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Abstract

Both Non-Local (NL) operation and sparse representa-

tion are crucial for Single Image Super-Resolution (SISR).

In this paper, we investigate their combinations and propose

a novel Non-Local Sparse Attention (NLSA) with dynamic

sparse attention pattern. NLSA is designed to retain long-

range modeling capability from NL operation while enjoy-

ing robustness and high-efficiency of sparse representation.

Specifically, NLSA rectifies non-local attention with spher-

ical locality sensitive hashing (LSH) that partitions the in-

put space into hash buckets of related features. For every

query signal, NLSA assigns a bucket to it and only com-

putes attention within the bucket. The resulting sparse at-

tention prevents the model from attending to locations that

are noisy and less-informative, while reducing the computa-

tional cost from quadratic to asymptotic linear with respect

to the spatial size. Extensive experiments validate the effec-

tiveness and efficiency of NLSA. With a few non-local sparse

attention modules, our architecture, called non-local sparse

network (NLSN), reaches state-of-the-art performance for

SISR quantitatively and qualitatively.

1. introduction

Single Image Super-Resolution (SISR) has attracted

great attention in recent years. In general, the goal of

SISR is to reconstruct a high-resolution image given its low-

resolution counterpart. Due to the ill-posed nature of SISR

task, a variety of image priors [12, 14, 24, 36, 40, 46] were

proposed as the regularizers, including the most representa-

tive sparse and non-local priors, which are the focus of this

paper.

For decades, sparsity constraints have been well-

explored as a powerful driving forces for many image re-

construction problems [4, 7, 19], especially SISR [46]. With

sparse coding, images are well-expressed as the sparse lin-

ear combinations of atoms in a predefined over-complete

dictionary such as wavelet [11] and curvelet [9] functions.

Combining with exemplar-based approaches, sparse repre-

sentation developed the dictionary using raw image patches

[46] or learned semantic feature patches from the degraded

image itself [17, 19] or external datasets[47]. As the deep

Convolution Neural Networks (CNNs) for SISR emerges,

the non-linearity activation between layers embraces the

benefits of sparsity prior. Dong et al. propose the SRCNN

[16] to first successfully bridge convolution to classic sparse

coding where the ReLU activation roughly enforced 50%

sparsity by zeroing-out all negative entries. Recently, Fan

et al. [21] go beyond that by explicitly imposing sparsity

constraints upon hidden neurons and conclude that spar-

sity in feature representation is indeed beneficial and favor-

able. It is widely proven that the sparsity constraints lead

to high efficiency by largely decreasing the number of ele-

ments to represent images. It also yields a more powerful

and robust expression in handling inverse problems theoret-

ically [10, 20] and practically.

Another widely-explored image prior is the Non-Local

(NL) prior. For SISR, adopting Non-Local Attention be-

comes a more prevalent way [37, 51] to utilize the image

self-similarity prior that small patterns tend to recur within

the same image [5]. NL operation searches for those similar

patterns globally, and selectively sums over those correlated

features to enhance the representation. Though Non-Local

Attention is intuitive and promising to fuse features, directly

applying it for SISR task will encounter some issues that

cannot be ignored. First, the receptive field of features in

deeper layers tend to be global, thus the mutual-correlation

computation among deep features are not that accurate [33].

Second, global NL attention requires the computation of

feature mutual-similarity among all the pixel locations. It

results in quadratic computational cost with respect to im-

age size. To alleviate the above mentioned problems, one

strategy is to limit the NL searching range within a local

neighbourhood. But it reduces computational cost at the

expense of missing much global information.

In this paper, for the specific SISR task, we aim to en-

force sparsity in the Non-Local attention module, as well

as largely reduce its computational cost. Specifically, we

propose a novel Non-Local Sparse Attention (NLSA) and

embed it into a residual network baseline like EDSR [32]

to form a Non-Local Sparse Network (NLSN). To force the

sparsity of the NLSA, we spatially partition the deep fea-

ture pixels into different groups (termed attention buckets
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in this paper). The feature pixels inside the same bucket are

considered content closely-correlated. We then apply the

Non-Local (NL) operation within the bucket that the query

pixel belongs to, or across adjacent buckets after sorting.

We achieve this by building the partition approach upon Lo-

cality Sensitive Hashing (LSH) research [23] that searches

for similar elements which produce maximum inner prod-

uct.

The proposed NLSA will make it possible to reduce the

computational complexity of NL from quadratic to asymp-

totic linear with respect to spatial dimensions. Searching

similar cues within a smaller content-correlated bucket will

also make the module attend to locations which are more

informative and related. As a result, NLSA retains global

modeling ability of the standard NL operation, while enjoy-

ing robustness and efficiency from its sparse representation.

In summary, the main contributions of our paper are:

• We propose to enforce sparsity in Non-Local opera-

tion for SISR task via a novel Non-Local Sparse At-

tention (NLSA) module. The sparsity constraint forces

the module to focus on correlated and informative area

while ignoring unrelated and noisy contents.

• We achieve the feature sparsity by first grouping the

feature pixels and only conducting Non-Local oper-

ations within the group named attention bucket. We

adopt the Locality Sensitive Hashing (LSH) for group-

ing and assign each group a Hash code. The proposed

approach significantly reduces the computational com-

plexity from quadratic to asymptotic linear.

• Without any bells and whistles, a few NLSA modules

can drive a fairly simple ResNet backbone to state-of-

the-arts. Extensive experiments demonstrate the ad-

vantages of NLSA over the standard Non-Local Atten-

tion (NLA).

2. Related Work

2.1. Sparse representation.

In this section, we briefly review the key concepts of the

sparse representation. Formally, Suppose x1, x2, ..., xn ∈
Rd are n known examples in an over-complete dictionary

Dd×n (d < n). For a query signal y ∈ Rd, exemplar-based

approaches [12, 46] represent it as a weighted sum of the

elements in D:

y = α1x1 + α2x2 + ...+ αnxn (1)

where αi is a coefficient with respect to the xi. Let α =
[α1, α2, ..., αn], then Eq. 1 can be written as:

y = Dα (2)

Eq. 2 yields an undetermined linear system. Solving α be-

comes an ill-posed problem. To alleviate this, sparse rep-

resentation assumes that y should be sparsely represented,

i.e., α should be sparse:

y = Dα, s.t. ‖α‖0 ≤ k (3)

Where ‖.‖0 and k counts and bounds the number of non-

zero elements in α, respectively. Given the sparsity con-

straint, optimization methods like OMP [38] can effectively

approximate the solution of Eq 3. The resulting sparse rep-

resentation has been proven to be extremely powerful in the

field of image reconstruction [19, 47, 53]. Motivated by

their success, we are inspired to incorporate sparse repre-

sentation into non-local attention.

2.2. Non­Local Attention (NLA) for image SR.

Non-local operation assumes that small patches tend

to re-occur within the same image, which has been well-

demonstrated to be a strong prior for natural images [5].

Non-local approaches were designed to utilize these self-

recurrences to recover underlying signals. Non-local op-

eration has been widely applied in many image restora-

tion problems, such as super-resolution [22], denoising

[1, 2, 8, 13], and inpainting [18]. Wang et al. [45] first

bridges classic non-local filtering to self-attention methods

[43] for machine translation and further introduces Non-

Local Attention (NLA) into deep neural networks to cap-

ture global semantic relationships for high-level tasks. For

image super-resolution, recent approaches, such as NLRN

[33], SAN [15], RNAN [51], and CSNLN [37], demon-

strate considerable benefits of exploring long-range feature

correlations by adopting NL attention. However, the ex-

isting NLAs designed for SISR task are either limited to

a local neighbourhood, or largely computational resources-

consuming. Motivated by recent progress [29, 39, 44] on

self-attention methods for language modeling, we propose

Non-Local Sparse Attention (NLSA) to embrace the long-

range information as well as reducing the complexity.

3. Non-Local Sparse Attention (NLSA)

3.1. General Form of Sparse Attention

As discussed above, the merits of Non-Local Attention

for image SR often come at a price of limiting its searching

range. To alleviate the issue, we propose to bridge standard

NLA to exemplar-based approaches and then break the tie

by imposing sparsity constraint.

Non-Local Attention. In general, a Non-Local Atten-

tion enhances an input feature map X ∈ Rh×w×c by sum-

marizing information from all positions. For illustration

purpose, we reshape X into an 1-D feature X ∈ Rn×c

where n = hw. Given a query location i, the corresponding
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Figure 1. Examples of the Attention Bucket in 2D spatial space.

Given a query at location i and an index set δi, where the δi decides

on the group of locations to compute the non-locally fused fea-

tures. Darker blue regions in the figure form the attention bucket.

δi = {j} indicates using the full-range pixels like in the standard

NL attention. δi = {j | |j − i] < L} indicates a local neighbour-

hood constrained attention span. While δi = {j |h(xi) = h(xj)}
is the proposed hash-based attention bucket.

output response yi ∈ Rc can be expressed as:

yi =
n∑

j=1

f(xi, xj)∑n

ĵ=1 f(xi, xĵ)
g(xj) (4)

where xi ,xj and xĵ are pixel-wise features at location

i, j and ĵ on X . f(., .) measures the mutual similar-

ity and g(.) is a feature transformation function. Eq. 4

can be viewed as an exemplar-based approach (Eq. 2)

by setting D = [g(x1), ..., g(xn)] ∈ Rc×n and αi =
[f(xi, x1), ..., f(xi, xn)] ∈ Rn, i.e., yi = Dαi.

Sparsity Constraints on Non-Local Attention. Given

Eq. 4, a sparsity constraint can be imposed on the Non-

Local Attention, by limiting the number of non-zero entries

of α up to a constant k. Therefore, a general form of Non-

Local Attention with Sparse Constraints can be derived as:

yi = Dαi s.t. ‖αi‖0 ≤ k (5)

=
∑

j∈δi

f(xi, xj)∑
ĵ∈δi

f(xi, xĵ)
g(xj) (6)

where δi indexes non-zero elements of αi, i.e., δi =
{j |αi[j] 6= 0}, where αi[j] denotes the j-th element in αi.

With sparse attention, the computational cost can be largely

saved by ignoring elements with zero coefficients.

Attention Bucket. Notice that the index set δi indicates

the group of pixel locations where a given query should at-

tend to. In another word, δi constrains the identified loca-

tions where the Non-Local Attention can be computed from.

In this paper, we define this group of locations as in an At-

tention Bucket. Figure 1 shows some examples of the atten-

tion bucket under different δi. For example, standard non-

local attention spans over all the possible locations, which

makes the aggregated feature noisy and less informative. If

an attention spans a local neighborhood of length L, this

specifies a window δi = {j | |j − i| < L}. In this case,

some long-range context cannot be effectively aggregated.

Intuitively, a more powerful sparse attention is expected

to cover locations that are the most informative and closely

related at a global scale, resulting that ignoring other el-

ements brings no harm to the performance. A naı̈ve way

is to rank all mutual similarities and then use the top k

entries. However, it requires forming a full attention first

which brings no efficiency improvement. In the following

sections, we will show how we form the attention bucket for

each query i by globally modelling the attention with high

efficiency.

3.2. Attention Bucket from Locality Sensitive Hash­
ing (LSH)

As discussed above, a desired attention should not only

keep sparse but also incorporate the most relevant elements.

In this section, we propose to adopt the Spherical Locality

Sensitive Hashing (LSH) [3, 42] to form the desired atten-

tion bucket containing global and correlated elements with

the query element. Specifically, we propose to spatially par-

tition the embedding space into buckets of similar features

depending on their angular distances. Consequently, even

when the attention keeps sparse by only spanning over one

bucket, it could still capture most of the correlated elements.

Recall that a hashing scheme is locality sensitive if

nearby elements are at high possibility to fall into the same

hash bucket (hash code) whereas distant ones are not. The

spherical LSH is an instance of LSH designed for angular

distance. One can intuitively think it as randomly rotating

a cross-polytope inscribed into a hyper-sphere, as shown in

the top branch of Figure 2. The hash function projects a

tensor onto the hyper-sphere and the closest polytope ver-

tex is selected as its hash code. Thus, if two vectors have

a small angular distance, they are likely to fall in the same

hash bucket, which is also the defined attention bucket.

Formally, suppose we want to get m hash buckets, we

have to first project the target tensor onto a hyper-sphere

and randomly rotate it with a matrix A ∈ Rc×m, a sampled

random rotation matrix with i.i.d. Gaussian entries, i.e.,

x̂ = A(
x

‖x‖2
) (7)

The hash code, or the assigned hush bucket, is defined as

h(x) = argmaxi(x̂). After hashing all elements, we man-

age to partition the space into buckets of correlated ele-

ments, and the attention bucket of xi can be identified by

the index set δi = {j|h(xj) = h(xi)}.

In practice, the spherical LSH is simultaneously per-

formed for all elements with batch matrix multiplication,

which only adds negligible computational cost. Knowing

which bucket to attend in advance, the model can achieve

high-efficiency and robustness by ignoring other noisy or

less-correlated partitions.

3.3. Non­Local Sparse Attention

Once the attention bucket index set δi for query location

i is determined, the proposed Non-Local Sparse Attention
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Figure 2. The proposed Non-Local Sparse Attention (NLSA). The upper branch partitions the input features into buckets via Spherical

Locality Sensitive Hashing (LSH). The bottom branch computes attention for every query within each bucket or between adjacent buckets

after sorting the buckets by the hash code. The module embraces the advantages of Non-Local Attention (modeling globally), and the

benefits of sparsity and hashing (high efficiency).

(NLSA) can be easily derived from Eq 6. Specifically, as

shown in Figure 2, NLSA assigns each pixel-wise feature

in X to a bucket sharing the same hash code based on their

content relevance, and only the corresponding bucket ele-

ments contribute to the output. In the following, we de-

scribe some techniques used in our practical implementa-

tion.

Dealing with Unbalanced Bucketing. Ideally, given to-

tally m buckets, each hash bucket will equally contain n
m

elements. However, this may not hold in practice as buckets

tend to be unbalanced. This also makes parallel comput-

ing very difficult. To overcome the difficulty, we first sort

features by their bucket value (hash code), then the permu-

tation is defined as π : i → π(i). After knowing their new

positions (denoted by the superscripts), we split them into

chunks of size k:

Cj = [xjk+1, xjk+2, ..., x(j+1)k] (8)

where Cj presents the j-th chunk. Consequently, the atten-

tion bucket of xi is updated to the corresponding chunk,

δi = Index(Cj) if π(i) ∈ [jk + 1, (j + 1)k] (9)

The above strategy is more friendly used to perform com-

putation in parallel. Despite its merits, splitting the origi-

nal buckets into fixed-size chunks as the updated attention

buckets also brings a subtle issue: some new chunks may

cross the original bucket boundaries, as shown in Figure 2.

Fortunately, this issue can be effectively alleviated by al-

lowing attention to also span over adjacent chunks.

Multi-round NLSA. The nature of Spherical LSH indi-

cates there is always a small chance that some correlated

elements are incorrectly hashed into different hash buck-

ets. Fortunately, this chance can be reduced by indepen-

dently hashing multiple rounds and taking the union of all

results. Motivated by this observation, we propose multi-

rounds NLSA to make hashing process more robust. Let

δr,i denote the resulting attention bucket of xi of the r-th

hashing, and Att(xi, δr,i) be the associated sparse attention

defined in Eq. 6, i.e.,

Att(xi, δr,i) =
∑

j∈δr,i

f(xi, xj)∑
ĵ∈δr,i

f(xi, xĵ)
g(xj) (10)

Then the multi-round NLSA is defined as:

xi =
∑

r

∑
j∈δr,i

f(xi, xj)∑
r̂

∑
ĵ∈δr̂,i

f(xi, xĵ)
Att(xi, δr,i) (11)

Intuitively, multi-round NLSA is the weighted sum of each

single round attention results, and the weight coefficient

represents the normalized similarity between the query and

the elements in its assigned hash bucket for each round. As

a side effect, this augmentation linearly increases computa-

tional cost with respect to the total hash rounds. But we can

still dynamically adjust this parameter during the evaluation

time to study the trade-offs.
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Figure 3. The proposed non-local sparse network (NLSN). Five sparse attention modules are inserted after every 8 residual blocks.

Computational complexity. We analyze the time com-

plexity of the proposed NLSA. Given an input feature X ∈
Rn×c, the cost for spherical LSH with m buckets a matrix

multiplication, which is O(ncm). The cost for attention op-

eration (Eq. 6) with sparsity constraint (size of the attention

bucket) k is O(nck). The sorting operation of a sequence

with length n and m distinct numbers (bucket number) adds

an additional O(nm) with quick sort (and can be further

optimized with advanced sorting algorithms). Therefore,

the overall computational cost of our non-local sparse at-

tention is O(nck + ncm + nm). Hashing for r rounds

will increase computational cost with a factor r, resulting

in O(rnck + rncm+ rnm). NLSA only takes linear com-

putational complexity with respect to the input spatial size.

Instantiations. To instantiate the non-local attention de-

fined in Eq. 6, we choose embedded Gaussian for f(., .), i.e.

f(xi, xj) = exp(θ(xi)
Tφ(xj)), where θ and φ are learned

linear projections. In this paper, we use one of its variants

that sets θ = φ to ensure the projected features are in the

same subspace for better LSH. We also found sharing θ and

φ did not hurt the performance, which will be verified in

experiment section.

3.4. Non­Local Sparse Network (NLSN)

To demonstrate the effectiveness of the non-local sparse

attention, we build our non-local sparse network (NLSN)

upon a fairly simple EDSR [32] backbone, which consists

of 32 residual blocks. As shown in Figure 3, the network

uses total 5 attention blocks with one insertion after every

8 residual blocks. The network is trained solely with L1

reconstruction loss.

4. Experiments

4.1. Datasets and Metrics

Following [32, 52], we use DIV2K as our training

dataset, which contains 800 training images. We test our

approach on 5 standard benchmarks: Set5 [6], Set14 [48],

B100 [34], Urban100 [27] and Manga109 [35]. We evaluate

all the results using PSNR and SSIM metrics on Y channel

in the transformed YCbCr space.

4.2. Implementation and Training Details

For the non-local sparse attention, we set the attention

bucket size (i.e. chunk size) k = 144. The corresponding

number of hash buckets m = min(hw
k
, 128) is dynamically

determined by the division of input size h × w and k but

clipped at 128. The final non-local sparse network is built

upon an EDSR backbone with 32-residual blocks and 5 ad-

ditional NLSA blocks. We set all the convolutional kernel

sizes to 3× 3. All intermediate features have 256 channels

the same as in EDSR, except for those embedded ones in the

attention blocks, which have 64 channels. The last convo-

lution layer transforms the deep features into a n 3-channel

RGB image with 3 filters. By default, the model is trained

and evaluated with NLSA of r = 4 rounds.

During training, we randomly crop 48×48 patches from

the training examples and form a mini-batch of 16 images.

The training images are further augmented via horizontal

flipping and random rotation of 90, 180, and 270 degrees.

We optimize the model by ADAM optimizer [28] with β1 =
0.9, β2 = 0.99 and ǫ = 10−8. The learning rate is set to

10−4 and reduced by 0.5 after 200 epochs. The final model

is obtained after 1000 epochs. Our model is implemented

using PyTorch and trained on Nvdia 1080ti GPUs.

4.3. Comparisons with State­of­the­Arts

To demonstrate the effectiveness of our NLSA, we com-

pare it with 12 state-of-the-arts including LapSRN [30], SR-

MDNF [49], MemNet [41], EDSR [32], DBPN [25], RDN

[52], RCAN [50], NLRN[33], RNAN [51], SRFBN [31],

OISR [26] and SAN [15].

The quantitative results are shown in Table 1. Our NLSN

achieves the best results on almost all benchmarks and all

upsampling scales. In particular, when comparing with its

backbone EDSR, adding additional NLSAs shows great su-

periority in improving performance and even makes EDSR

outperform the very competitive RCAN and SAN. Espe-

cially, the proposed NLSN brings improvements around 0.2

dB in Set5 and Set14, 0.1 dB in B100 and more than 0.4

dB in Urban100 and Manga109. These performance gains

show that NLSA succeeds in exploring extensive global

cues for more accurate super-resolution. Moreover, when

comparing with previous non-local approaches like NLRN

and RNAN, our network shows a huge advance in all en-

3521



Table 1. Quantitative results on benchmark datasets. Best and second best results are highlighted and underlined.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LapSRN [30] ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

MemNet [41] ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740

SRMDNF [49] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761

DBPN [25] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN [52] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

RCAN [50] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

NLRN [33] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 – –

RNAN [51] ×2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 39.23 0.9785

SRFBN [31] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779

OISR [26] ×2 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365 – –

SAN [15] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792

EDSR [32] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

NLSN (ours) ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789

LapSRN [30] ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350

MemNet [41] ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369

SRMDNF [49] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403

RDN [52] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

RCAN [50] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

NLRN [33] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -

RNAN [51] ×3 34.66 0.9290 30.52 0.8462 29.26 0.8090 28.75 0.8646 34.25 0.9483

SRFBN [31] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481

OISR [26] ×3 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680 - -

SAN [15] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494

EDSR [32] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

NLSN (ours) ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508

LapSRN [30] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet [41] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

SRMDNF [49] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024

DBPN [25] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN [52] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

RCAN [50] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

NLRN [33] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -

RNAN [51] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7421 26.61 0.8023 31.09 0.9149

SRFBN [31] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

OISR [26] ×4 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 - -

SAN [15] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

EDSR [32] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

NLSN (ours) ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184

tries. This is mainly because NLSA only attends to content-

correlated locations, which yields a more accurate correla-

tion estimation. It is worth noting that all these benefits

come only at an expense of adding a small amount of com-

putation, which roughly equals to a few convolution opera-

tions, demonstrating that our NLSA is indeed effective and

efficient. Visual results on Urban100 are shown in Figure

4. Our NLSN effectively restores the image details by effi-

ciently utilizing global similar patches.

4.4. Ablation Study

In this section, we conduct controlled experiments to an-

alyze the proposed NLSA. We build the baseline model with

16 residual blocks. For each attention variants, we insert a

corresponding block after the 8-th residual block.

Size k of the Attention Bucket. As discussed above,

the sparsity of NLSA is controlled by the size of the at-

tention bucket k (chunk size). And if most correlated ele-

ments are successfully identified, a small k should be suf-

ficient for producing high quality super resolution. Here

we investigate the effects of different k and compare it with

standard Non-Local Attention that have local window re-

ceptive fields covering exactly k elements. Specifically, we

set k = {52, 102, 152, 202, 252, 302, 402, 502}. As shown

in Figure 5, the performance of NLSA peaks at k = 102,

which significantly outperforms the NLA of the same cov-
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Urban100 (4×):

img 002

HR Bicubic LapSRN [30] EDSR [32] DBPN [25]

OISR [26] RDN [50] RCAN [52] SAN [15] Ours

Urban100 (4×):

img 005

HR Bicubic LapSRN [30] EDSR [32] DBPN [25]

OISR [26] RDN [50] RCAN [52] SAN [15] Ours

Urban100 (4×):

img 093

HR Bicubic LapSRN [30] EDSR [32] DBPN [25]

OISR [26] RDN [50] RCAN [52] SAN [15] Ours

Figure 4. Visual comparison for 4× SR on Urban100 dataset
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Figure 5. Ablation study on size k of the attention bucket.

erage about 0.1 dB. Moreover, attending to these 100 lo-

cations even yields much better results than the best over-

all performance of NL attention, which attends to more

than 2000 (452) locations. These results demonstrate our

NLSA manages to identify the most informative positions

at a global scale. This also indicates that knowing where to

attend is more important than attending more.

Table 2. Comparison of partition strategies on Set5 (×2).

Parition Baseline Local(q=12) Random Spherical LSH

PSNR 37.78 37.83 37.79 37.92

When further enlarging the attention bucket, NLSA be-

comes much denser. Its performance also begins to approxi-

mate the standard NLA as expected. This is mainly because

a larger k reduces the effectiveness of LSH by decreasing

the number of hash bits and also is more likely to make

chunks across multiple bucket boundaries. In an extreme

case when k equals to the number of image pixels, NLSA

will be just identical to the standard Non-Local Attention.

Similarity Grouping via Spherical LSH. Spherical

LSH partitions the space into attention buckets of correlated

elements and it plays a key role in NLSA. We investigate its

effectiveness by comparing it with other partition options.

We first compare it with random hashing, i.e., elements are

assigned to random buckets. As shown in Table 2, random

hashing brings no evident improvement over the baseline

as expected. In contrast, Spherical LSH achieves more than

0.1 dB improvements over the random version and baseline.
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Table 3. Ablation study on the attention rounds on Set5 (×2). r

denotes the number of attention rounds.

train

test
r = 1 r = 2 r = 4 r = 8

r = 1 37.86 37.87 37.88 37.89

r = 2 31.87 31.88 31.89 37.90

r = 4 37.87 37.90 37.92 37.93

r = 8 37.88 37.90 37.92 37.94

Table 4. Effect of sharing linear projection on Set5 (×2).

Linear Projection Baseline θ 6= φ θ = φ

PSNR 37.78 37.86 37.87

We also implement the local window strategy, where el-

ements are gathered purely depending on locations. We

set the window size q = 12, which equals to the atten-

tion range (k = 144) for fair comparison. Table 2 shows

Spherical LSH is superior than local window strategy. This

indicates Spherical LSH indeed effectively identifies more

useful global cues beyond a local neighborhood.

Multi-round NLSA As discussed above, hashing for

more rounds improves the robustness of NLSA but at a price

of linearly increasing computational cost. Fortunately, the

attention rounds r can be flexibly adjusted during testing.

Results of the models trained and evaluated with different

rounds are presented in Table 3. The results indicate that

increasing the hashing rounds at either training or evalua-

tion can constantly improve super-resolution accuracy. As

expected, the best result is achieved with the largest round

number during both training and testing, but it also yields

the worst computational cost.

Shared linear projection in embedded Gaussian.

NLSA uses shared linear projections in embedded Gaussian

to estimate pair-wise similarity, i.e., θ = φ. We investigate

its effect on a standard Non-Local Attention. As shown in

Table 4, the model with shared linear projection produces

comparable and even slightly better results than the one not

shared. In other words, this modification does not bring any

harm to the performance.
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37.92

20^2 40^2 60^2 80^2 100^2

P
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N
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B
)

Local Window Size
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Figure 6. Effect of size of receptive fields on Set5 (×2).

Robustness. Unlike standard Non-Local Attention, our

NLSA is inherently robust to receptive fields, since it avoids

Table 5. Efficiency and performance comparison on Set5 (×2). r

denotes attention rounds.
Methods GFLOPs PSNR

Baseline 0 37.78

NLA 16.0 37.86

Conv 0.7 –

NLSA-r1 0.9 37.87

NLSA-r2 1.4 37.90

NLSA-r4 2.4 37.92

NLSA-r8 4.3 37.93

attending to less-informative and less-correlated locations.

As shown in Figure 6, both NLSA and NLA are confined

to local windows. It suggests that, for a same window size,

our NLSA constantly outperforms NLA. This proves that

NLSA captures more accurate correlations and is more ro-

bust to noisy information. Further increasing the receptive

fields also slightly improves NLSA as it can capture addi-

tional information from longer-range contexts. In contrast,

the performance of Non-Local Attention gradually drops as

more information is taken into account, which hurts its cor-

relation estimation.

Efficiency. We compare the NLSA with standard Non-

Local Attention in terms of computational efficiency. Table

5 reports the incremental computational cost and the associ-

ated performances. The input is assumed to have spatial size

of 100 × 100 and both input and output channels are set to

64. We also add an entry of normal 3×3 convolution opera-

tion for better illustration. As shown in Table 5, NLSA sig-

nificantly reduces the computational cost of the NLA while

obtaining superior performance. For example, the most ef-

ficient single round NLSA-r1 has a similar computational

cost of convolution, but achieves comparable performances

with standard NL operation. The best result is achieved by

NLSA-r8 with 8 rounds attention, which is still roughly 3

times more efficient than the standard Non-Local Attention.

More comparisons of the efficiency are provided in the sup-

plementary material.

5. Conclusion

In this paper, we propose a novel Non-Local Sparse At-

tention (NLSA) for deep single image super resolution net-

works, that simultaneously embraces the benefits of sparse

representation and non-local operation. NLSA globally

identifies the most informative locations to attend without

paying any attention to unrelated regions, resulting in a ro-

bust and efficient global modeling operation. Further insert-

ing it into deep networks, our non-local sparse network sets

new state-of-the-arts on multiple benchmarks. Extensive

evaluations suggest that our NLSA is a superior operation

over the standard non-local attention and indeed beneficial

for accurate image super resolution.
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