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Abstract

We present a learning-based method for synthesizing

novel views of complex scenes using only unstructured col-

lections of in-the-wild photographs. We build on Neural

Radiance Fields (NeRF), which uses the weights of a multi-

layer perceptron to model the density and color of a scene

as a function of 3D coordinates. While NeRF works well on

images of static subjects captured under controlled settings,

it is incapable of modeling many ubiquitous, real-world

phenomena in uncontrolled images, such as variable illu-

mination or transient occluders. We introduce a series of

extensions to NeRF to address these issues, thereby enabling

accurate reconstructions from unstructured image collec-

tions taken from the internet. We apply our system, dubbed

NeRF-W, to internet photo collections of famous landmarks,

and demonstrate temporally consistent novel view render-

ings that are significantly closer to photorealism than the

prior state of the art.

1. Introduction

Synthesizing novel views of a scene from a sparse set

of captured images is a long-standing problem in computer

vision, and a prerequisite to many AR and VR applications.

Though classic techniques have addressed this problem using

structure-from-motion [11] or image-based rendering [30],

this field has recently seen significant progress due to neural

rendering techniques — learning-based modules embedded

within a 3D geometric context, and trained to reconstruct

observed images. The Neural Radiance Fields (NeRF) ap-

proach [25] models the radiance field and density of a scene

with the weights of a neural network. Volume rendering is

then used to synthesize new views, demonstrating a hereto-

fore unprecedented level of fidelity on a range of challenging

scenes. However, NeRF has only been demonstrated to work

∗Denotes equal contribution.

(a) Photos (b) Renderings

Figure 1: Given only an internet photo collection (a), our method

is able to render novel views with variable illumination (b). Photos

by Flickr users dbowie78, vasnic64, punch / CC BY.

well in controlled settings: the scene is captured within a

short time frame during which lighting effects remain con-

stant, and all content in the scene is static. As we will

demonstrate, NeRF’s performance degrades significantly

when presented with moving objects or variable illumina-

tion. This limitation prohibits direct application of NeRF to

large-scale in-the-wild scenarios, where input images may

be taken hours or years apart, and may contain pedestrians

and vehicles moving through them.

The central limitation of NeRF that we address here is its

assumption that the world is geometrically, materially, and

photometrically static — that the density and radiance of

the world is constant. NeRF therefore requires that any two

photographs taken at the same position and orientation must

be identical. This assumption is severely violated in many

real-world datasets, such as large-scale internet photo collec-

tions of tourist landmarks. Two photographers may stand in

the same location and photograph the same landmark, but

in the time between those two photographs the world can

change significantly: cars and people may move, construc-

tion may begin or end, seasons and weather may change,

the sun may move through the sky, etc. Even two photos
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taken at the same time and location can exhibit considerable

variation: exposure, color correction, and tone-mapping all

may vary depending on the camera and post-processing. We

will demonstrate that naively applying NeRF to in-the-wild

photo collections results in inaccurate reconstructions that

exhibit severe ghosting, oversmoothing, and further artifacts.

To handle these demanding scenarios, we present NeRF-

W, an extension of NeRF that relaxes its strict consistency as-

sumptions. First, we model per-image appearance variations

such as exposure, lighting, weather, and post-processing in a

learned low-dimensional latent space. Following the frame-

work of Generative Latent Optimization [3], we optimize an

appearance embedding for each input image, thereby grant-

ing NeRF-W the flexibility to explain away photometric

and environmental variations between images by learning

a shared appearance representation across the entire photo

collection. The learned latent space provides control of the

appearance of output renderings as illustrated in Figure 1,

(b). Second, we model the scene as the union of shared and

image-dependent elements, thereby enabling the unsuper-

vised decomposition of scene content into “static” and “tran-

sient” components. Our approach models transient elements

using a secondary volumetric radiance field combined with

a data-dependent uncertainty field, where the latter captures

variable observation noise and further reduces the effect of

transient objects on the static scene representation. Because

optimization is able to identify and discount transient im-

age content, we can synthesize realistic renderings of novel

views by rendering only the static component.

We apply NeRF-W to several challenging in-the-wild

photo collections of cultural landmarks and show that it can

produce detailed, high-fidelity renderings from novel view-

points, surpassing the prior state of the art by a large margin

on PSNR and MS-SSIM. Unlike prior work, renderings from

our model exhibit smooth appearance interpolation and tem-

poral consistency, even for wide camera trajectories. We find

that NeRF-W significantly improves quality over NeRF in

the presence of appearance variation and transient occluders

while achieving similar quality in controlled settings.

2. Related Work

The last decade has seen the integration of physics-based

multi-view geometry techniques into deep learning-based

approaches for the task of 3D scene reconstruction. Here

we review recent progress on novel view synthesis and neu-

ral rendering, and highlight the main differences between

existing approaches and our proposed method.

Novel View Synthesis: Constructing novel views of a

scene captured by multiple images is a long standing problem

in computer vision. Structure-from-Motion [11] and bundle

adjustment [39] can be used to reconstruct a sparse point

cloud representation and recover camera parameters. Photo

Figure 2: Example in-the-wild photographs from the Phototourism

dataset [13] used to train NeRF-W. Due to variable illumination and

post-processing (top), the same object’s color may vary from image

to image. In-the-wild photos may also contain transient occluding

subjects (bottom). Photos by Flickr users paradasos, itia4u, jblesa,

joshheumann, ojotes, chyauchentravelworld / CC BY.

Tourism [33] showed how these reconstruction techniques

could be scaled to unconstrained photo collections and used

to perform view synthesis [1, 10]. Other approaches to view

synthesis include light-field photography [17] and image-

based rendering [5] but these generally require a dense cap-

ture of the scene. Recent works explicitly infer the light and

reflectance properties of the objects in the scene from a set of

unconstrained photo collections [16, 29, 19] using them to

manipulate scene appearance and geometry. Whereas other

methods utilize semantic knowledge to reconstruct transient

objects [27].

Neural Rendering: More recently, neural rendering tech-

niques [36] have been applied to scene reconstruction. Sev-

eral approaches employ image translation networks [12] to

re-render content more realistically using as input traditional

reconstruction results [21], learned latent textures [37], point

clouds [2], voxels [31], or plane sweep volumes [8, 9]. Most

similar in application to our work is Neural Rerendering

in the Wild (NRW) [23] which synthesizes realistic novel

views of tourist sites from point cloud renderings by learning

a neural re-rendering network conditioned on a learned la-

tent appearance embedding module. Common drawbacks of

these approaches are the checkerboard and temporal artifacts

visible under camera motion caused by the employed 2D im-

age translation network. Another recent approach represents

the scene as camera-centric multiplane images to reconstruct

captured scenes [24, 43], and internet photo collections [18].

These methods produce photorealistic renderings of novel

viewpoints but the views they can interpolate are restricted to

a small volume surrounding the ground truth camera poses.

In contrast, volume rendering approaches [20, 25, 32] allow

for accurate and consistent reconstructions even with large

camera motions, as does NeRF-W. Neural Radiance Fields

(NeRF) [25] use a multi-layer perceptron (MLP) to model

a radiance field at an unprecedented level of fidelity, in part

thanks to the use of positional encoding within the MLP [35].
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Figure 3: NeRF-W model architecture. Given a 3D position, view-

ing direction, and learned appearance and transient embeddings,

NeRF-W produces static and transient colors and densities as well

as a measure of uncertainty. Note that the static opacity is gener-

ated before the model is conditioned on the appearance embedding,

ensuring that static geometry is shared across all images.

Our work focuses on extending NeRF to unconstrained sce-

narios, like internet photo collections.

3. Background

Our goal is to produce a system that takes as input a

photo collection and then learns a 3D representation that is

capable of generating the photos of that collection. Such a

scene representation should encode the 3D structure of the

scene together with appearance information so as to enable

the synthesis of novel, unseen views. In the following we

describe Neural Radiance Fields [25] (NeRF), the method

for 3D scene reconstruction that NeRF-W extends.

NeRF represents a scene using a learned, continuous

volumetric radiance field Fθ defined over a bounded 3D

volume. Fθ is modeled using a multilayer perceptron (MLP)

that takes as input a 3D position x = (x, y, z) and unit-norm

viewing direction d = (dx, dy, dz), and produces as output

a density σ and color c = (r, g, b). To compute the color

of a single pixel, NeRF approximates the volume rendering

integral using numerical quadrature [22]. Let r(t) = o+ td

be the camera ray emitted from the center of projection of a

camera o through a given pixel on the image plane. NeRF’s

approximation of the expected color Ĉ(r) of that pixel is:

Ĉ(r) = R(r, c, σ) =

K
∑

k=1

T (tk)α(σ(tk)δk) c(tk) , (1)

where T (tk) = exp

(

−

k−1
∑

k′=1

σ(tk′)δk′

)

, (2)

where R(r, c, σ) is the volumetric rendering of color c with

density σ, c(t) and σ(t) are the color and density at point

r(t), α(x) = 1 − exp(−x), and δk = tk+1 − tk is the

distance between two quadrature points. Stratified sampling

is used to select quadrature points {tk}
K
k=1 between tn and

tf , the near and far planes of the camera.

NeRF represents the volumetric density σ(t) and color

c(t) using ReLU MLPs of the following form:

[σ(t), z(t)] = MLPθ1(γx(r(t))) , (3)

c(t) = MLPθ2(z(t), γd(d)) , (4)

with parameters θ = [θ1, θ2] and fixed encoding functions

γx (for position) and γd (for viewing direction). The final

activations in generating σ(t) and c(t) are a ReLU and a

sigmoid respectively, as density must be non-negative and

color must be in [0, 1]. Unlike [25], we describe the neural

network as two MLPs where the latter depends on one output

of the former, z(t), to highlight the fact that volume density

σ(t) is independent of viewing direction d.

To fit parameters θ, NeRF minimizes the sum of squared

reconstruction errors with respect to an RGB image col-

lection {Ii}
N
i=1, Ii ∈ [0, 1]H×W×3. Each image Ii is

paired with its corresponding intrinsic and extrinsic cam-

era parameters which can be estimated using structure-

from-motion [28]. We precompute the set of camera rays

{rij}
H×W×3
j=1 corresponding to pixel j from image i with

each ray passing through the 3D location oi with direction

dij , where rij(t) = oi + tdij .

To improve sample efficiency, NeRF simultaneously opti-

mizes two MLPs: one coarse and one fine, where the density

predicted by the coarse model determines the sampling of

quadrature points for the fine model. The parameters of both

models are optimized by minimizing the following loss:

∑

ij

∥

∥C(rij)− Ĉ
c(rij)

∥

∥

2

2
+
∥

∥C(rij)− Ĉ
f (rij)

∥

∥

2

2
, (5)

where C(rij) is the observed color of ray j in image Ii, and

Ĉ
c and Ĉ

f are the coarse and fine models respectively.

4. NeRF in the Wild

We now present NeRF-W, a system for reconstructing

3D scenes from in-the-wild photo collections. We build

on NeRF [25] and introduce two enhancements explicitly

designed to handle the challenges of unconstrained imagery.
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(a) Static (b) Transient (c) Composite (d) Image (e) Uncertainty

Figure 4: NeRF-W separately renders the static (a) and transient (b) elements of the scene, and then composites them (c). Training minimizes

the difference between the composite and the true image (d) weighted by uncertainty (e), which is simultaneously optimized to identify and

discount anomalous image regions. Photo by Flickr user vasnic64 / CC BY.

Similar to NeRF, we learn a volumetric density represen-

tation Fθ from an unstructured photo collection {Ii}
N
i=1 for

which camera parameters are known. NeRF assumes consis-

tency in its input views: that a point in 3D space observed

from the same position and viewing direction in two differ-

ent images has the same intensity. But this assumption is

violated by internet photos (such as those shown in Figure 2)

due to two distinct phenomena:

1) Photometric variation: In outdoor photography, time of

day and atmospheric conditions directly impact the illumina-

tion (and consequently, the emitted radiance) of objects in

the scene. This issue is exacerbated by photographic imag-

ing pipelines, as variation in auto-exposure settings, white

balance, and tone-mapping across photographs may result in

additional photometric inconsistencies [4].

2) Transient objects: Real-world landmarks are rarely cap-

tured in isolation, without moving objects or occluders

around them. Tourist photos of landmarks are particularly

challenging, as they often contain posing human subjects

and other pedestrians.

We propose two model components to address these is-

sues. In Section 4.1 we extend NeRF to allow for image-

dependent appearance and illumination variations such that

photometric discrepancies between images can be modeled

explicitly. In Section 4.2 we further extend this model by

allowing transient objects to be jointly estimated and disen-

tangled from a static representation of the 3D world. Figure 3

shows an overview of the proposed model architecture.

4.1. Latent Appearance Modeling

To adapt NeRF to variable lighting and photometric post-

processing, we adopt the approach of Generative Latent

Optimization (GLO) [3] in which each image Ii is assigned

a corresponding real-valued appearance embedding vector

ℓ
(a)
i of length n(a). We replace the image-independent radi-

ance c(t) in Equation (1) with an image-dependent radiance

ci(t), which also introduces a dependency on image index i

to the approximated pixel color Ĉi:

Ĉi(r) = R(r, ci, σ), (6)

ci(t) = MLPθ2

(

z(t), γd(d), ℓ
(a)
i

)

. (7)

The {ℓ
(a)
i }Ni=1 embeddings are optimized alongside θ.

Using these appearance embeddings as input to only the

branch of the network that emits color grants our model

the freedom to vary the emitted radiance of the scene in a

particular image while still guaranteeing that the 3D geome-

try (predicted earlier by MLPθ1 ) is static and shared across

all images. By setting n(a) to a small value, we encour-

age optimization to identify a continuous space in which

illumination conditions can be embedded, thereby enabling

smooth interpolations between conditions as demonstrated

in Figure 8.

4.2. Transient Objects

We address transient phenomena using two distinct de-

sign decisions: First, we designate the color-emitting MLP

(Equation (4)) used in NeRF as the “static” head of our

model, and we add an additional “transient” head that emits

its own color and density, where that density is allowed to

vary across training images. This enables NeRF-W to re-

construct images containing occluders without introducing

artifacts into the static scene representation. Second, instead

of assuming that all observed pixel colors are equally reliable,

we allow our transient head to emit a field of uncertainty

(much like our existing fields of color and density), which

allows our model to adapt its reconstruction loss to ignore

unreliable pixels and 3D locations that are likely to contain

occluders. We model each pixel’s color as an isotropic nor-

mal distribution whose likelihood we will maximize, and

we “render” the variance of that distribution using the same

volume rendering approach used by NeRF. These two model

components allow NeRF-W to disentangle static and tran-

sient phenomena without explicit supervision.

To construct our transient head, we build on the volume

rendering formulation of Equation (6) and augment the static

density σ(t) and radiance ci(t) with transient counterparts

σ
(τ)
i (t) and c

(τ)
i (t),

Ĉi(r)=

K
∑

k=1

Ti(tk)
(

α(σ(tk)δk)ci(tk) + α
(

σ
(τ)
i (tk)δk

)

c
(τ)
i (tk)

)

, (8)

where Ti(tk) = exp

(

−

k−1
∑

k′=1

(

σ(tk′) + σ
(τ)
i (tk′)

)

δk′

)

. (9)
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The expected color of r(t) then becomes the alpha composite

of both the static and the transient components.

We employ the Bayesian learning framework of Kendall

et al. [15] to model the uncertainty of the observed color. We

assume that observed pixel intensities are inherently noisy

(aleatoric) and further that this noise is input-dependent (het-

eroscedastic). We model the observed color Ci(r) with an

isotropic normal distribution with image- and ray-dependent

variance βi(r)
2 and mean Ĉi(r). Variance βi(r) is “ren-

dered” analogously to color via alpha-compositing according

to the transient density σ
(τ)
i (t):

β̂i(r) = R(r, βi, σ
(τ)
i ). (10)

To allow the transient component of the scene to vary across

images, we assign each training image Ii a second embed-

ding ℓ
(τ)
i ∈ R

n(τ)

that is given as input to the transient MLP,

[

σ
(τ)
i (t), c

(τ)
i (t), β̃i(t)

]

= MLPθ3

(

z(t), ℓ
(τ)
i

)

, (11)

βi(t) = βmin + log
(

1 + exp
(

β̃i(t)
))

, (12)

ReLU and sigmoid activations are used for σ
(τ)
i (t) and

c
(τ)
i (t), and a softplus is used as the activation for βi(t)

(shifted by βmin > 0, a hyperparameter that ensures a mini-

mum importance is assigned to each ray). See Figure 3 for

an illustration of our complete model architecture.

The loss for ray r in image i with true color Ci(r) is

Li(r) =

∥

∥Ci(r)− Ĉi(r)
∥

∥

2

2

2βi(r)2
+

log βi(r)
2

2
+

λu

K

K
∑

k=1

σ
(τ)
i (tk) . (13)

The first two terms are the (shifted) negative log likelihood

of Ci(r) according to a normal distribution with mean Ĉi(r)
and variance βi(r)

2. Larger values of βi(r) attenuate the

importance assigned to a pixel, under the assumption that

it belongs to some transient object. The first term is bal-

anced by the second, which corresponds to the log-partition

function of the normal distribution and precludes the trivial

minimum at βi(r) = ∞. The third term is an L1 regular-

izer with a multiplier λu on (non-negative) transient density

σ
(τ)
i (t), and this discourages the model from using transient

density to explain away static phenomena.

At test time we omit the transient and uncertainty fields,

and render only σ(t) and c(t). See Figure 4 for an illustration

of static, transient, and uncertainty components.

4.3. Optimization

Like NeRF, we simultaneously optimize two copies of Fθ:

A fine model that uses the model and losses described above,

and a coarse model that uses only the latent appearance

modeling component. Alongside parameters θ we optimize

(a) NeRF-W w/o opt. (b) NeRF-W (c) Reference

Figure 5: Because optimization only yields appearance embeddings

ℓ
(a) for images in the training set, when evaluating error metrics

on test-set images we optimize ℓ
(a) to match the appearance of the

true image using only the left half of each image. Error metrics

are evaluated on only the right half of each image, so as to avoid

information leakage. Photo by Flickr user eadaoinflynn / CC BY.

per-image appearance embeddings {ℓ
(a)
i }Ni=1 and transient

embeddings {ℓ
(τ)
i }Ni=1. NeRF-W’s loss function is then,

∑

ij

Li(rij) +
1

2

∥

∥C(rij)− Ĉ
c
i (rij)

∥

∥

2

2
, (14)

λu, βmin, and embedding dimensionalities n(a) and n(τ)

form the set of additional hyperparameters for NeRF-W.

As optimization only produces appearance embeddings

{ℓ
(a)
i } for images in the training set, the embeddings of test-

set images are unspecified. For test-set visualizations, we

choose ℓ
(a) to best fit a target image (e.g. Figure 8) or set it

to an arbitrary value.

5. Experiments

Here we provide an evaluation of NeRF-W on uncon-

strained (e.g. “in-the-wild”) internet photo collections of

cultural landmarks. We select six landmarks from the Pho-

totourism dataset [13]. Inspired by prior work [23], we

reconstruct the Trevi Fountain and Sacre Coeur as well as

four novel scenes, the Brandenburg Gate, Taj Mahal, Prague

Old Town Square, and Hagia Sophia. Empirical performance

for these scenes can be found in Table 1, but we urge the

reader to visually inspect the video results in the supplement.

Baselines: We evaluate our proposed method against Neu-

ral Rerendering in the Wild (NRW) [23], NeRF [25], and two

ablations of NeRF-W: NeRF-A (appearance), wherein the

“transient” head is eliminated; and NeRF-U (uncertainty),

wherein the appearance embedding ℓ
(a)
i is eliminated. NeRF-

W is the composition of NeRF-A and NeRF-U. While other

recent work such as [18] is employed on a similar domain,

we restrict baselines to those capable of extrapolating signif-

icantly beyond the views represented in the dataset.

Optimization: Building on NeRF1, we implement all ex-

periments in TensorFlow 2 using Keras. For each scene, we

1https://github.com/bmild/nerf
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(a) Reference (b) NeRF (c) NeRF-W

Figure 6: Depth maps from NeRF and NeRF-W, rendered by

computing the expected termination depth of each ray. NeRF’s

geometry is corrupted by appearance variation and occluders, while

NeRF-W is robust to such phenomena and produces accurate 3D

reconstructions. Photos by Flickr users burkeandhare, photogreuh-

phies / CC BY.

use COLMAP [28] with two radial and two tangential dis-

tortion parameters enabled to estimate each image’s camera

parameters. As in NeRF, for each scene we train a model ini-

tialized to random weights. We optimize all NeRF variants

for 300,000 steps with a batch size of 2048 on 8 Nvidia V100

GPUs using Adam [7] (with hyperparameters β1 = 0.9,

β2 = 0.999, ǫ = 10−7), which takes approximately 2 days.

Hyperparameters shared by all NeRF variants are chosen

to maximize PSNR on the Brandenburg Gate dataset and

are fixed to those values in all other scenes. Additional hy-

perparameters for variants of NeRF-W are chosen via grid

search to maximize PSNR on a held-out validation set on

the Brandenburg Gate scene and are fixed to those values for

all other scenes. See the supplement for additional details

on hyperparameters.

Evaluation: We evaluate on the task of novel view syn-

thesis: given a held-out image with accompanying camera

parameters, we render an image from the same pose and

compare it to the ground truth. As measuring perceptual

image similarity is challenging [26, 38, 40, 42], we present

rendered images for visual inspection and report quantitative

results based on PSNR, MS-SSIM [41], and LPIPS [42]. Be-

cause optimization only produces appearance embeddings

for training-set images, when computing error metrics on

test-set images we optimize an appearance embedding ℓ
(a)

on the left half of each image and report metrics on the right

half (Figure 5). See the supplement for additional discussion

of error metrics.

Results: Figure 7 shows qualitative results for all models

and baselines on a subset of scenes. NRW produces ren-

derings with checkerboard artifacts characteristic of 2D re-

rendering methods [14]. NRW is also sensitive to upstream

errors in 3D geometry such as incomplete point clouds, as

can be seen in the smaller towers of the church in the Prague

Old Town. NeRF produces a consistent 3D geometry, but

large parts of the scene have ghosting artifacts and occlu-

sions, which are particularly noticeable on Sacre Coeur and

Prague Old Town. Renderings from NeRF also tend to ex-

hibit strong global color shifts when compared to the ground

truth. These artifacts are the direct consequence of NeRF’s

static-world assumption — NeRF attempts to explain away

all photometric variation and transient occlusion using a

single scene representation. This static assumption impairs

not only NeRF’s renderings but also its underlying geome-

try, while NeRF-W produces accurate 3D reconstructions

(Figure 6).

The NeRF-A ablation produces less “foggy” renderings

than NeRF, as shown in Figure 7. However, NeRF-A is

unable to reconstruct high-frequency details such as the

brickwork on Sacre Coeur’s dome. In contrast, the NeRF-U

ablation is better able to capture fine detail, but is unable to

model varying photometric effects. NeRF-W has the benefits

of both ablations, and thereby produces sharper and more

accurate renderings.

Quantitative results are summarized in Table 1. Optimiz-

ing NeRF on in-the-wild photo collections leads to particu-

larly poor results that are unable to compete with NRW. In

contrast, NeRF-W outperforms the baselines on PSNR and

MS-SSIM across all datasets. In particular, NeRF-W im-

proves over the previous state of the art NRW by an average

margin of 4.4dB in PSNR, and with up to 40% improvements

in MS-SSIM. In spite of minimizing only a per-pixel squared

error during training, NeRF-W improves upon the prior state

of the art on LPIPS in 3 of 6 scenes and remains competitive

in the remainder. Lacking a perceptual loss, NeRF-W is

not incentivized to produce the high-frequency textures fa-

vored by perceptual metrics such as LPIPS. However, NRW

exhibits temporal instability — as the camera moves, ren-

derings appear to flicker and wobble unrealistically, and this

is not captured by the single-image metrics or figures used

in this paper. We strongly encourage the reader to inspect

the supplemental video to observe the temporal instability

of NRW compared to NeRF and NeRF-W.

Controllable Appearance: One consequence of model-

ing appearance with a latent embedding space ℓ
(a) ∈ R

n(a)

is that it enables the modification of lighting and appearance

of a rendering without altering the underlying 3D geometry.

In Figure 1 (right), we see slices of four rendered images pro-

duced by NeRF-W using appearance embeddings associated

with four training set images. In addition to the embeddings

associated with images in the training set, one may also

apply NeRF-W to arbitrary vectors in the same space. In Fig-

ure 8, we present five images rendered from a fixed camera
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Figure 7: Qualitative results from experiments on the Phototourism dataset. NeRF-W is simultaneously able to model appearance variation

(top), remove transient occluders (flag, middle), and reconstruct fine details in the scene (bottom). Further datasets are shown in Figure 14

(supplementary). Photos by Flickr users firewave, clintonjeff, leoglenn_g / CC BY.

position, where we interpolate between the appearance em-

beddings associated with the left and right training images.

Note that the appearance of the rendered images smoothly

transitions between the two end points without introducing

artifacts to the 3D geometry. We encourage readers to view

the supplementary video to better appreciate the naturalness

BRANDENBURG GATE SACRE COEUR TREVI FOUNTAIN TAJ MAHAL PRAGUE HAGIA SOPHIA

PSNR MS-SSIM LPIPS PSNR MS-SSIM LPIPS PSNR MS-SSIM LPIPS PSNR MS-SSIM LPIPS PSNR MS-SSIM LPIPS PSNR MS-SSIM LPIPS

NRW [23] 23.85 0.914 0.141 19.39 0.797 0.229 20.56 0.811 0.242 21.24 0.844 0.201 19.89 0.803 0.216 20.75 0.796 0.231

NERF 21.05 0.895 0.208 17.12 0.781 0.278 17.46 0.778 0.334 15.77 0.697 0.427 15.67 0.747 0.362 16.04 0.749 0.338

NERF-A 27.96 0.941 0.145 24.43 0.923 0.174 26.24 0.924 0.211 25.99 0.893 0.225 22.52 0.870 0.244 21.83 0.820 0.276

NERF-U 19.49 0.921 0.174 15.99 0.826 0.223 15.03 0.795 0.277 10.23 0.778 0.373 15.03 0.787 0.315 13.74 0.706 0.376

NERF-W 29.08 0.962 0.110 25.34 0.939 0.151 26.58 0.934 0.189 26.36 0.904 0.207 22.81 0.879 0.227 22.23 0.849 0.250

Table 1: Quantitative results on the Phototourism dataset [13] for NRW [23], NeRF [25], and two ablations of the proposed model. Best

results are highlighted. NeRF-W outperforms the previous state of the art across all datasets on PSNR and MS-SSIM and achieves

competitive results in LPIPS. Note that LPIPS generally favours methods such as NRW trained with an adversarial or perceptual loss and it

is less sensitive to typical GAN artifacts, see Figures 7 and 14 (supplementary).
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Figure 8: Interpolations between the appearance embeddings ℓ(a) of two training images (left, right), which results in renderings (middle)

where color and illumination are interpolated but geometry is fixed. Note that the training images contain people (left) and lights (right) that

do not appear in the renderings. Photos by Flickr users mightyohm, blatez / CC BY.

Reference NRW NERF NERF-W

Figure 9: Epipolar plane images (EPI) synthesized from videos rendered by different models for the Brandenburg Gate scene. The camera is

translated from left to right along a straight path, and the horizontal line at the same position (red line, reference) is taken across all video

frames and stacked vertically, producing the EPIs shown above. A temporally consistent video results in a clean and smooth EPI, while

noise in an EPI indicates temporal flickering artifacts. NRW’s video contains heavy flickering with transient objects popping in and out of

the frame while NeRF produces severe ghosting artifacts in front of the landmarks. NeRF-W produces highly temporally consistent videos.

We strongly encourage the readers to watch the video in the supplementary material.

of such interpolations.

View-consistency: Figure 9 shows “flatland” light field

renderings for NRW, NeRF, and NeRF-W with the camera

panning along a straight path. Renderings from NeRF-W

are more view-consistent (the Lambertian scene content is

correctly reconstructed as being constant across viewing di-

rections) and exhibits significantly less flickering than NRW

or NeRF. NRW is unable to model temporal consistency be-

tween frames for transient objects, while NeRF is forced to

embed view-dependent effects as colored fog into its scene

representation.

Limitations: While NeRF-W is able to produce photoreal-

istic and temporally consistent renderings from unstructured

photographs, rendering quality degrades in areas of the scene

that are rarely observed in the training images, or only ob-

served at very oblique angles, like the ground, as shown in

Figure 10. Similar to NeRF, NeRF-W is also sensitive to

camera calibration errors, which can lead to blurry recon-

Figure 10: Limitations of NeRF-W on the Phototourism dataset.

Rarely-seen parts of the scene (ground, left) and incorrect camera

poses (lamp post, right) can result in blur.

structions on the parts of the scene that have been imaged by

incorrectly-calibrated cameras.

Synthetic Experiments: The components of NeRF-W

were designed to deal with specific forms of photometric

inconsistency, such as color shifts and occluders. Unfortu-

nately, the uncontrolled nature of the Phototourism dataset

means that it is challenging to demonstrate that each model

component does indeed address the confounding factor that

it was designed to address. For this reason, in the supplement

we present a controlled ablation study in which we construct

variations of a synthetic dataset used in [25] wherein we

manually introduce the phenomena we expect to find in in-

the-wild imagery. As can be seen in the supplement, the

results of this ablation study are consistent with our expecta-

tions.

6. Conclusion

We have presented NeRF-W, a novel approach for 3D

scene reconstruction of complex environments from unstruc-

tured internet photo collections that builds upon NeRF. We

learn a per-image latent embedding capturing photometric

appearance variations often present in in-the-wild data, and

we decompose the scene into image-dependent and shared

components to allow our model to disentangle transient el-

ements from the static scene. Experimental evaluation on

real-world (and synthetic) data demonstrates significant qual-

itative and quantitative improvement over previous state-of-

the-art approaches.
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