starting distribution

p(x
(T )
i ) is set to a standard normal distribution N (0, I).

Given a shape latent z, we obtain the point cloud with

the target shape by passing a set of points sampled from

p(x
(T )
i ) through the reverse Markov chain.

For the sake of brevity, in the following sections, we use

the distribution with respect to the entire point cloud X(0).

Since the points in a point cloud are independently sampled

from a distribution, the probability of the whole point cloud

is simply the product of the probability of each point:

q(X(1:T )|X0) =

N∏

i=1

q(x
(1:T )
i |x(0)

i ), (5)

pθ(X
(0:T )|z) =

N∏

i=1

pθ(x
(0:T )
i |z). (6)

Having formulated the forward and reverse diffusion

processes for point clouds, we will formalize the training

objective of the reverse diffusion process for point cloud

generation as follows.

3.2. Training Objective

The goal of training the reverse diffusion process

is to maximize the log-likelihood of the point cloud:

E[log pθ(X
(0))]. However, since directly optimizing the

exact log-likelihood is intractable, we instead maximize its

variational lower bound:

E
[
log pθ(X

(0))
]
≥ Eq

[

log
pθ(X

(0:T ), z)

q(X(1:T ), z|X(0))

]

= Eq

[

log p(X(T ))

+
T∑

t=1

log
pθ(X

(t−1)|X(t), z)

q(X(t)|X(t−1))

− log
qϕ(z|X(0))

p(z)

]

.

(7)

The above variational bound can be adapted into the train-

ing objective L to be minimized (the detailed derivation is

provided in the supplementary material):

L(θ,ϕ) = Eq

[ T∑

t=2

DKL

(
q(X(t−1)|X(t),X(0))‖

pθ(X
(t−1)|X(t), z)

)

− log pθ(X
(0)|X(1), z)

+DKL

(
qϕ(z|X(0))‖p(z)

)]

.

(8)

Since the distributions of points are independent of each

other as described in Eq. (5), we further expand the training
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Figure 2. The directed graphical model of the diffusion process for point clouds. N is the number of points in the point cloud X
(0).

objective:

L(θ,ϕ) = Eq

[ T∑

t=2

N∑

i=1

DKL

(
q(x

(t−1)
i |x(t)

i ,x
(0)
i )

︸ ︷︷ ︸

1©
‖

pθ(x
(t−1)
i |x(t)

i , z)
)

︸ ︷︷ ︸

2©

−
N∑

i=1

log pθ(x
(0)
i |x(1)

i , z)
︸ ︷︷ ︸

3©
+DKL

(
qϕ(z|X(0))
︸ ︷︷ ︸

4©
‖ p(z)
︸︷︷︸

5©

)]

.

(9)

The training objective can be optimized efficiently since

each of the terms on the right hand side is tractable and q

is easy to sample from the forward diffusion process. Next,

we elaborate on the terms to reveal how to compute the ob-

jective.

1© q(x
(t−1)
i |x(t)

i ,x
(0)
i ) can be computed with the fol-

lowing closed-form Gaussian according to [11]:

q(x
(t−1)
i |x(t)

i ,x
(0)
i ) = N (x

(t−1)
i |µt(x

(t),x(0)), γtI),

(10)

where, using the notation αt = 1− βt and ᾱt =
∏t

s=1 αs:

µt(x
(t),x(0)) =

√
ᾱt−1βt

1− ᾱt

x(0) +

√
αt (1− ᾱt−1)

1− ᾱt

x(t),

γt =
1− ᾱt−1

1− ᾱt

βt.

(11)

2©, 3© pθ(x
(t−1)
i |x(t)

i , z)(t = 1, . . . , T ) are trainable

Gaussians as described in Eq. (4).

4© qϕ(z|X(0)) is the approximate posterior distribu-

tion. Using the language of variational auto-encoders,

qϕ(z|X(0)) is an encoder that encodes the input point cloud

X(0) into the distribution of the latent code z. We assume

it as a Gaussian following the convention:

q(z|X(0)) = N
(
z|µϕ(X

(0)),Σϕ(X
(0))

)
. (12)

5© The last term p(z) is the prior distribution. The most

common choice of p(z) is the isotropic Gaussian N (0, I).
In addition to a fixed distribution, the prior can be a train-

able parametric distribution, which is more flexible. For

example, normalizing flows [5, 6] can be employed to pa-

rameterize the prior distribution.

In the following section, we show how to optimize the

objective in Eq. (9) in order to train the model.

3.3. Training Algorithm

In principle, training the model amounts to minimizing

the objective in Eq. (9). However, evaluating Eq. (9) re-

quires summing the expectation of the KL terms over all

the time steps, which involves sampling a full trajectory

x
(1)
i , . . . ,x

(T )
i from the forward diffusion process in order

to compute the expectation.

To make the training simpler and more efficient, follow-

ing [11], instead of evaluating the expectation of the whole

summation over all the time steps in Eq. (9), we randomly

choose one term from the summation to optimize at each

training step.

Specifically, this simplified training algorithm is as fol-

lows:

Algorithm 1 Training (Simplified)

1: repeat

2: Sample X
(0) ∼ qdata(X

(0))
3: Sample z ∼ qϕ(z|X

(0))
4: Sample t ∼ Uniform({1, . . . , T})

5: Sample x
(t)
1 , . . . ,x

(t)
N
∼ q(x(t)|x(0))

6: Lt ←
∑

N

i=1 DKL

(

q(x
(t−1)
i

|x
(t)
i

,x
(0)
i

)
∥

∥

∥
pθ(x

(t−1)
i

|x
(t)
i

, z)
)

)

7: Lz ← DKL(qϕ(z|X
(0))‖p(z))

8: Compute∇θ(Lt +
1
T
Lz). Then perform gradient descent.

9: until converged
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Figure 3. The illustration of the proposed model. (a) illustrates how the objective is computed during the training process. (b) illustrates

the generation process.

To efficiently sample from q(x(t)|x(0)) (5th statement)

and avoid iterative sampling starting from t = 1, we lever-

age on the result in [11], which shows that q(x(t)|x(0)) is a

Gaussian:

q(x(t)|x(0)) = N (x(t)|√ᾱtx
(0), (1− ᾱt)I). (13)

The gaussianity of q(x(t)|x(0)) makes further simplifica-

tion on Lt (6th statement) possible by using the reparam-

eterization trick [13]. We put the detail of this simpli-

fication to the supplementary material. Last, note that

the KL divergence in Lz is evaluated stochastically by

−Ez∼qϕ(z|X(0))

[
p(z)

]
−H

[
qϕ(z|X(0))

]
.

4. Model Implementations

The general training objective and algorithm in the pre-

vious section lay the foundation for the formulation of spe-

cific point cloud tasks. Next, we adapt the training objective

to point cloud generation and point cloud auto-encoding re-

spectively.

4.1. Point Cloud Generator

Leveraging on the model in Section 3, we propose a

probabilistic model for point cloud generation by employ-

ing normalizing flows to parameterize the prior distribution

p(z), which makes the model more flexible [18, 5].

Specifically, we use a stack of affine coupling layers [6]

as the normalizing flow. In essence, the affine coupling lay-

ers provide a trainable bijector Fα that maps an isotropic

Gaussian to a complex distribution. Since the mapping is

bijective, the exact probability of the target distribution can

be computed by the change-of-variable formula:

p(z) = pw(w) ·
∣
∣
∣
∣
det

∂Fα

∂w

∣
∣
∣
∣

−1

where w = F−1
α (z).

(14)

Here, p(z) is the prior distribution in the model, Fα is the

trainable bijector implemented by the affine coupling lay-

ers, and pw(w) is the isotropic Gaussian N (0, I).

As for the encoder qϕ(z|X(0)), we adopt PointNet

[16] as the architecture for µϕ and Σϕ of the encoder

qϕ(z|X(0)).

Substituting Eq. (14) into Eq. (9), the training objective

for the generative model is:

LG(θ,ϕ,α) = Eq

[ T∑

t=2

N∑

i=1

DKL

(
q(x

(t−1)
i |x(t)

i ,x
(0)
i )‖

pθ(x
(t−1)
i |x(t)

i , z)
)

−
N∑

i=1

log pθ(x
(0)
i |x(1)

i , z)

+DKL

(

qϕ(z|X(0))
∥
∥
∥pw(w) ·

∣
∣
∣ det

∂Fα

∂w

∣
∣
∣

−1)]

.

(15)

The algorithm for optimizing the above objective can be

naturally derived from Algorithm 1.

To sample a point cloud, we first draw w ∼ N (0, I)
and pass it through Fα to acquire the shape latent z. Then,

with the shape latent z, we sample some points {x(T )
i } from

the noise distribution p(x(T )) and pass the points through

the reverse Markov chain pθ(x
(0:T )
i |z) defined in Eq. (3) to

generate the point cloud X(0) = {x(0)
i }Ni=1.

4.2. Point Cloud Auto­Encoder

We implement a point cloud auto-encoder based on the

probabilistic model in Section 3. We employ the PointNet

as the representation encoder, denoted as Eϕ(X
(0)) with

parameters ϕ, and leverage the reverse diffusion process
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Table 1. Comparison of point cloud generation performance. CD is multiplied by 103, EMD is multiplied by 101, and JSD is multiplied by

103.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Shape Model CD EMD CD EMD CD EMD -

Airplane

PC-GAN [1] 3.819 1.810 42.17 13.84 77.59 98.52 6.188

GCN-GAN [22] 4.713 1.650 39.04 18.62 89.13 98.60 6.669

TreeGAN [19] 4.323 1.953 39.37 8.40 83.86 99.67 15.646

PointFlow [25] 3.688 1.090 44.98 44.65 66.39 69.36 1.536

ShapeGF [2] 3.306 1.027 50.41 47.12 61.94 70.51 1.059

Ours 3.276 1.061 48.71 45.47 64.83 75.12 1.067

Train 3.917 1.003 51.73 54.04 48.85 50.82 0.809

Chair

PC-GAN [1] 13.436 3.104 46.23 22.14 69.67 100.00 6.649

GCN-GAN [22] 15.354 2.213 39.84 35.09 77.86 95.80 21.708

TreeGAN [19] 14.936 3.613 38.02 6.77 74.92 100.00 13.282

PointFlow [25] 13.631 1.856 41.86 43.38 66.13 68.40 12.474

ShapeGF [2] 13.175 1.785 48.53 46.71 56.17 62.69 5.996

Ours 12.276 1.784 48.94 47.52 60.11 69.06 7.797

Train 13.954 1.756 53.29 54.90 49.14 48.28 3.602

presented in Section 3.1 for decoding, conditioned on the

latent code produced by the encoder.

Leveraging on Eq. (9), we train the auto-encoder by min-

imizing the following adapted objective:

L(θ,ϕ) = Eq

[ T∑

t=2

N∑

i=1

DKL

(
q(x

(t−1)
i |x(t)

i ,x
(0)
i )‖

pθ(x
(t−1)
i |x(t)

i , Eϕ(X
(0)))

)

−
N∑

i=1

log pθ(x
(0)
i |x(1)

i , Eϕ(X
(0)))

]

.

(16)

To decode a point cloud that is encoded as the latent code

z, we sample some points {x(T )
i } from the noise distribu-

tion p(x
(T )
i ) and pass the points through the reverse Markov

chain pθ(x
(0:T )
i |z) defined in Eq. (3) to acquire the recon-

structed point cloud X(0) = {x(0)
i }Ni=1.

5. Experiments

In this section, we evaluate our model’s performance on

three tasks: point cloud generation, auto-encoding, and un-

supervised representation learning.

5.1. Experimental Setup

Datasets For generation and auto-encoding tasks, we em-

ploy the ShapeNet dataset [3] containing 51,127 shapes

Figure 4. Examples of point clouds generated by our model.

from 55 categories. The dataset is randomly split into train-

ing, testing and validation sets by the ratio 80%, 15%, 5%

respectively. For the representation learning task, we use

the training split of ShapeNet to train an encoder. Then

we adopt ModelNet10 and ModelNet40 [24] to evaluate the

representations learned by the encoder. We sample 2048

points from each of the shape to acquire the point clouds

and normalize each of them to zero mean and unit variance.

Evaluation Metrics Following prior works, we use the

Chamfer Distance (CD) and the Earth Mover’s Distance
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Table 2. Comparison of point cloud auto-encoding performance. Atlas (S1) and Atlas (P25) denote 1-sphere and 25-square variants of

AtlasNet respectively. CD is multiplied by 103 and EMD is multiplied by 102.

Dataset Metric Atlas (S1) Altas (P25) PointFlow ShapeGF Ours Oracle

Airplane
CD 2.000 1.795 2.420 2.102 2.118 1.016

EMD 4.311 4.366 3.311 3.508 2.876 2.141

Car
CD 6.906 6.503 5.828 5.468 5.493 3.917

EMD 5.617 5.408 4.390 4.489 3.937 3.246

Chair
CD 5.479 4.980 6.795 5.146 5.677 3.221

EMD 5.550 5.282 5.008 4.784 4.153 3.281

ShapeNet
CD 5.873 5.420 7.550 5.725 5.252 3.074

EMD 5.457 5.599 5.172 5.049 3.783 3.112

Figure 5. Examples of reconstructed point clouds from different

auto-encoders.

(EMD) to evaluate the reconstruction quality of the point

clouds [1]. To evaluate the generation quality, we em-

ploy the minimum matching distance (MMD), the cover-

age score (COV), 1-NN classifier accuracy (1-NNA) and the

Jenson-Shannon divergence (JSD) [25]. The MMD score

measures the fidelity of the generated samples and the COV

score detects mode-collapse. The 1-NNA score is computed

by testing the generated samples and the reference samples

by a 1-NN classifier. If the performance of the classifier is

close to random guess, i.e., the accuracy is close to 50%,

the quality of generated samples can be considered better.

The JSD score measures the similarity between the point

distributions of the generated set and the reference set.

Table 3. Comparison of representation learning in linear SVM

classification accuracy.

Model ModelNet10 ModelNet40

AtlasNet [10] 91.9 86.6

PC-GAN (CD) [1] 95.4 84.5

PC-GAN (EMD) [1] 95.4 84.0

PointFlow [25] 93.7 86.8

ShapeGF [2] 90.2 84.6

Ours 94.2 87.6

5.2. Point Cloud Generation

We quantitatively compare our method with the follow-

ing state-of-the-art generative models: PC-GAN [1], GCN-

GAN [22], TreeGAN [19], PointFlow [25] and ShapeGF

[2] using point clouds from two categories in ShapeNet:

airplane and chair. Following ShapeGF [2], when evalu-

ating each of the model, we normalize both generated point

clouds and reference point clouds into a bounding box of

[−1, 1]3, so that the metrics focus on the shape of point

clouds but not the scale. We evaluate the point clouds gen-

erated by the models using the metrics in Section 5.1 and

summarize the results in Table 1. We also visualize some

generated point cloud samples from our method in Figure 4.

5.3. Point Cloud Auto­Encoding

We evaluate the reconstruction quality of the pro-

posed auto-encoder, with comparisons against state-of-the-

art point cloud auto-encoders: AtlasNet [10], PointFlow

[25] and ShapeGF [2]. Four datasets are used in the eval-

uation, which include three categories in ShapeNet: air-

plane, car, chair and the whole ShapeNet. We also re-

port the lower bound “oracle” of the reconstruction errors.

This bound is obtained by computing the distance between
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Figure 6. Latent space interpolation and extrapolation.

Figure 7. The t-SNE clustering visualization of latent codes ob-

tained from the encoder.

two different point clouds with the same number of points

and the identical shape. As shown in Table 2, our method

outperforms other methods when measured by EMD, and

pushes closer towards the lower bounded “oracle” perfor-

mance. The CD score of our method is comparable to

others. Notably, when trained and tested on the whole

ShapeNet dataset, our model outperforms others in both CD

and EMD, which suggests that our model has higher capac-

ity to encode different shapes. Also, the visualization of

reconstructed point clouds in Figure 5 validates the effec-

tiveness of our model.

5.4. Unsupervised Representation Learning

Further, we evaluate the representation learned by our

auto-encoder. Firstly, we train an auto-encoder with the

whole ShapeNet dataset. During the training, we augment

point clouds by applying random rotations along the grav-

ity axis, which follows previous works. Then, we learn the

feature representations of point clouds in ModelNet-10 and

ModelNet-40 using the trained encoder, and train a linear

SVM using the codes of point clouds in the training split and

their categories. Finally, we test the SVM using the testing

split and report the accuracy in Table 3. We run the official

code of AtlasNet and ShapeGF to obtain the results, since

the results are not provided in their papers. For PC-GAN

and PointFlow, we use the results reported in the papers.

The performance of our encoder is comparable to related

state-of-the-art generative models.

In addition, we project the latent codes of ModelNet-10

point clouds produced by the encoder into the 2D plane us-

ing t-SNE [15], and present it in Figure 7. It can be observed

that there are significant margins between most categories,

which indicates that our model manages to learn informa-

tive representations. Further, we visualize the interpolation

and extrapolation between latent codes in Figure 6.

6. Conclusions

We propose a novel probabilistic generative model for

point clouds, taking inspiration from the diffusion process

in non-equilibrium thermodynamics. We model the reverse

diffusion process for point cloud generation as a Markov

chain conditioned on certain shape latent, and derive a

tractable training objective from the variational bound of

the likelihood of point clouds. Experimental results demon-

strate that the proposed model achieves the state-of-the-art

performance in point cloud generation and auto-encoding.
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