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Abstract

In this paper, we propose a Monocular 3D Single Stage

object Detector (M3DSSD) with feature alignment and

asymmetric non-local attention. Current anchor-based

monocular 3D object detection methods suffer from fea-

ture mismatching. To overcome this, we propose a two-

step feature alignment approach. In the first step, the shape

alignment is performed to enable the receptive field of the

feature map to focus on the pre-defined anchors with high

confidence scores. In the second step, the center align-

ment is used to align the features at 2D/3D centers. Fur-

ther, it is often difficult to learn global information and

capture long-range relationships, which are important for

the depth prediction of objects. Therefore, we propose

a novel asymmetric non-local attention block with multi-

scale sampling to extract depth-wise features. The pro-

posed M3DSSD achieves significantly better performance

than the monocular 3D object detection methods on the

KITTI dataset, in both 3D object detection and bird’s eye

view tasks. The code is released at https://github.

com/mumianyuxin/M3DSSD.

1. Introduction

Three-dimensional (3D) object detection enables a ma-

chine to sense its surrounding environment by detecting the

location and category of objects around it. Therefore, 3D

object detection plays a crucial role in systems that inter-

act with the real world, such as autonomous vehicles and

robots. The goal of 3D object detection is to generate 3D

Bounding Boxes (BBoxes) parameterized by size, location,

and orientation to locate the detected objects. Most exist-

ing methods rely heavily on LiDAR [28, 32, 35, 34, 33],

because LiDAR can generate point cloud data with high-

precision depth information, which enhances the accuracy

of 3D object detection. However, the high cost and short

service life make it difficult for LiDAR to be widely used

in practice. Although binocular camera-based methods

[21, 30, 17, 11, 7] achieve good detection results, this is

still not a cheap option, and there are often difficulties in

calibrating binocular cameras. In contrast, the monocular

camera is cost-effective, very easy to assemble, and can pro-

vide a wealth of visual information for 3D object detection.

Monocular 3D object detection has vast potential for appli-

cations, such as self-driving vehicles and delivery robots.

Monocular 3D object detection is an extremely challeng-

ing task without the depth provided during the imaging pro-

cess. To address this, researchers have made various at-

tempts on the depth estimation from monocular images. For

instance, [5, 2] utilize CAD models to assist in estimating

the depth of the vehicle. Similarly, a pre-trained depth esti-

mation model is adopted to estimate the depth information

of the scene in [37, 1, 40]. However, such methods directly

or indirectly used 3D depth ground-truth data in monocu-

lar 3D object detection. Meanwhile, the methods [3, 12]

without depth estimation can also achieve high accuracy in

the 3D object detection task. In this paper, we propose a 3D

object detector for monocular images that achieves state-of-

the-art performance on KITTI benchmark [15].

Humans can perceive how close the objects in a monoc-

ular image are from the camera. Why is that? When the hu-

man brain interprets the depth of an object, it compares the

object with all other objects and the surrounding environ-

ment to obtain the difference in visual effect caused by the

relative position relationship. For objects of the same size,

the bigger, the closer from a fixed perspective. Inspired by

this, we propose a novel Asymmetric Non-local Attention

Block (ANAB) to compute the response at a position as a

weighted sum of the features at all positions. Inspired by

[10, 46], we use both the local features in multiple scales

and the features that can represent the global information to

learn the depth-wise features. The multi-scale features can

reduce computational costs. The attentive maps in multiple

scales shows an explicit correlation between the sampling
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spatial resolution and the depth of the objects.

In one-stage monocular 3D object detection methods, 2D

and 3D BBoxes are detected simultaneously. However, for

anchor-based methods, there exists feature mismatching in

the prediction of 2D and 3D BBoxes. This occurs for two

reasons: (1) the receptive field of the feature does not match

the shape of the anchor in terms of aspect ratio and size; (2)

the center of the anchor, generally considered as the center

of the receptive field for the feature map, does not overlap

with the center of the object. The misalignment affects the

performance of 3D object detection. Thus, we propose a

two-step feature alignment method, aiming at aligning the

features in 2D and 3D BBox regression. In the first step, we

obtain the target region according to the classification con-

fidence scores for the pre-defined anchors. This allows the

receptive field of the feature map to focus on the pre-defined

anchor regions with high confidence scores. In the second

step, we use the prediction results of the 2D/3D center to

compute the feature offset that can mitigate the gap between

the predictions and its corresponding feature map.

We summarize our contributions as follows:

• We propose a simple but very efficient monocular 3D

single-stage object detection (M3DSSD) method. The

M3DSSD achieves significantly better performance

than the monocular 3D object detection methods on

the KITTI dataset for car, pedestrian, and cyclist ob-

ject class using one single model, in both 3D object

detection and bird’s eye view tasks.

• We propose a novel asymmetric non-local attention

block with multi-scale sampling for the depth-wise

feature extraction, thereby improving the accuracy of

the object depth estimation.

• We propose a two-step feature alignment module to

overcome the mismatching in the size of the receptive

field and the size of the anchor, and the misalignment

in the object center and the anchor center.

2. Related Work

In order to estimate depth information in monocular im-

ages, researchers have proposed many different approaches.

For instance, [42, 8, 23] utilize point cloud data to obtain

accurate 3D spatial information. Pointfusion [42] uses two

networks to process images and raw point cloud data re-

spectively, and then fuses them at the feature level. MV3D

[8] encodes the sparse point cloud with a multi-view repre-

sentation and performs region-based feature fusion. Liang

et al. [23] exploit the point-wise feature fusion mecha-

nism between the feature maps of LiDAR and images. Li-

DAR point cloud and image fusion methods have achieved

promising performance. However, LiDAR cannot be widely

used in practice at present due to its expensive price.

CAD models of vehicles are also used in monocular 3D

object detection. Barabanau et al. [2] detects 3D objects

via geometric reasoning on key points. Specifically, the di-

mensions, rotation, and key points of a car are predicted by

a convolutional neural network. Then, according to the key

points’ coordinates on the image plane and the correspond-

ing 3D coordinates on the CAD model, simple geometric

reasoning is performed to obtain the depth and 3D locations

of the car. Deep MANTA [5] predicts the similarity between

a vehicle and a predefined 3D template, as well as the co-

ordinates and visibility of key points, using a convolutional

neural network. Finally, given the 2D coordinates of an ob-

ject’s key points and the corresponding 3D coordinates on

the 3D template, the vehicle’s location and rotation can be

solved by a standard 2D/3D matching [19]. However, it is

difficult to collect CAD models in all kinds of vehicles.

Monocular depth estimation networks are adopted in

[37, 13, 25, 1, 41, 4] to estimate depth or disparity maps.

Most of the methods transform the estimated depth map

into a point cloud representation and then utilize the ap-

proaches based on LiDAR to regress the 3D BBoxes. The

performance of these methods relies heavily on the accu-

racy of the depth map. D4LCN [13] proposed a new type

of convolution, termed depth-guided convolution, in which

the weights and receptive fields of convolution can be au-

tomatically learned from the estimated depth. The projec-

tion of the predicted 3D BBox should be consistent with

the predicted 2D BBox. This is utilized to build geometric

constraints in [27, 14, 26] to determine the depth. Thanks

to the promising performance of convolutional neural net-

works in 2D object detection, more and more approaches

[3, 20, 31, 30, 29, 24, 12, 16] have been proposed to directly

predict 3D BBoxes using well-designed convolutional neu-

ral network for monocular 3D object detection. GS3D [20]

proposed a two-stage 3D object detection framework, in

which the surface feature extraction is utilized to eliminate

the problem of representation ambiguity brought by using a

2D bounding box. M3D-RPN [3] proposed an anchor-based

single-stage 3D object detector that generates both 2D and

3D BBoxes simultaneously. M3D-RPN achieves good per-

formance, but it does not solve the problem of feature mis-

alignment.

3. Method

In this section, we describe the proposed M3DSSD,

which consists of four main components: the backbone,

the feature alignment, the asymmetric non-local attention

block, and the 2D-3D prediction heads, as shown in Fig. 1.

The details of each component are described below.

3.1. Backbone

Following [43], we adopt the Deep Layer Aggregation

network DLA-102 as the backbone. To adaptively change
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Figure 1: The architecture of M3DSSD. (a) The backbone of the framework, which is modified from DLA-102 [43]. (b) The

two-step feature alignment, classification head, 2D/3D center regression heads, and ANAB especially designed for predicting

the depth z3d. (c) Other regression heads.

the receptive field and enhance the feature learning [44, 24],

all the convolution in hierarchical aggregation connections

are replaced with Deformable Convolution (DCN) [45].

The down-sampling ratio is set to 8, and the size of the out-

put feature map is 256×H/8×W/8, where H and W are

the height and width of the input image.

3.2. Feature Alignment

Anchor-based methods often suffer from feature mis-

matching. On one hand, this occurs if the receptive field

of the feature does not match the shape of the anchor in

terms of aspect ratio and size. On the other hand, the center

of the anchor, generally considered as the center of the re-

ceptive field of the feature, might not overlap with the cen-

ter of the object. The proposed feature alignment consists

of shape alignment and center alignment: (1) shape align-

ment aims at forcing the receptive field of the feature map

to focus on the anchor with the highest classification con-

fidence score; (2) center alignment is performed to reduce

the gap between the feature on the center of the object and

the feature that represents the center of the anchor. Differ-

ent from previous feature alignment methods [10, 38] that

are applied to one-stage object detection via a two-shot re-

gression, the proposed feature alignment can be applied in

one shot, which is more efficient and self-adaptive.

Shape alignment We can first obtain the foreground re-

gion according to the classification results. Then, the recep-

tive fields of the features in the foreground regions can focus

on the anchor with the highest confidence scores, as shown

in Fig. 2. This makes sense because among all the anchors

located at the same position, the one with the highest con-

fidence is more likely to remain after the NMS algorithm.

We use a convolution termed AlignConv in the implementa-

tion of shape alignment and center alignment. AlignConv is

similar to the deformable convolution [45]. The difference

is that the offset of the former is computed from the predic-

Offset

Align

Conv

Confidence

Anchors

Feature Map

Output 

Feature Map

Element-wise  Add

Figure 2: The architecture of shape alignment and the outcome

of shape alignment on objects. The yellow squares indicate the

sampling location of the AlignConv, and the anchors are in red.

tion results. The normal convolution can be considered as

a special case of AlginConv where the offset equals zero.

Unlike the RoI convolution proposed in [9], we align the

shape of the receptive field or the location of the center in

one shot. When performing shape alignment on the feature

map with stride S, the offset (Osa
i , Osa

j ) of the convolution

with kernel size kh × kw is defined as:

Osa
i = ( ha

S×kh

− 1)× (i− kh

2
+ 0.5), (1)

Osa
j = ( wa

S×kw

− 1)× (j − kw

2
+ 0.5), (2)

where ha, wa are the height and the width of the anchor

with the highest confidence.

Center alignment The purpose of center feature align-

ment is to align the feature at the center of the object to the

feature that represents the center of the anchor. As shown
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Figure 3: The architectures of center alignment and the outcome

of the center alignment. When applying center alignment to ob-

jects, the sampling locations on the foreground regions (in white)

all concentrate on the centers of objects (in yellow) after center

alignment, which are near to the true centers of objects (in red).

in Fig. 3, the prediction results from the 2D/3D center re-

gression are used to compute the offset of the convolution

on the feature map with stride S:

Oca
i = yr

S , Oca
j =

xr

S
, (3)

where xr and yr are the prediction results of the 2D/3D

centers in objects, respectively. As shown in Fig. 3, when

center alignment with a 1 × 1 convolutional kernel is ap-

plied to the feature map, the sampling position is adaptively

concentrated on the center of objects.

3.3. Asymmetric Non­local Attention Block

We propose a novel asymmetric non-local attention

block to improve the accuracy of the depth z3d prediction

by extracting the depth-wise features that can represent the

global information and the long-range dependencies. The

standard non-local block [39] is promising in establishing

long-range dependencies, but its computational complexity

is O(N2C), where N = h×w, h, w and C indicate the spa-

tial height, width, and channel number of the feature map,

respectively. This is very computationally expensive and

inefficient compared to normal convolutions. Thus, the ap-

plications are limited. The Asymmetric Pyramid Non-local

Block [46] reduces the computational cost by decreasing the

number of feature descriptors using pyramid pooling. How-

ever, pyramid pooling on the same feature map may lead

to features with low resolution being replaced with high-

resolution features. In other words, there exists redundancy

in the computational cost regarding the image resolution.

As such, we propose an Asymmetric Non-local Attention

1x1 conv 1x1 conv 1x1 conv 1x1 conv

Feature 

Map

PA2 PA2

……

Value 

Feature 

Map

Attention Key Querry

N x C C x L L x C 

sigmoid 

Matrix Multiple

Element-wise  Add

Softmax

Attention 

Map

Feature

Map

Descriptor

…

…

Output 

Concat

Figure 4: Top: Asymmetric Non-local Attention Block. The key

and query branches share the same attention maps, which forces

the key and value to focus on the same place. Bottom: Pyramid

Average Pooling with Attention (PA2) that generates different

level descriptors in various resolutions.

Block (ANAB), which can extract multi-scale features to

enhance the feature learning with a low computational cost.

As shown at the top of Fig. 4, we use the pyramidal fea-

tures of the key and value branches to reduce the computa-

tional cost. The bottom of Fig. 4 illustrates the Pyramid Av-

erage Pooling with Attention (PA2) module. The different

levels of the feature pyramid have different receptive fields,

thereby modeling regions with different scales. Two matrix

multiplications are performed in ANAB. First, the similar-

ity matrix between the reshaped feature matrices MQ and

MK obtained from querry and key is defined as:

MS = MQ ×M
T
K , MQ ∈ R

N×C ,MK ∈ R
L×C . (4)

Then, the softmax function is used to normalize the last di-

mension of the similarity matrix and multiply it by the re-

shaped feature matrix MV obtained from value to get the

output:

Mout = Softmax(MS)×MV , MV ∈ R
L×C . (5)

where L is the number of features after sampling. The

standard non-local block [39] has computational complex-

ity O(N2C), while the complexity of ANAB is O(NLC).
In practice, L is usually significantly smaller than N . In our

case, we use a four-level downsampling strategy on the fea-

ture map 48× 160. The resolution of the four-level feature

pyramid is set to i ∈ {1×1, 4×4, 8×8, 16×16}, the sum of

which is the total number L of features after downsampling.

So L = 377 is much smaller than N = 7680.

Another effective component of ANAB is the applica-

tion of the multi-scale attention maps to the key and value
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branches in PA2 module, as shown at the bottom of Fig. 4.

The motivation is to keep the key information of the origin

feature map when greatly reducing the dimensions of ma-

trices MK and MV from N × C to L × C. The spatial

attention maps generated by a 1× 1 convolutional layer are

used as weights. This module adaptively adjusts the weights

to pay more attention to the useful information and suppress

the less useful information. The attentive map can be treated

as a mask performed on multi-scale features. We use the

average pooling with attention to downsample the feature

maps. Such a weighted average pooling operation offers an

efficient way to gather the key features.

3.4. 2D­3D Prediction and Loss

Anchor definition. We adopt a one-stage 2D-3D

anchor-based network as our detector. To detect the 2D and

the 3D BBoxes simultaneously, our predefined anchor con-

tains the parameters of both the 2D BBoxes [w, h]2d and

the 3D BBoxes [z, w, h, l, α]3d. α is the observation an-

gle of the object that measures the angle at which the cam-

era views the object. Compared with the rotation angle of

the object, the observation angle is more meaningful for

monocular 3D object detection [26]. The dimension of the

object is given by [w, h, l]3d. We project the center of the

object onto the image plane to encode the 3D location of the

object into the anchor:

[

Xp Yp 1
]T

· Zp = K ·
[

X Y Z 1
]T

, (6)

where (Xp, Xp) are the coordinates of the 3D point pro-

jected onto the image plane, and (X,Y, Z) are the 3D space

coordinates in the camera coordinate system. K ∈ R
3×4

is the intrinsic camera matrix, which is known at both the

training and testing phase. We obtain the 3D parameters of

each anchor by computing the mean of the corresponding

3D parameters of the objects whose intersection over union

(IoU) is greater than a given threshold (0.5) with the prede-

fined 2D anchors [w, h]2d.

Output transformation. Given the detection out-

puts cls, [tx, ty, tw, th]2d and [tx, ty, tz, tw, th, tl, tα]3d for

each anchor, the 2D BBox [X,Y,W,H]2d and 3D BBox

[X,Y, Z,W,H,L,A]3d can be restored from the output of

the detector by:

[X,Y ]2d = [tx, ty]2d ⊗ [w, h]2d + [x, y]2d

[W,H]2d = exp([tw, th]2d)⊗ [w, h]2d

[Xp, Yp]3d = [tx, ty]3d ⊗ [w, h]2d + [x, y]2d

[W,H,L]3d = exp([tw, th, tl]3d)⊗ [w, h, l]3d

[Zp, A]3d = [tz, tα] + [z, α]3d,

(7)

where ⊗ denotes the element-wise product and A is the ro-

tation angle. During the inference phase, [X,Y, Z]3d can

be obtained by projecting [Xp, Yp, Zp] back to the camera

coordinate system using the inverse operation of Eqn. 6.

Loss function. We employ a multi-task loss function to

supervise the learning of the network, which is composed of

three parts: a classification loss, 2D BBox regression loss,

and 3D BBox regression loss. The 2D regression and 3D

regression loss are regularized with weights λ1 and λ2:

L = Lcls + λ1L2d + λ2L3d, (8)

For the classification task, we employ the standard cross

entropy loss function:

Lcls = − log(
exp(c′)

∑

exp(ci)
). (9)

For the 2D BBox regression task, we use − log(IoU) as

the loss function for the ground-truth 2D BBox b̂2d and the

predicted 2D BBox b′
2d, similar to [3]:

L2d = − log(IoU(b′
2d, b̂2d)). (10)

A smooth L1 loss function is employed to supervise the re-

gression of 3D BBoxes:

L3d =
∑

v3d∈P3d

SmoothL1(v
′

3d, v̂3d),

P3d = {tx, ty, tz, tw, th, tl, tα}3d.
(11)

4. Experiments

4.1. Evaluation Dataset

We evaluate our framework on the challenging KITTI

benchmark for 3D object detection and bird’s eye view

tasks. The KITTI dataset contains 7481 images with labels

and 7518 images for testing, covering three main categories

of objects: cars, pedestrians, and cyclists. We use common

split methods [7] to divide the images with labels into the

training set and the validation set. We pad the images to the

size of 384× 1280 in both the training and inference phase.

In the training phase, in addition to the conventional data

augmentation methods of random translation and horizon-

tal mirror flipping, the random scaling operation is applied

for monocular images.

4.2. Implementation Details

We implement our model with PyTorch. We adopt the

SGD optimizer with momentum to train the network with

a CPU E52698 and GPU TITAN V100, in an end-to-end

manner, for 70 epochs. The momentum of the SGD opti-

mizer is set to 0.9, and weight decay is set to 0.0005. The

mini-batch size is set to 4. The learning rate increases lin-

early from 0 to the target learning rate of 0.004 in the first

epoch and then decreases to 4×10−8 with cosine annealing.
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Methods Extra
AP3d(val/test) IoU ≥ 0.7 APBEV (val/test) IoU ≥ 0.7

Easy Moderate Hard Easy Moderate Hard

MonoFENet[1] Depth 17.54 / 8.35 11.16 / 5.14 9.74 / 4.10 30.21 / 17.03 20.47 / 11.03 17.58 / 9.05

AM3D[25] Depth 32.23 / 16.50 21.09 / 10.74 17.26 / 9.52 43.75 / 25.03 28.39 / 17.32 23.87 / 14.91

D4LCN[13] Depth 26.97 / 16.65 21.71 / 11.72 18.22 / 9.51 34.82 / 22.51 25.83 / 16.02 23.53 / 12.55

GS3D[20] None 13.46 / 4.47 10.97 / 2.90 10.38 / 2.47 - / 8.41 - / 6.08 - / 4.94

MonoPSR[18] None 12.75 / 10.76 11.48 / 7.25 8.59 / 5.85 20.63 / 18.33 18.67 / 12.58 14.45 / 9.91

MonoGRNet[29] None 13.88 / 9.61 10.19 / 5.74 7.62 / 4.25 - / 18.19 - / 11.17 - / 8.73

SS3D[16] None 14.52 / 10.78 13.15 / 7.68 11.85 / 6.51 - / 16.33 - / 11.52 - / 9.93

MonoDIS[36] None 18.05 / 10.37 14.98 / 7.94 13.42 / 6.40 24.26 / 17.23 18.43 / 13.19 16.95 / 11.12

MonoPair[12] None - / 13.04 - / 9.99 - / 8.65 - / 19.28 - / 14.83 - / 12.89

SMOKE[24] None 14.76 / 14.03 12.85 / 9.76 11.50 / 7.84 19.99 / 20.83 15.61 / 14.49 15.28 / 12.75

M3D-RPN[3] None 20.27 / 14.76 17.06 / 9.71 15.21 / 7.42 25.94 / 21.02 21.18 / 13.67 17.90 / 10.23

RTM3D[22] None 20.77 / 14.41 16.86 / 10.34 16.63 / 8.77 25.56 / 19.17 22.12 / 14.20 20.91 / 11.99

M3DSSD(ours) None 27.77 / 17.51 21.67 / 11.46 18.28 / 8.98 34.51 / 24.15 26.20 / 15.93 23.40 / 12.11

Table 1: AP scores on val and test set of 3D object detection and bird’s eye view for cars.

Figure 5: Qualitative results of 3D detection (left) and bird’s eye view (right), prediction in green and ground-truth in red.

Terms λ1 and λ2 in Eqn. 8 are both set to 1.0. We lay 36

anchors on each pixel of the feature map, the size of which

increases from 24 to 288 following the exponential func-

tion of 24 × 12i/11, i ∈ {0, 1, 2, . . . , 11}, and the aspect

ratio is set to {0.5, 1.0, 1.5}. We apply online hard-negative

mining by sampling the top 20% high loss boxes in each

minibatch in the training phase. In the inference phase, we

apply NMS with 0.4 IoU criteria on the 2D BBox and filter

out the objects with a confidence lower than 0.75. The post-

optimization algorithm proposed in [3] is used to make the

rotation angle more reasonable. The algorithm uses projec-

tion consistency to optimize the rotation angle. The rotation

angle is optimized iteratively to minimize the L1 loss of the

projection of the predicted 3D BBox and the predicted 2D

BBox.

4.3. Performance Evaluation

We set the network after removing the feature alignment

module and ANAB from M3DSSD as the baseline. More

specifically, for the baseline, the feature map output from

the backbone is directly used for classification and 2D BBox

regression and 3D BBox regression.

We evaluate our framework on the KITTI benchmark for

both bird’s eye view and 3D object detection tasks. The

average precision (AP) of Intersection over Union (IoU) is

used as the metric for evaluation in both tasks and it is di-

vided into easy, moderate, and hard according to the height,

occlusion, and truncation level of objects. Note that the offi-

cial KITTI evaluation has been using AP |R40 with 40 recall

points instead of AP |R11 with 11 recall points since Octo-

ber 8, 2019. However, most previous methods evaluated on

the validation used AP |R11. Thus, we report the AP |R40

for the test dataset and AP |R11 for the validation dataset

for a fair comparison. We set the threshold of IoU to 0.7

for cars and 0.5 for pedestrians and cyclists as the same as

the official settings. Fig. 5 shows qualitative results for 3D

object detection and bird’s eye view. The detection results

and depth predictions are less accurate with further distance.

The videos of 3D object detection results and the additional

results can be found in the supplemental material.

Bird’s eye view. The bird’s eye view task is to detect

objects projected on the ground, which is closely related to
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Methods
Pedestrian AP3D/APbev Cyclist AP3D/APbev

Easy Moderate Hard Easy Moderate Hard

M3D-RPN[3] 4.92 / 5.65 3.48 / 4.05 2.94 / 3.29 0.94 / 1.25 0.65 / 0.81 0.47 / 0.78

D4LCN[13] 4.55 / 5.06 3.42 / 3.86 2.83 / 3.59 2.45 / 2.72 1.67 / 1.82 1.36 / 1.79

SS3D[16] 2.31 / 2.48 1.78 / 2.09 1.48 / 1.61 2.80 / 3.45 1.45 / 1.89 1.35 / 1.44

M3DSSD(ours) 5.16 / 6.20 3.87 / 4.66 3.08 / 3.99 2.10 / 2.70 1.51 / 2.01 1.58 / 1.75

Table 2: Detection performance for pedestrians and cyclists on test set, at 0.5 IoU threshold.

the 3D location of objects. The detection results for cars on

both the val and test set are reported in Tab. 1. M3DSSD

achieves state-of-the-art performance on the bird’s eye view

task compared to approaches with and without depth esti-

mation. Our method has significant improvement compared

to the methods without depth estimation.

Figure 6: The average depth estimation error varies along

with the ground truth depth. Best viewed in color.

Methods
AP3d/APBEV IoU ≥ 0.7

Easy Mod. Hard

Baseline w/ ANAB † 25.70 / 33.48 19.02 / 24.79 17.31 / 20.15

†w/ Shape Alignment 27.26 / 33.64 21.56 / 25.24 18.07 / 22.81

†w/ Center Alignment 27.33 / 34.85 21.51 / 25.96 18.03 / 23.26

†w/ Full Alignment 27.77 / 34.51 21.67 / 26.20 18.28 / 23.40

Table 3: Ablation study on feature alignment.

3D object detection for cars. The 3D object detection

task aims to detect 3D objects in the camera coordinate sys-

tem, which is more challenging than the bird’s eye view task

due to the additional y-axis. Compared with the approaches

without depth estimation, Tab. 1 shows that M3DSSD

achieves better performance in both the val and test set.

Note that M3DSSD is better than most of the approaches

with depth estimation. Further, our method achieves com-

petitive performance against D4LCN that adopts a pre-

trained model for depth estimation [13].

Fig. 6 shows the average depth estimation error with

the different ground truth depth ranges [24]. We compared

our proposed method with SMOKE [24], Mono3D [6] and

3DOP [7] on the same validation set. Fig. 6 demonstrates

Figure 7: The average depth estimation error varies along

with the size of objects that is the average of the length and

the width of the 2D BBox. Best viewed in color.

that the proposed M3DSSD achieves better performance at

all distance ranges, except for the distance greater than 60m,

where the number of samples is usually small.

3D object detection for pedestrians and cyclists. Com-

pared with cars, 3D object detection for pedestrians and cy-

clists is more challenging. This is because the size of pedes-

trians and bicycles is relatively small. In addition, people

are non-rigid bodies, and their shapes vary a lot, thereby

making it difficult to locate pedestrians and cyclists. We re-

port the detection results for pedestrians and cyclists on the

test set of the KITTI benchmark in Tab. 2. Since some meth-

ods did not report the pedestrian and the cyclist results, we

compare our model with M3D-RPN [3], D4LCN [13], and

SS3D [16]. Our model achieves competitive performance

in both 3D detection and bird’s eye view tasks for pedes-

trians and bicycles, especially for the pedestrian category.

Note that we train only one single model to detect the three

object classes simultaneously.

4.4. Ablation Study

Feature alignment. We evaluate the feature alignment

strategies, including shape alignment, center alignment, and

full alignment (both center alignment and shape alignment).

As shown in Tab. 3, that the proposed shape alignment,

center alignment, and full alignment achieve better results

compared to the case without alignment.

Fig. 7 illustrates the average depth estimation error varies

with the size of objects for the model with and without fea-
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Methods
AP3d/APBEV IoU ≥ 0.7

Easy Moderate Hard

baseline 23.40 / 28.66 18.32 / 23.53 16.62 / 19.54

ANB 23.65 / 29.19 18.47 / 23.65 16.54 / 19.50

ANAB 25.70 / 33.48 19.02 / 24.79 17.31 / 20.15

Methods GPU time GPU memory
(ms) (Gbyte)

Non-local [39] 5.89 / 104.12 1.97 / 15.67

ANB 1.68 / 5.92 1.09 / 1.43

ANAB 1.86 / 6.76 1.22 / 1.91

Table 4: Ablation study on non-local blocks with detection accuracy, GPU time, and memory for different input sizes.

Level 1

1 × 1

Level 2

4 × 4

Level 3

8 × 8

Level 4

16 × 16

Figure 8: Visualization for attention maps in PA2 with a four-level feature pyramid {1× 1, 4× 4, 8× 8, 16× 16}.

ture alignment. The x-axis is set as the size of the 2D BBox

(w2d+h2d)/2. It shows that the proposed feature alignment

module is effective on objects of different sizes, especially

for the small objects in [0 − 25]. This also explains why

M3DSSD outperforms other methods in small object detec-

tion such as pedestrians and cyclists.

Asymmetric non-local attention block. We compare

the Asymmetric Non-local Block (ANB), and our proposed

Asymmetric Non-local Attention Block (ANAB), which ap-

plies pyramid average pooling on the feature map with at-

tentions. We use the same sampling size for both meth-

ods. Tab. 4 shows that the network with ANAB achieves the

best performance. With a similar computational time, the

proposed ANAB has better detection accuracy than ANB.

Meanwhile, both methods cost much less GPU time and

memory than the standard non-local block [39]. The atten-

tion module costs a little more consuming time with signif-

icant improvement, especially in easy tasks. Tab. 4 on the

right shows the GPU time and memory regarding the input

size [1, 256, 48, 160] and [1, 256, 96, 320]. This shows that

the computational cost is closer to the theoretical analysis in

Sect. 3.3 with a larger input size. ANAB has extra pooling

layers, convolutional layers, and an element-wise multipli-

cation, which are not considered in the theoretical analysis.

In ANAB, the attention maps are assigned to the multi-

scale pooling operations for the depth-wise feature extrac-

tion. Fig. 8 shows that the attention map for 1 × 1 feature

pyramid has larger weights on the objects which are close

to the camera, while the attention map for the higher-level

feature pyramid assigns larger weights on the objects that

are away from the camera. The attention maps in different

levels show a correlation between the resolution of the fea-

ture pyramid and the object depth. This lies in the fact that

the feature pyramid with low resolution has a large recep-

tive field that is sensitive to the object in large size, while

the feature pyramid with high resolution has a small recep-

tive field that is sensitive to the object in small size. For the

size of the same-class object from a fixed perspective, the

smaller, the farther. The depth-wise attention maps enhance

the capability of perceiving the depth of objects, thereby

improving the performance of object depth estimation.

5. Conclusion

In this work, we propose a simple and very effective

monocular single-stage 3D object detector. We present a

two-step feature alignment approach to address the feature

mismatching, which enhances the feature learning for ob-

ject detection. The asymmetric non-local attention block

enables the network to extract depth-wise features, which

improves the performance of the depth prediction in the re-

gression head. Compared to the methods with or without

the estimated depth as an extra input, M3DSSD achieves

better performance on the challenging KITTI dataset for

car, pedestrian, and cyclist object class using one single

model, for both bird’s eye view and 3D object detection.
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Céline Teuliere, and Thierry Chateau. Deep manta: A

coarse-to-fine many-task network for joint 2d and 3d vehi-

cle analysis from monocular image. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2040–2049, 2017.

[6] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-

tection for autonomous driving. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2147–2156, 2016.

[7] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. 3d object proposals us-

ing stereo imagery for accurate object class detection. IEEE

transactions on pattern analysis and machine intelligence,

40(5):1259–1272, 2017.

[8] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1907–1915,

2017.

[9] Yuntao Chen, Chenxia Han, Naiyan Wang, and Zhaoxiang

Zhang. Revisiting feature alignment for one-stage object de-

tection. arXiv preprint arXiv:1908.01570, 2019.

[10] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng

Yan, and Jiashi Feng. Aˆ 2-nets: Double attention net-

works. In Advances in Neural Information Processing Sys-

tems, pages 352–361, 2018.

[11] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Dsgn:

Deep stereo geometry network for 3d object detection. arXiv

preprint arXiv:2001.03398, 2020.

[12] Yongjian Chen, Lei Tai, Kai Sun, and Mingyang Li.

Monopair: Monocular 3d object detection using pairwise

spatial relationships. arXiv preprint arXiv:2003.00504,

2020.

[13] Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping

Shi, Zhiwu Lu, and Ping Luo. Learning depth-guided con-

volutions for monocular 3d object detection. arXiv preprint

arXiv:1912.04799, 2019.
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jects as points. arXiv preprint arXiv:1904.07850, 2019.

[45] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-

formable convnets v2: More deformable, better results. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9308–9316, 2019.

[46] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-

ang Bai. Asymmetric non-local neural networks for seman-

tic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 593–602, 2019.

6154


