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Noisy input – ISO 25600. RViDeNet [42] – 1965.04 GFLOPs. Ours – 5.38 GFLOPs.

Figure 1: Our method shows better noise suppression and detail preservation than the state-of-the-art RViDeNet at a much

lower complexity. The input is a 1080p image from the CRVD dataset [42] captured with a IMX385 sensor.

Abstract

In recent years, denoising methods based on deep learn-

ing have achieved unparalleled performance at the cost of

large computational complexity. In this work, we propose

an Efficient Multi-stage Video Denoising algorithm, called

EMVD, to drastically reduce the complexity while maintain-

ing or even improving the performance. First, a fusion stage

reduces the noise through a recursive combination of all

past frames in the video. Then, a denoising stage removes

the noise in the fused frame. Finally, a refinement stage re-

stores the missing high frequency in the denoised frame. All

stages operate on a transform-domain representation ob-

tained by learnable and invertible linear operators which

simultaneously increase accuracy and decrease complexity

of the model. A single loss on the final output is sufficient for

successful convergence, hence making EMVD easy to train.

Experiments on real raw data demonstrate that EMVD out-

performs the state of the art when complexity is constrained,

and even remains competitive against methods whose com-

plexities are several orders of magnitude higher. Further,

the low complexity and memory requirements of EMVD en-

able real-time video denoising on commercial SoC in mo-

bile devices.

*Authors contributed equally.

1. Introduction

Even with the advance of technology, digital images are

invariably affected by several inherent or external disturb-

ing factors due to the stochastic nature of the image for-

mation processes (e.g., photon counting) [16], use of com-

pact camera hardware (e.g., mobile sensors or lenses) [42],

and/or challenging acquisition settings (e.g., low light). Be-

cause of this, a number of methods (i.e., an image process-

ing pipeline) must be applied to the low-quality observed

data to generate a final high-quality output image. Denois-

ing is particularly important because it is typically at the

beginning of the pipeline, and thus its output has a direct

effect on all other operations [39].

In the past decades, a plethora of image denoising algo-

rithms have been proposed in the literature [5, 12], but the

current state of the art is dominated by deep learning meth-

ods based on convolutional neural networks (CNNs) [43,

25, 27]. Video denoising models exploits the temporal

correlation inherently present in natural videos and thus

achieve better performance than single-frame methods [28,

1, 30, 36, 42], however their computational requirements

make real-time processing unattainable on most hardware

unless some compromise in image quality is made [15].

In this work we propose EMVD, an Efficient Multi-stage

Video Denoising method to drastically reduce the complex-
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ity required to achieve high-quality results. Firstly, noise

in the input frame is reduced by recursively fusing all past

frames in the video. Then, a denoising stage removes any

remaining noise in the fused image. Finally, a refinement

stage is applied to the denoised image to further improve

its quality by adaptively restoring the high-frequency de-

tails. All stages are performed within a domain generated

by learnable and invertible linear transform operators that

jointly decorrelate color and frequency information. As can

be seen in Fig. 1, the proposed EMVD is able to outperform

more complex state-of-the-art methods [42] at a fraction of

the computational cost. In summary, the main contributions

of this work are

• High-Quality Efficient Denoising. The proposed

EMVD leverages spatio-temporal correlation of nat-

ural videos through specialized processing stages,

namely temporal fusion, spatial denoising, and spatio-

temporal refinement. This design allows to signifi-

cantly reduce the model complexity without compro-

mising its denoising capabilities.

• Interpretable Design. All stages in the proposed

EMVD have a clear objective and will naturally con-

verge to the desired behavior without any explicit su-

pervision. As a result, the inner workings of the pro-

posed EMVD can be easily inspected and controlled at

both inference and training time.

• Learnable and Invertible Transforms. Linear trans-

form operators, implemented as learnable convolu-

tional layers, are used to optimally decorrelate color

and frequency information. The learnable parameters

are regularized in the loss to ensure transform invert-

ibility. This simultaneously allows to reduce complex-

ity and increase accuracy of the model.

2. Related works

Image Denoising. Denoising is a long-studied research

topic [5, 12], however the numerous works proposed in the

recent past [43, 25, 27, 8] suggest that the interest towards

this problem is still very active, especially in the more chal-

lenging case of real raw data [3, 20, 23, 9].

Classical methods heavily exploit nonlocal image pri-

ors [4, 12] and still provide outstanding performance to-

day. Despite being designed for Gaussian noise, such meth-

ods can be also applied to real raw data when a variance-

stabilizing transformation (VST) is used [29]. More re-

cently –and since the pioneering work [14]– deep learning

and CNNs have become the de-facto standard solution for

all vision problems, including denoising. CNN-based meth-

ods most notably leverage residual learning [43], wavelet

decomposition [27], attention mechanisms [25], and spa-

tially adaptive processing [34, 8].

Video Denoising. Natural videos exhibit a strong cor-

relation along the temporal dimension, i.e., pixels at corre-

sponding locations in consecutive frames are likely to be

very similar. One viable strategy to account for tempo-

ral correlation is to explicitly estimate the motion in the

video with, e.g., block matching [28], optical flow [7, 32],

kernel-prediction networks [30], or deformable convolu-

tions [37, 38]. With that, frames can be aligned before

filtering to aid the restoration task. However, since mo-

tion estimation is a challenging and computationally de-

manding problem, a different line of research suggests to

implicitly deal with motion through, e.g., spatio-temporal

attention modules which recursively aggregate features at

different time steps [22, 41, 38, 13]. These methods can

be further categorized into multi-frame approaches, whose

inputs include several consecutive frames that are jointly

processed by the model [28, 11, 35, 36, 42], or recurrent

approaches where images [32, 15] and/or features [19, 17]

obtained from the previous time step are used as additional

input to estimate the current frame. Several models have

been designed with efficiency in mind, yet real-time com-

putation is still unattainable on most hardware [17, 36], or

performance is not on-par with the state of the art [15].

3. Method

3.1. Observation Model

The goal of our denoising algorithm is to obtain an es-

timate of the clean video from the observed noisy data at a

very low complexity. The observation model is defined as

zt(x) = yt(x) + ηt(x), (1)

where t ∈ T ⊂ N is the temporal index of the frame in

the video, x ∈ X ⊂ N
2 is a spatial pixel position in the

frame, z ∈ R
H×W×C is the observed noisy raw video in

packed form [18] havingH×W resolution andC = 4 color

channels (e.g., RG1G2B), y is the underlying (unknown)

noise-free data to be estimated, and ηt ∼ N
(

0, σ2
t (yt)

)

is

a noise realization drawn from a heteroskedastic Gaussian

distribution with signal-dependent variance

σ2
t (yt) = atyt + bt (2)

modeling signal-dependent (shot) and signal-independent

(read) noise sources parametrized by at and bt ∈ R, respec-

tively. Since many robust estimation methods exist [16, 2],

we assume such noise parameters to be known for the given

sensor and camera ISO.

3.2. Learnable Invertible Transforms

The proposed method employs learnable transform oper-

ators –inspired by YUV and wavelet transforms– to decor-

relate color and frequency information of the raw data.
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Figure 2: Architecture of the proposed multi-stage video denoising EMVD. Refer to Section 3 for details.

These operators are linear and designed to be invertible, and

thus can be implemented as standard convolutional opera-

tions with deliberately regularized weights.

Color Transform. The color transform Tc is imple-

mented as a point-wise convolution whose kernel is con-

strained to be an orthonormal matrix M ∈ R
C×C which

decorrelates the C = 4 colors (e.g., RG1G2B) in the CFA

image to a luminance-chrominance representation [6]. Be-

ing the color transform orthonormal, its inverse T −1
c is sim-

ply implemented as another point-wise convolution with

kernel initialized as M ′ = M⊤. In this work, the weights

in the forward and inverse matrices are not shared to allow

more degrees of freedom. The resulting transform is there-

fore biorthogonal and its invertibility is enforced by a loss

term defined as

Lc =
∣

∣

∣

∣M ·M ′ − IC
∣

∣

∣

∣

2

F
, (3)

where · is matrix multiplication, and IC is the identity ma-

trix of rank C, and ‖ · ‖F denotes the Frobenius norm.

Frequency Transform. Inspired by biorthogonal

wavelets, we design a transform Tf : R
H×W×C →

R
H/2×W/2×4C to decorrelate the input frequencies into

four half-resolution components, namely the low-pass LL

and high-pass {LH,HL,HH} subbands. The transform

is again linear and thus can be implemented as a strided

convolution with four n × n kernels initialized as the outer

product of some chosen wavelet decomposition filters ψ ∈
R

2×n, being n ∈ N
+ the (even) length of the wavelet fil-

ters (e.g., n = 2 for Haar). Conversely, the inverse oper-

ator T −1

f is implemented as a transposed convolution with

kernels initialized this time from the corresponding recon-

struction filters φ ∈ R
2×n. Note that the same Tf can be

recursively applied on the LL subband to produce a multi-

scale decomposition of the input.

We enforce invertibility of the transform by adding a loss

term on the matrix form of the filters as

Lf =
∣

∣

∣

∣ψ · φ⊤ − I2
∣

∣

∣

∣

2

F
, (4)

where I2 is the identity matrix of rank 2. As such, the pro-

posed method is learning the 1-D filter representation of the

frequency transform, and not the convolutional form of the

kernel. A different strategy would be forcing the learned

filters to follow a wavelet parametric model [40]. Thus

our approach might generate filters that do not satisfy basic

wavelet properties, however our filters have more degrees

of freedom and still produce an invertible transformation.

Note that the composition of the color and frequency

transform Tc ◦ Tf is still linear and invertible. A joint appli-

cation of the two transforms allows to simultaneously in-

crease accuracy and reduce complexity of the model be-

cause the energy of the meaningful part of the image is

decorrelated from the energy of the noise and, at the same

time, spatial resolution of the data is halved. A diagram

of the proposed EMVD is illustrated in Fig. 2. In the re-

mainder of this paper, we will assume the data to be given

already in the transform domain, thus, for the sake of nota-

tion simplicity, we will omit the transform operators.

3.3. Fusion Stage

The first processing stage of the proposed EMVD is tem-

poral fusion. The objective of this stage is to maximally re-

duce the noise present in the image using the temporal cor-
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Figure 3: The predicted weights γt discriminate the dy-

namic (red) and static (blue) regions between consecutive

frames to minimize the noise in the output fused image.

relation inherently present in the video without introducing

any temporal artifact or degrading image structures. For-

mally, fusion is defined as a recursive convex combination

ȳt(x) = ȳt−1(x)γ̄t−1(x) + zt(x)γt(x), (5)

where zt is the transformed noisy frame at time t, ȳt−1 is

the transformed fused output frame at previous time t − 1,

and γ ∈ R
H/2×W/2×1 are non-negative convex weights sat-

isfying the condition γ̄t−1(x) + γt(x) = 1 at any given

transform-domain location x ∈ χ ⊂ N
H/2×W/2×4C . The

initial condition for (5) is ȳ0 ≡ z0, as no previous frame

is available at time t = 0. Note that the number of chan-

nels of γ is 1, so fusion of the full 4C input channels is

achieved by element-wise broadcasting. As a result, we ap-

ply the same weights to each channel (i.e., subband) of the

input frames. Different weights could be predicted for dif-

ferent input channels, but this would significantly increase

the difficulty of the prediction task, as well as the memory

requirements.

The weights in (5) are predicted by a fusion network,

which we call FCNN, defined as follows:

{

γt, γ̄t−1

}

= FCNN

(

|zLL|t − ȳLL|t−1| , σ̂
2
t

)

, (6)

where |·| denotes absolute value, zLL|t is the low-pass of

the transformed noisy input frame, ȳLL|t−1 is the low-pass

of the previous fused frame, and σ̂2
t = σ2

t (zLL|t) is the

variance of the input frame computed as in (2). Note that

the variance is approximated using the low-pass of zt as

proxy for the (unknown) noise-free yt. In order to main-

tain convexity of (5), the output layer of FCNN is activated

by a sigmoid function. Fig. 3 illustrates the diagram of the

fusion network; note how the predicted weights γt clearly

separate the dynamic regions from the static ones. As a re-

sult, the output fused image is generated by adaptively av-

eraging the incoming frames. Note that fusion is performed

at a lower image resolutions, a single position at any given

scale i actually corresponds to a 2i × 2i neighborhood in

the original image, hence allowing some degree of motion

compensation. As shown in Fig. 2, when multiple scales are

available, the weights obtained from the fusion stage at the

lower scale are upsampled and concatenated to the input of

(6) to provide additional guidance information.

Finally, (6) can be interpreted as a special case of kernel-

predicting network [30] with 1 × 1 kernels, thus (5) can be

trivially extended to a general (convolutional) form as

ȳt(x) = ȳt−1(x)⊛ k̄t−1(x) + zt(x)⊛ k(x), (7)

where ⊛ denotes convolution, k is the spatially adaptive

kernel of size p × p applied to the noisy frame, and k̄t−1

is the kernel of size p̄× p̄ applied to the previous one. Prac-

tically, the kernels in (7) can be obtained by letting the out-

put layer of the fusion network predict p̄2 + p2 channels

activated by a softmax function to ensure that the fusion

equation is still convex.

3.4. Denoising Stage

Noise in the output fused image ȳt is reduced by (5)

but not completely. This inevitably occurs when, e.g., mo-

tion cannot be compensated effectively or when the amount

of processed temporal data is not enough to increase the

signal-to-noise ratio (SNR) in the frame. Thus, we use a

denoising network, called DCNN, to remove any remaining

noise in ȳt as

ỹt = DCNN

(

ȳt, zLL|t, σ̄
2
t

)

, (8)

where ỹt is the denoised image, and σ̄2
t is the noise variance

of the fused image ȳt. The input also includes the low-pass

of the current noisy frame zLL|t so that the network has the

chance to extract valuable information from the unadulter-

ated noisy input. When multiple scales are available, the

image estimated at the lower scale is concatenated to the

input of (8).

Denoising the fused image ȳt is easier than directly de-

noising the input zt, but the form of the variance σ̄2
t is highly

complex as it depends on the signal-dependent variance at

frame t as well as on the cumulative effect fusing all previ-

ous frames t ∈ {0, . . . , t − 1}. Nevertheless, fusion itself

is linear, so we are able to define a recursive formulation

of the fused variance using basic statistical properties1 by

expanding (5) into (2) as

σ̄2
t ≡ σ2

t (ȳLL|t)

= γ̄2t−1σ
2
t−1 (ȳLL|t−1) + γ2t σ

2
t (zLL|t) , (9)

where the initial condition is σ2
t (ȳLL|0) ≡ σ2

t (zLL|0), and

the covariance term is zero as we assume that the noise is

temporally independent. Note that, since γt(x) ≤ 1 for all

1Var[aX + bY ] = a2Var[X] + b2Var[Y ] + 2abCov[X,Y ]
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Noisy Fused Denoised Weights Refined

Figure 4: The red regions in the weights ωt identify the

high-frequency (e.g., edges and textures) information of the

fused image used to refine the denoised image.

x and t, the variance (9) is (non-strictly) decreasing with

time, thereby justifying the intuitive idea that fusion will

progressively reduce the noise in the input.

3.5. Refinement Stage

Any denoising method is likely to introduce artifacts and

loss of image details, especially when SNR of the input im-

age is poor or when the complexity of model is significantly

constrained. Thus, we propose to use a final refinement

stage to combine the detailed –but still noisy– fused image

ȳt with the noise-free –but likely oversmoothed– denoised

image ỹt. In doing so, we expect to restore the fine details

and textures potentially removed by the denoising, a task

which is facilitated by our learned frequency representation

which naturally decorrelates low- to high-frequency infor-

mation. Formally, we seek to solve a refinement equation

ŷt(x) = ȳt(x)ω̄t(x) + ỹt(x)ω̃t(x), (10)

with convex weights satisfying ω̄t(x) + ω̃t(x) = 1 for all

x ∈ χ. The refinement weights are predicted by yet another

network, called RCNN, operating as

{

ω̃t(x), ω̄t

}

= RCNN

(

ỹt, ȳt, σ̄
2
t

)

, (11)

where convexity of the output weights is again ensured by

applying a sigmoid activation on the final output layer. Al-

though the formulation (10) is equivalent to the fusion equa-

tion (5), the refinement weights ω have a markedly differ-

ent meaning than the fusion weights γ. In fact, as shown

in Fig. 4, refinement weights are used to identify high-

frequency information from the fused image whereas fusion

weights are used to recursively aggregate consistent tempo-

ral information across consecutive frames to reduce the ef-

fect of the noise. Interestingly, no explicit supervision is

required to converge to this behavior.

As shown in Fig. 2, the refinement network is only used

at the higher scale of the frequency decomposition, even

when lower scales are available. Finally, we highlight

that (11) can be extended to predict kernels of arbitrary size

analogously to [30].

4. Experiments

We compare the proposed EMVD against various state-

of-the-art video denoising methods, namely VBM4D [28],

RViDeNet [42], FastDVDnet [36], and EDVR [38]. In

our experiments, we show performance of the aforemen-

tioned models at various levels of complexity, measured as

floating-point operations (FLOPs). Additional technical de-

tails and experiments can be found in the supplementary

materials.

To evaluate our model, we use the video benchmark

dataset proposed in [42]. This consists of a real raw video

dataset (CRVD) captured by a SONY IMX385 sensor and a

synthesized dataset (SRVD) generated from [10]; all videos

have five different ISO levels ranging from 1600 to 25600.

Following [42], we use SRVD videos plus the scenes 1–6

from CRVD for training, hence keeping CRVD scenes 7–11

for objective validation. CRVD also includes few outdoor

noisy raw videos without ground-truth which we use as test

set to subjectively asses visual quality.

4.1. Training

We use training sequences composed of n patches of

size 128×128 cropped at random spatio-temporal locations

of the training videos, minding to preserve the CFA Bayer

pattern [26]. Specifically, we use n = 3 for RViDeNet,

n = 5 for FastDVDnet and EDVR, and n = 25 for EMVD.

Note that EMVD is a recurrent models, and thus bene-

fit from large values of n since the models are temporally

unrolled during training to allow backpropagation through

time. Differently, RViDeNet, FastDVDnet, and EDVR are

multi-frame methods and thus n is equal to the number of

frames used in their inputs.

The loss is defined as L = Lr + Lc + Lf , where

Lr = 1

n

∑n
t=1

‖ ŷt − yt ‖1 denotes the mean L1 norm

of the difference between each predicted ŷt and ground-

truth yt frame in the sequence, and Lc and Lf are terms

constraining invertibility of the color (3) and frequency (4)

transforms, respectively. We train the networks using Adam

optimizer [24] with batch size 16 and initial learning rate

1e-4. We apply a piece-wise constant decay which reduces

the learning rate by a factor of 10 every 100000 iterations.

All models are trained for an initial 300000 iterations on the

CRVD and SRVD dataset, and then fine-tuned for an addi-

tional 300000 iterations on CRVD only. We implemented

the proposed EMVD with Huawei MindSpore [31] and Ten-

sorFlow; both implementations show comparable accuracy

and efficiency.
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GFLOPs Recurrent zLL|t Tc Tf RCNN σ
2 PSNR / SSIM

5.38 ȳt−1 X X X X X 42.63 / 0.9851

5.38 ŷt−1 X X X X X 42.38 / 0.9840

5.12 ȳt−1 × X X X X 41.87 / 0.9831

5.31 ȳt−1 X × X X X 42.36 / 0.9839

5.38 ȳt−1 X X × X X 42.35 / 0.9838

5.94 ȳt−1 X X X × X 42.46 / 0.9848

5.18 ȳt−1 X X X X × 41.39 / 0.9795

5.42 ŷt−1 × × × × X 41.35 / 0.9737

(a) Network structure.

GFLOPs FCNN DCNN RCNN PSNR / SSIM

2542.86 4 / 64 4 / 512 4 / 64 44.51 / 0.9897

1105.65 4 / 64 6 / 256 4 / 64 44.48 / 0.9895

86.23 3 / 64 3 / 64 3 / 64 43.57 / 0.9881

82.06 4 / 16 5 / 64 3 / 64 43.83 / 0.9883

79.52 4 / 16 6 / 64 1 / 32 44.05 / 0.9890

25.31 4 / 16 5 / 32 3 / 32 43.19 / 0.9869

9.85 4 / 16 5 / 16 3 / 16 42.73 / 0.9854

5.38 2 / 16 2 / 16 2 / 16 42.63 / 0.9851

(b) Number of convolutions / number of filters.

Table 1: Ablation study of the proposed EMVD evaluated on the raw CRVD dataset [42].

For RViDeNet we directly utilize the model and weights

provided by the authors, and we train versions with reduced

complexity using the same three-stage procedure suggested

in the original paper [42]. For VBM4D we perform a grid

search on the target sRGB image to find the optimal param-

eters that maximize the validation PSNR.

4.2. Ablation

Baseline. There are three CNNs involved in EMVD.

Any backbone could be used, but, for the sake of efficiency,

in all cases we use two convolutional layers (3× 3 kernels,

16 filters) followed by ReLU activation plus one final out-

put convolution. The inputs (i.e., images and variance) are

always concatenated before processing. The output layers

of both fusion and refinement CNNs are activated by a sig-

moid, but no activation is applied to the denoising CNN. We

use three decomposition scales. The frequency transform is

initialized with Haar kernels, and the color transform is ini-

tialized as in [6]. This configuration is highlighted in yellow

in all tables and correspond to 5.38 GFLOPs.

Network Structure. Table 1a reports an ablation study

on the structure of proposed method. In the fusion (6), if we

use the previous final output ŷ instead of the previous fused

image ȳ PSNR decreases by 0.25dB; instead if we remove

the low-pass noisy input zLL|t from the denoising (8) PSNR

decreases by 0.76dB. The color transform, while only cost-

ing 0.08 GFLOPs, provides a sizable 0.27dB boost, and

if we replace the learnable frequency transform with pixel

shuffling [33] the PSNR reduces by 0.28dB. Then, if we re-

move the refinement stage, while increasing capacity of the

denoising network as not to change overall complexity, we

observe a 0.17dB decrease. Next we show that removing

the variance σ2 input from all networks (i.e., a blind for-

mulation) result in a very significant 1.24dB PSNR drop.

Finally, in the last row, we show that the drop is even higher

(1.28dB) when both fusion and refinement are disabled.

Capacity Distribution. In Table 1b we report how

EMVD is affected by the number of filters and convolutions

in each stage. Our experiments indicate that it is beneficial

to dedicate more capacity to the denoising CNN (as denois-

GFLOPs p̄× p̄ p× p PSNR / SSIM

2542.86 1× 1 1× 1 44.51 / 0.9897

2544.25 3× 3 1× 1 44.58 / 0.9899

2545.49 3× 3 3× 3 44.58 / 0.9899

2546.73 5× 5 1× 1 44.48 / 0.9897

2550.44 5× 5 5× 5 44.51 / 0.9897

Table 2: Ablation on the fusion kernel sizes of the proposed

EMVD evaluated on the raw CRVD dataset [42].

ing is the most difficult stage), while the capacity of both

fusion and refinement CNNs can be reduced without signif-

icantly impacting performance.

Fusion Recurrence. We use the previous fused image

ȳt−1 as input of the fusion is preferable than using the pre-

vious output frame ŷt−1 or noisy frame zt−1 as we aim to

maximally reducing the noise without removing image de-

tails. In fact, using the noisy zt−1 will at most decrease the

noise variance by a factor of 2, effectively reducing our re-

current model to a multi-frame one. Then, as reported in

Table 1a, using the output ȳt−1 is also suboptimal. This

might be counter-intuitive, but since denoising is applied to

ȳt−1, then the recurrent variance (9) would no longer admit

a closed-form definition (because denoising is nonlinear),

and also some of the high-frequency information in the im-

age might be oversmoothed or even missing.

Fusion Prediction. In Table 2, we compare validate

kernel-predicting fusion (7) using various kernel sizes. The

first row correspond to the top-performing baseline model

defined in Table 1b with element-wise fusion (i.e., 1 × 1
kernels). We compare different sizes (up to 5 × 5) for the

kernels p̄× p̄ and p× p applied to the previous fused image

and to the current noisy image, respectively. We observe

that it is more beneficial to use large kernels on the pre-

vious image, which is in fact where motion compensation

is needed, and that this strategy improves PSNR by ˜0.1dB

PSNR at a relatively limited increase in complexity

4.3. Results

Table 3 and Fig. 6 show objective results for all com-

pared models. We denote with † low-complexity implemen-
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Model VBM4D FastDVDnet EDVR RViDeNet Ours Noisy

GFLOPs - 664.99 3088.98 1965.04 5.38

(a) Scene 2 – ISO 25600

(b) Scene 3 – ISO 25600.

(c) Scene 9 – ISO 25600.

Figure 5: Visual comparisons on SONY IMX385 1080p videos from the CRVD dataset [42]. The proposed EMVD exhibits

more details and better noise suppression than more complex state-of-the-art methods in both static and dynamic regions.

Model GFLOPs raw sRGB

EDVR 3088.98 44.71 / 0.9902 40.89 / 0.9838

RViDeNet 1965.04 44.08 / 0.9881 40.03 / 0.9802

FastDVDnet 664.99 44.30 / 0.9891 39.91 / 0.9812

Ours 79.52 44.05 / 0.9890 39.53 / 0.9796

FastDVDnet† 22.16 42.25 / 0.9806 37.43 / 0.9693

Ours 5.38 42.63 / 0.9851 38.27 / 0.9722

VBM4D - - 35.20 / 0.9577

Table 3: Objective performance on the CRVD dataset [42].

Reduced complexity is denoted by †.

tations which we obtain by evenly reducing the number of

convolutional layers and channels. Our experiments indi-

cate that the proposed EMVD significantly outperforms all

compared methods when GFLOPs is lower than 100, and

the improvement in PSNR increases to more than 1dB as

the complexity decreases. Note that we do not provide re-

sults for RViDeNet and EDVR with complexity lower than

100 GFLOPs because such models fail to converge in that

range. Details of the network structures of the proposed

method at varying level of complexity can be found in Ta-

ble 1b. More technical implementation details are discussed

in the supplementary materials.

Interestingly, EMVD is even able to maintain a good

margin over state-of-the-art methods with significantly

higher complexity. For instance, if we compare the

˜79 GFLOPs EMVD against a 25× larger RViDeNet we

observe only a 0.03dB loss in PSNR. This confirms the
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Figure 6: Performance (PSNR) of different models at

various complexity levels (GFLOPs) on the raw CRVD

dataset [42].

ability of our method to operate under stringent computa-

tional budgets without significant loss in performance and

image quality. In Fig. 5 we show the visual comparison

for several test videos in the CRVD dataset captured at

ISO 25600. The bricks and trees in the background in-

dicate that EDVR and FastDVDnet generate better details

than RViDeNet. The proposed EMVD generates the most

pleasing visual results in both static and dynamic regions

despite having a complexity 573× lower than EDVR and

364× lower than RViDeNet.

In Fig. 7 we analyze the temporal behavior of the com-

pared models using the SRVD dataset (MOT17-01 synthe-

sized ISO 25600) [10, 42]. In particular, the plot shows the

frame-by-frame PSNR difference (∆) with respect to the

initial frame of the sequence. We note that the ∆ PSNR of

RViDeNet, FastDVDnet, and EDVR is –on average– stable

after an initial warm-up period. As a matter of fact, perfor-

mance of multi-frame methods is bounded by the amount

of frames that these models are designed to process at any

given time. Differently, the proposed EMVD is a recurrent

method, thus by accumulating long-term temporal depen-

dencies it is able to achieve a significantly higher ∆ PSNR

in the majority of the sequence. However, multi-frame

methods have a slight advantage in dynamic scenes (i.e.,

frame 25–30) because they can access future frames. Nev-

ertheless, even in these cases the proposed EMVD is able to

recover very quickly, as it outperforms all other methods by

more than 2dB PSNR after processing only a few frames.

Finally, Table 4 reports on-chip running time and mem-

ory usage profiled on a commercial SoC (Huawei P40 Pro

Smartphone) using the AI benchmark tool [21]. Results

demonstrate that our method can attain real-time perfor-

mance (̃ 30fps) while still outperforming the reference low-

complexity method FastDVDNet in terms of computational

requirements (4.9× faster inference, 6.5× less memory) as

well as objective performance (0.84dB better PSNR).

0 5 10 15 20 25 30 35
Frame
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)

EDVR (~3T)
RViDeNet (~1.9T)
FastDVDnet (~0.6T)

Ours (~79G)
Ours (~5G)

Figure 7: Frame-by-frame increase of PSNR with respect to

the first frame of the sequence using the SRVD dataset [10,

42]. Complexity (FLOPs) is reported in parenthesis.

Model GFLOPs Time (ms) DDR (MB) PSNR / SSIM

FastDVDnet† 22.16 177 724 37.43 / 0.9693

Ours 5.38 36 112 38.27 / 0.9722

Table 4: Running time and DDR memory required to pro-

cess a single-precision 720p sequence on a Huawei P40 Pro.

Models have been profiled with the AI benchmark tool [21].

5. Conclusions

In this work we have proposed EMVD, an efficient video

denoising method which recursively exploit the spatio-

temporal correlation inherently present in natural videos

through multiple cascading processing stages applied in a

recurrent fashion, namely temporal fusion, spatial denois-

ing, and spatio-temporal refinement.

This multi-stage design, coupled with learnable and in-

vertible decorrelating transforms, allows to significantly re-

duce the model complexity without seriously impacting its

performance. It is interesting to note that the CNNs em-

ployed in each individual stage converge to the desired be-

havior without explicit supervision (i.e., extra terms in the

loss), hence making the proposed model straightforward to

train. Further, we can gain insights on the inner workings

of the model by inspecting the output at every stage (Fig. 3

and Fig. 4) which in turn allows to interpret and disentangle

the effects of spatial and temporal processing.

The proposed EMVD 1) significantly outperforms other

state-of-the-art video restoration methods when complex-

ity is constrained, and 2) even remains competitive when

complexity of compared models is several orders of magni-

tude higher (Fig. 6). Further, we have verified that EMVD

achieves real-time performance (̃ 30fps at 720p) on a com-

mercial SoC (Table 4) with a limited memory footprint, thus

demonstrating that the proposed method can be practically

employed for video processing on mobile devices.
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