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Abstract

We introduce a unified framework to jointly model im-

ages, text, and human attention traces. Our work is built

on top of the recent Localized Narratives annotation frame-

work [31], where each word of a given caption is paired

with a mouse trace segment. We propose two novel tasks:

(1) predict a trace given an image and caption (i.e., visual

grounding), and (2) predict a caption and a trace given

only an image. Learning the grounding of each word is

challenging, due to noise in the human-provided traces and

the presence of words that cannot be meaningfully visually

grounded. We present a novel model architecture that is

jointly trained on dual tasks (controlled trace generation

and controlled caption generation). To evaluate the quality

of the generated traces, we propose a local bipartite match-

ing (LBM) distance metric which allows the comparison

of two traces of different lengths. Extensive experiments

show our model is robust to the imperfect training data

and outperforms the baselines by a clear margin. More-

over, we demonstrate that our model pre-trained on the pro-

posed tasks can be also beneficial to the downstream task of

COCO’s guided image captioning. Our code1 and project

page2 are publicly available.

1. Introduction

The development of powerful models and algorithms

within computer vision and natural language processing

proceeded along distinct trajectories with only occasional

overlap until recently. However, ideas from these two fields

are gradually converging, with a focus on building multi-

modal models, particularly for aligning visual and language

stimuli [25, 35, 34, 10]. The goal of these models is to

1Code: github.com/facebookresearch/connect-caption-and-trace
2Project page: http://pages.cs.wisc.edu/∼zihangm/connect caption trace

Figure 1: The three vision-and-language tasks, as illustrated

on a single example from the Localized Narratives dataset.

The first and third depicted tasks are novel.

mimic humans’ extraordinary abilities to compress infor-

mation and translate it across modalities. Several joint or

combined visual recognition and natural language under-

standing tasks have emerged as natural tests of these vision-

and-language models’ capabilities. Image captioning asks

a model to identify and localize the key scene elements in

an image and describe them in natural language form. Vi-

sual grounding, and specifically phrase localization, asks a

model to solve the reverse problem: given a natural lan-

guage query, identify the target object(s) of the query in

the image. Controlled image captioning, first introduced

in [12], combines the two tasks. Here, an external user is

asked to specify which parts of the image they want de-

scribed and in what order (e.g., by providing an ordered se-

quence of bounding boxes). The output captions are there-

fore explicitly grounded in the image. One application of

this line of work is automatically generating localized de-

scriptions of images for visually impaired users on social
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media services. This removes the need to rely on human-

written “alt” text, which is often missing in web images [6].

Vision-and-language models share common components

and techniques. Image captioning architectures are typi-

cally composed of two modules: an image encoder, which

ingests and interprets an image, and a language model de-

coder, which generates a natural language caption [39, 17].

Visual grounding models first identify the key components

of the image (i.e., bounding box proposals) and query (i.e.,

which words or phrases to focus on), extract features from

each, and then correlate them to predict the referred-to ob-

ject [33, 16, 30, 42]. Architectures for both tasks often rely

on attention [39, 15, 17, 25], a mechanism inspired by the

human visual system [32, 11]. Researchers have also de-

signed more complex models that can do both caption gen-

eration and grounding. For example, [27] and [42] can both

generate an unambiguous description of a specific object or

region in an image and automatically select an object given

a referring text expression.

Despite these advancements, existing image captioning

and visual grounding models cannot jointly generate long-

form, natural language captions and dense, word-level vi-

sual groundings. This is because existing image captioning

datasets only provide short captions with sparse ground-

ings at the noun level (Flickr30k Entities [30]) or phrase

level (Google RefEx [27], Flickr30k Entities [30] and Vi-

sual Genome [22]). To address these limitations, [31] intro-

duced the Localized Narratives dataset, in which annotators

were asked to describe an image with their voice while si-

multaneously drawing a mouse trace over the region they

are describing. This annotation framework provides rich,

longform image captions and dense visual grounding in the

form of a mouse trace segment for each word. The work

in [31] incorporates the annotated mouse trace to aid in

standard image captioning and controlled image captioning

tasks. However, it does not investigate the reverse problem

of directly predicting the mouse trace or explore the con-

nections between caption generation and trace generation.

In this paper, we take a step beyond [31] by requiring

models to directly predict the trace, which is analogous to

a fine-grained and temporally grounded log of human at-

tention. Besides controlled caption generation, where a

model generates a caption guided by the given ordered trace

from [31], we further introduce two challenging new tasks:

controlled trace generation, where a model must densely lo-

calize each word from a natural language caption in an im-

age, and joint caption and trace generation, where a model

is only given an image and must act as an annotator in the

Localized Narratives protocol. There tasks are shown in

Fig. 1. The task of predicting the trace is meaningful in two

ways. First, a point-wise trace is a straightforward means

for representing eye gaze. Learning the trace (independent

of specific use cases) could be variously useful, and this is

made possible by the efficient collection scheme described

in [31] which does not rely on expensive gaze trackers.

Second, this form of annotation yields “weakly-labeled”

word-level grounding. We demonstrate that such “weak”

word-to-trace alignment could offer benefits for some im-

portant vision and language tasks. Besides, the predicted

trace can provide a better explanation than most attention-

based image captioning approaches. To evaluate the gener-

ated traces, we propose a novel evaluation metric, local bi-

partite matching (LBM), to compare two traces of arbitrary

length. We present a flexible new transformer-based model

architecture that is trained in parallel on controlled caption

generation and controlled trace generation. The model also

incorporates a symmetric cycle loss to improve the quality

of the generated caption and trace. In addition to the three

tasks mentioned above, we show that our approach can ben-

efit downstream tasks by pre-training on our proposed tasks

before fine-tuning for the downstream setting.

To summarize, we make the following contributions:

• We introduce two novel tasks: (i) controlled trace gen-

eration and (ii) joint caption and trace generation.

• We present a novel mirrored transformer model archi-

tecture (MITR), which is jointly trained and evaluated

on three vision-and-language tasks.

• We design an evaluation metric to address the chal-

lenge of computing the distance between two traces of

different lengths.

• By jointly learning from the mirrored trace genera-

tion task, our proposed method benefits the down-

stream task of guided caption generation on the COCO

dataset.

2. Related Work

Image Captioning Image captioning is typically for-

mulated using a generative model, creating descriptions

in textual space given the input image via CNN-to-

RNN/LSTM/Transformer [38, 9, 20, 13]. An increasingly

common addition to this basic architecture is a visual at-

tention mechanism which typically produces a spatial map

that identifies the specific image region(s) most relevant

to the current word prediction task [40, 3]. However, the

learned spatial attention may not well align with human at-

tention [14]. To model attention more directly, controlled

image captioning was first introduced in [39]. It requires the

user to provide a sequence of bounding boxes in the image

and outputs the image caption in the same order, describing

the objects in those bounding boxes. The authors in [31] ad-

justed the task by using an annotator’s mouse trace for the

control.

Visual Grounding The task of visual grounding is to

localize a region described by a given text query. Re-
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searchers have introduced multiple datasets to tackle this

problem, such as RefCOCO [42], Google RefEx [27],

Flickr30K [30], and DenseCap [19]. State-of-the-art ap-

proaches [41, 43, 24, 44] treat visual grounding as select-

ing the most matched box to the input text query. However,

the input query is typically short (the average length of cap-

tions in RefCOCO is 3.5 words) and the grounding is sparse

(each query corresponds to just a single box). By contrast,

our work focuses on denser word-to-region grounding.

Localized Narratives As described above, image cap-

tioning datasets only provide image-sentence pairs without

the spatial localization of words. Visual grounding datasets

only provide sparse region-sentence mapping. Recently,

Localized Narratives [31] was proposed, which offers dense

word-region alignment for each full caption. This dataset

was collected by recording annotators’ voice and mouse

traces simultaneously when describing the image content.

The three modalities of image, trace, and caption signif-

icantly expands the scope of how we can connect vision

and language. While [31] only addressed a single task of

controlled captioning, we introduce two more novel and

challenging tasks, i.e., controlled trace generation, and joint

caption and trace generation. At first glance, these three

tasks as shown in Fig. 1 appear separate; however, we pro-

pose a unified framework using a mirrored transformer to

jointly model all three tasks.

3. Method

3.1. Three Tasks on the Three Modalities

We first introduce how we encode the new trace modal-

ity. The trace is a series of points with corresponding times-

tamps, each associated with a single word from the caption.

Instead of encoding each individual point, we convert the

trace into a sequence of word-aligned bounding boxes, i.e.,

one box per word. This encoding mitigates the local “draw-

ing” variation (by different annotators) within the same re-

gion, and thus more reliably allows the model to attend to

the full spatial extent of a referred region.

In order to generate this dense word-to-box alignment

from the provided trace points, we take the following steps:

(i) Split the trace into segments, with one segment per word

(using the word-to-trace alignment from Localized Narra-

tives). (ii) Generate one bounding box per trace segment,

by taking the axis-aligned minimum bounding box of the

convex hull of the mouse points. Then we introduce the

three tasks:

Controlled Trace Generation Given an image I and a

caption describing this image w = {w1, w2, · · · , wN}, the

model is required to generate a trace indicating the visual

grounding corresponding to the caption, in the form of an

ordered region sequence r = {r1, r2, · · · , rT }.

Controlled Caption Generation Given an image I and

a mouse trace provided by the user that is mapped to a se-

quence of regions, r = {r1, r2, · · · , rT }, the model gener-

ates a caption w = {w1, w2, · · · , wN} describing the im-

age along this trace.

Joint Caption and Visual Trace Generation We further

propose a task which can be regarded as an extension of

standard image captioning: given an image I , the model

generates both caption w = {w1, w2, ..., wN} and its cor-

responding trace of ordered regions r = {r1, r2..., rT } that

matches the caption.

3.2. Mirrored Transformer for Three Modalities

Although the three tasks defined above are quite differ-

ent, they operate on the same set of three modalities: im-

age, caption, and trace. In this work, we propose a model

that effectively addresses all three tasks together in a uni-

fied framework with shared parameters, rather than build-

ing three separate models. Due to its symmetric structure,

we name this model architecture “MIrrored TransformeR”

(MITR), as in Fig. 2.

Features The inputs to the model are subsets of: image

features, text features, and trace features. For image fea-

tures, we use pre-trained Faster R-CNN [3] to compute the

visual features of the detected regions. For the text feature,

we sum up the positional embeddings and the word embed-

dings, as in [36], where the position refers to the index of

the word within the caption. For the trace feature, we sum

up the positional embeddings and the input trace, which is

projected into d hidden dimensions. Specifically, we de-

fine the trace position as the index of the bounding box that

is aligned with the word in the corresponding caption. We

denote the input visual features, text features, and trace fea-

tures as xv, xw, xr, respectively.

Model Architecture As in Fig. 3, our model is composed

of three modules (corresponding to three modalities): im-

age encoder, caption encoder-decoder, and trace encoder-

decoder. Each module consists of a transformer with self-

attention. Specifically, the image encoder, hv , is defined as:

hv = FFN(MultiHeadv(xv, xv, xv)), (1)

where we follow [36] to define the feed-forward network

(FFN) as two linear transformation layers with a ReLU ac-

tivation in between, and the MultiHead as:

MultiHead(Q,K, V ) = Concat(head1, ..., headc)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i ),

where the projections are parameter matrices. We refer

readers to [36] for additional details of MultiHead attention.

Note that there is no masking operation in the MultiHead

module from Eqn. (1), since we allow the model to attend

to all visual features when processing the caption and trace.
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Figure 2: Overall architecture. Our proposed Mirrored Transformer (MITR) architecture effectively addresses the three tasks

together by sharing most of the network modules. The structure is mirrored for processing the caption and trace. Depending

on the task, we add a masking operation for the encoding/decoding of each module.
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Figure 3: Mirrored Transformer (MITR) architecture.

MHA stands for MultiHead Attention.

We then design a mirrored structure for the caption and

trace modules, based on the observation that the two modal-

ities are symmetric in the controlled caption generation and

controlled trace generation tasks. The caption encoder-

decoder, hw, and trace encoder-decoder, hr, are defined as:

hw = MultiHead2w(MultiHead1
w(xw, xw, xw), hv, hv)

hr = MultiHead2
r(MultiHead1r(xr, xr, xr), hv, hv)

Our caption and trace modules can switch roles between en-

coder and decoder seamlessly. Inspired by [26], this switch-

ing is implemented by a masking operation, where the en-

coder observes all inputs but the decoder only observes par-

tial previous information. This prevents the decoder from

attending to future information. We implement a masking

operation in either MultiHead1w or MultiHead1
r , depending

on the specified task:

• For controlled caption generation, the input caption is

shifted right by one position, and MultiHead1w applies

masking to prevent leftward information flow. This en-

sures every position can only see its previous positions

in the attention module. Note, the input trace is not

shifted and MultiHead1r does not have any masking.

• For controlled trace generation, the input trace is

shifted right by one position and MultiHead1r applies

masking, while the input caption is not shifted and

MultiHead1
w does not perform the mask operation.

• For the joint caption and trace generation task, both

the input caption and input trace are shifted right by

one position, and both MultiHead1w and MultiHead1
r

perform mask operations.

Our model also supports multiple layers. The mod-

ule between xv, xw, xr and hv, hw, hr can be repeated N
times. Specifically, MultiHeadv acts as the encoder, while

MultiHead1w, MultiHead2
w, MultiHead1

r , and MultiHead2r
switch roles between encoder and decoder depending on

what task is being performed. All of these modules are

shared across different tasks.

Finally, once hw and hr have been computed,

MultiHead3w and MultiHead3
r are used to fuse the infor-

mation from caption and trace modules. Note that in the

joint caption and trace generation task, both MultiHead3
w

and MultiHead3r need to include a mask operation, while in

the other two tasks, no mask operation is needed.

3.3. Controlled Trace Generation: Distance Score

Given a ground truth trace of length q, represented as

a sequence of q bounding boxes, and a predicted trace of
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length m, we need a score that can measure the distance be-

tween these two traces. When q = m, the most straightfor-

ward way is to compute the L1 loss between pairs of bound-

ing boxes (where the two bounding boxes at the same index

in the sequence form a pair): D(rgt, r̂) = 1
q

∑q

i=1 |r
gt
i −r̂i|,

where |rgti − r̂i| is the mean L1 distance on the four coor-

dinates of the i-th bounding box.

However, there are two main challenges. First, when

q 6= m, we need to find the exact alignment between the

two sets of bounding boxes. Second, even when q = m, we

may not want to force the two sets to match in the given or-

der because the dataset may contain examples where the lo-

cal bounding box ordering is not semantically meaningful.

[7] shows that if we treat each “trajectory” as a sequence

of points on a Riemannian manifold, a distance metric be-

tween two trajectories can be derived on a homogeneous

space. Such an idea is useful for the case where the sam-

ple dimension is much larger than the number of samples.

In our case, the sample dimension is small (4-D vector to

represent each bounding box), so we choose to simply cast

the evaluation task as a simple bipartite matching problem.

Note that standard bipartite matching is not a direct solu-

tion as it operates on two unordered sets of samples, ig-

noring the ordering within a trace. Instead, we propose to

add local constraints to the bipartite matching so that the

orderless matching can only happen within a local window.

On the one hand, it provides a way to match two ordered

sequences of bounding boxes; on the other hand, it allows

local disorder, which is robust to the noise in the dataset

annotation.

Consider two traces of lengths q and m; without loss of

generality, we assume that q ≤ m. Let C ∈ R
q×m be the

cost matrix where Cij is the mean L1 distance between the

four coordinates of the i-th box from the first trace and j-th

box from the second trace, and let X be the assignment ma-

trix. We solve the following linear programming problem

to get the distance between these two traces:

min
X

Tr(CXT )

s.t., X1m = 1q, XT
1q ≤ 1m, X ≥ 0, Xi,j = 0,

∀i, j s.t., 0 ≤ i ≤ q − 1, 0 ≤ j ≤ m− 1,

j <

⌊

(i− k)
m

q

⌋

or j ≥ (i+ 1 + k)
m

q
,

where 1m ∈ R
m is all one vector and k is the window size

controlling the local range of disordered matching. For ex-

ample, when q = m and k = 1, this allows one box from the

first trace to match with the box at the same index from the

second trace and also its left and right neighbors. After solv-

ing this linear programming problem, we use Tr(CXT )/q
as the distance score between two traces. We call our pro-

posed score the Local Bipartite Matching score (LBM). In

addition to using this as an evaluation measure, one could

further incorporate this score into training to learn traces for

a better matching score, by utilizing recently proposed dif-

ferentiable linear programming solvers [28, 1]. To keep the

presentation succinct, we do not discuss these extensions in

this paper.

3.4. Cycle Interaction of Trace and Caption

Another interesting finding of our model architecture is

that the controlled trace generation and controlled caption

generation are dual problems in one framework, i.e., the

output of one direction serves as the input of the other.

This inspires us to allow the two modules interact with each

other. First, we randomly permute the trace and feed it into

the controlled caption generation module, generating the

caption. Then, we feed this generated caption3 into our con-

trolled trace generation model and enforce that the predicted

trace be close to the originally permuted trace by adding a

cycle loss. By doing so, we enrich the training set by adding

more meaningful but unseen trace-caption pairs. As shown

in Section 4.5, this further boosts the performance of both

tasks.

We denote our mirrored transformer model as f(), the

controlled trace generation task as r̂ = f(I,w), and the

controlled caption generation task as ŵ = f(I, r). We en-

force the cycle consistency via

Lr̃→ŵ→r̂ = Distr(f(I, f(I, r̃)), r̃),

where Distr is the L1 loss between the predicted trace and

the ground truth trace, and r̃ is the randomly manipulated

trace. Specifically, we perform two types of manipulation:

(i) randomly switch the trace within a mini-batch, and (ii)
cut a trace into S segments and randomly permute these

segments to form a new trace. We show that both manipu-

lations are effective in improving the performance.

3.5. Total Loss Function

The final loss function can be formulated as:

Ltotal = λ1L[trace] + λ2L[caption]

+ λ3Lr̃→ŵ→r̂ + λ4L[joint], (2)

where L[trace] is the L1 loss between the predicted trace

boxes and ground truth trace boxes for controlled trace gen-

eration, L[caption] is the cross-entropy loss of the caption for

controlled caption generation, Lr̃→ŵ→r̂ is the cycle loss,

and L[joint] is the sum of the trace loss and the caption loss

for the joint caption and trace generation task.

3.6. Bridging the Gap between Training and Testing

Discrepancies between training and inference always ex-

ist in sequential prediction models [5]. At training, the

3Gumbel-softmax [18] is applied to approximate the non-differentiable

categorical sampling of words.
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# images # captions # words/capt

COCO Loc. Narr. [31] 123,287 142,845 41.8

Flickr30k Loc. Narr. [31] 31,783 32,578 57.1

ADE20k Loc. Narr. [31] 22,210 22,529 43.0

Open Images Loc. Narr. [31] 671,469 675,155 34.2

Table 1: Localized Narratives built on top of COCO,

Flickr30k, ADE20k, and Open Images.

ground-truth input/output trace at each time step is pro-

vided, while at inference the unknown previous trace is re-

placed by a trace generated by the model itself.

In our proposed joint caption and trace generation task,

such discrepancies are even more severe than in standard

caption generation, as both the previous word and trace box

are generated by the model and thus are connected. The

generated trace especially suffers from noise because, un-

like the caption, the trace lacks syntax. A single offset could

cause the following trace boxes to quickly move to any-

where in the image. To alleviate this problem, we propose

a random replacement of the input trace boxes, where we

replace a box with [0, 0, 1, 1, 1] (corresponding to the whole

image) with probability p. As shown in Table 3, this ap-

proach improves the performance of joint caption and trace

generation by a clear margin.

4. Experiments

4.1. Dataset

We conduct experiments on four datasets: COCO,

Flickr30k, ADE20k, and Open Images, with annotations

from two different frameworks: COCO Captions [8] and

Localized Narratives [31], summarized in Table 1. We per-

form an ablation study on COCO and report the perfor-

mance of our best performing model on the other three

datasets in Localized Narratives and the downstream task

introduced in Section 4.7 (evaluated on the COCO Captions

annotations). We use the COCO2017 split for all experi-

ments except Section 4.7, where we follow [12] to use the

split they provide.

The annotations provided by Localized Narratives are

challenging to work with for a number of reasons. First,

the human-generated trace segment ri is a noisy visual rep-

resentation of the mentioned object, due to imperfect voice-

trace synchronization (e.g., if the annotator moves their

mouse without speaking), errors in voice-word synchro-

nization (from the automatic sequence-to-sequence align-

ment model in [31]), inconsistent drawing habits among an-

notators, and the different nature of mouse trace lines vs.

bounding boxes. Second, not every word can be mean-

ingfully grounded in the image, such as existentials (e.g.,

“there are”) and language referring to the observer (e.g., “in

this image, I can see ...”). By our estimate, such words ac-

count for at least 20% of the words in the COCO validation

captions from Localized Narratives. Traces for such words

are less meaningful than the other groundable words.

4.2. Experimental Setting

We use our mirrored transformer (MITR) defined in Sec-

tion 3.2 with N = 1 (as shown in Fig. 3). The hidden size

of attention layers is 512 and that of the feed-forward lay-

ers is 2048. We train the network with batch size 30 using

the Adam optimizer [21]. The initial learning rate is 5e−4,

which decays every 3 epochs with decay rate 0.8, for a total

of 30 epochs. We use the same training setup for all exper-

iments reported in this paper. The random masking rate for

joint caption and trace prediction is p = 0.5. In the follow-

ing, we denote controlled trace generation as Task1, con-

trolled caption generation as Task2, and joint caption and

trace generation as Task3.

Controlled Trace Generation In this task, we represent

the trace as an ordered sequence of bounding boxes, and the

model predicts one bounding box for each word of the input

caption, as described in Section 3.1. Given a ground truth

trace r
gt = {rgt1 , rgt2 , ..., rgtT } and a predicted trace r̂ =

{r̂1, r̂2, ..., r̂T } for the same image, we compute the local

bipartite matching (LBM) score proposed in Section 3.3 for

k = 0 and k = 1.

Controlled Caption Generation Given an image and a

trace, the model predicts the caption corresponding to the

trace. When evaluating the quality of generated captions,

we report the following widely adopted metrics: BLEU-

1, BLEU-4 [29], METEOR [4], ROGUE [23], CIDEr [37],

SPICE [2]. We use beam search with size 5.

Joint Caption and Trace Generation In this task, the

model is given only an image as input and outputs both

caption and trace simultaneously. The model produces out-

puts iteratively, generating one word and one corresponding

bounding box at each time step. At test time, we end the

generation when the caption generation branch outputs the

END token. In this process, since the model itself controls

the length of the output, the length of the predicted trace r̂

may differ from the length of the ground truth trace rgt. The

max length for generating caption and trace is set to be 100.

We report our LBM metric for both k = 0 and k = 1.

Baselines For controlled trace generation, we construct

the baseline by using a standard one-layer encoder-decoder

transformer architecture as defined in [36] and feed both

visual features and captions to the encoder. Similarly, for

controlled caption generation, we use the same architecture

as a baseline and feed both visual features and traces to the

encoder. For joint caption and trace generation, we con-

struct the baseline by also using the same architecture, but

only using visual features as input, and we train it on the

caption generation task.
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Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE

[31] Task2 0.522 0.246 N/A 0.483 1.065 0.365

Baseline Task2 0.563 0.255 0.240 0.453 0.997 0.293

MITR Task2 0.577 0.257 0.245 0.456 1.213 0.293

MITR Task2 + Task1 0.586 0.272 0.252 0.470 1.329 0.307

MITR Task2 + Task1 + cycles 0.596 0.282 0.257 0.476 1.390 0.309

MITR Task2 + Task1 + cycleb 0.598 0.286 0.258 0.479 1.407 0.313

MITR(2 layer) Task2 + Task1 + cycleb 0.607 0.292 0.263 0.487 1.485 0.317

Table 2: Quantitative results for Task 2 (controlled caption generation) on COCO. cycles and cycleb refer to two types of

cycle loss defined in Sec 4.5. Results from [31] are not directly comparable to ours due to differences mentioned in Sec 4.3.

Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM(k=0) LBM(k=1)

Baseline Task2 0.355 0.087 0.155 0.307 0.310 0.210 N/A N/A

MITR Task3 0.387 0.118 0.168 0.316 0.170 0.194 0.387 0.369

MITR Task3 + random mask 0.395 0.128 0.184 0.328 0.219 0.223 0.308 0.292

MITR Task3 + Task1 + Task2 + random mask 0.417 0.125 0.178 0.323 0.216 0.213 0.283 0.267

Table 3: Quantitative results for Task 3 (joint caption and trace generation) on COCO.

Dataset Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM(k=0) LBM(k=1)

Flickr30k Baseline Task1 N/A N/A N/A N/A N/A N/A 0.253 0.249

Flickr30k Baseline Task2 0.620 0.345 0.286 0.524 1.763 0.341 N/A N/A

Flickr30k MITR Task1 + Task2 + cycleb 0.644 0.374 0.300 0.547 2.014 0.365 0.195 0.188

ADE20k Baseline Task1 N/A N/A N/A N/A N/A N/A 0.251 0.247

ADE20k Baseline Task2 0.565 0.278 0.259 0.475 1.288 0.341 N/A N/A

ADE20k MITR Task1 + Task2 + cycleb 0.580 0.297 0.269 0.490 1.463 0.354 0.177 0.168

Open Images Baseline Task1 N/A N/A N/A N/A N/A N/A 0.212 0.209

Open Images Baseline Task2 0.560 0.273 0.261 0.503 1.467 0.361 N/A N/A

Open Images MITR Task1 + Task2 + cycleb 0.573 0.292 0.271 0.520 1.584 0.372 0.180 0.171

Table 4: Quantitative results for Task 1 and Task2 on Localized Narratives of Flickr30k, ADE20k and Open Images.

4.3. Results on Individual Tasks

Controlled Trace Generation In Fig. 4 (top left), we

demonstrate the qualitative results of the controlled trace

generation: we can see that the trace closely follows the

ground truth trace and also semantically corresponds well

to the input caption. Table 5 shows the quantitative results.

From the table, we see that our proposed MITR outperforms

the baseline method constructed in Section 4.2 (standard

transformer with one encoder and one decoder [36]).

Method Trained on LBM (k=0) LBM (k=1)

Baseline Task1 0.208 0.204

MITR Task1 0.171 0.159

MITR Task1 + Task2 0.169 0.157

MITR Task1 + Task2 + cycles 0.165 0.156

MITR Task1 + Task2 + cycleb 0.166 0.155

MITR(2 layer) Task1 + Task2 + cycleb 0.163 0.154

Table 5: Quantitative results for Task 1 (controlled trace

generation). cycles and cycleb refer to the two cycle losses

defined in Sec 4.5. Note: smaller values of LBM are better.

Controlled Caption Generation We show our quantita-

tive results in Table 2 and qualitative results on the right

side in Fig. 4. Our baseline model differs from the one in

[31] in several places: we use a one-layer encoder-decoder

transformer while [31] uses two layers; in addition, we pro-

cess the trace by cutting the trace by word while [31] cuts

the trace by a fixed time interval. Thus, results from [31]

are not directly comparable to ours. We mention the perfor-

mance of [31] in Table 2 for easy reference.

Joint Caption and Trace Generation The quantitative

results for this task are in Table 3. We can see that by

modeling the trace at the same time as the caption, the per-

formance of caption generation improves by a large mar-

gin over the baseline, which only models the caption. In

addition, our proposed random masking technique further

improves the performance of Task 3 on caption generation

by over 1% absolute improvement on all metrics, and on

trace generation by nearly 20% relative improvement. The

qualitative results are shown in Fig. 4 (bottom). Without

human annotated attention traces to guide the caption gen-

eration, sometimes the same objects or descriptions are re-

peated multiple times in a single caption. This suggests that

future developments must keep an account of all the objects

referenced to avoid repetition.

4.4. Joint Training Results

We demonstrate that, by performing joint training, our

model can boost the performance of each individual task
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Task 2: Controlled Caption GenerationTask 1: Controlled Trace Generation

Ground-truth caption Predicted trace Ground-truth trace Predicted caption

Task 3: Joint Caption + Trace Generation

Predicted tracePredicted captionImage

Figure 4: Qualitative results on Tasks 1, 2, and 3 (with more results in the supplementary file).

while using approximately one half of the parameters and

training compute cost, compared with training one separate

model for each individual task. The quantitative results are

in Tables 5 and 2. Further, we can see from Table 3 that the

joint training of Task 1 and Task 2 can also help Task 3.

4.5. Cycle Loss Results

We show that, by enforcing cycle consistency, both con-

trolled trace generation and controlled caption generation

are further improved when joint training is used. The quan-

titative results are in Tables 5 and 2. We use cycles to repre-

sent cycle loss where a single trace is cut into segments and

then randomly permuted before forming a new trace, and

cycleb to represent cycle loss where the trace is permuted

along the batch dimension within a mini-batch. Adding

cycleb achieves over 1% absolute improvement on BLEU-

1 and BLEU-4 compared with our joint training result and

over 3% absolute improvement from our baseline model.

4.6. Results on Flickr30k, ADE20k, Open Images

We also report the performance of our best performing

model and the baseline model on another three datasets

(Flickr30k, AED20k, Open Images), where Localized Nar-

ratives are also collected [31]. The results are given in Table

4. As shown, our method achieves consistent improvement

over the baseline methods on all datasets.

B-1 B-4 M R C S

Ours w/o pretrain 0.463 0.182 0.219 0.466 1.746 0.363

Ours w/ pretrain 0.474 0.189 0.225 0.475 1.819 0.370

Table 6: Downstream task on guided caption generation.

4.7. Downstream Task

We further investigate the benefit of our joint training

framework. By pre-training using our joint training frame-

work on Localized Narratives [31] and fine-tuning on a

guided caption generation task [12] on COCO Captions [8],

we are able to get better results than directly training on

COCO Captions. In this experiment, we follow [12] to use

the COCO split provided by [20].

The task is defined as: given an image I and a se-

quence of ordered bounding boxes r = {r1, r2, · · · , rT }
as guidance, the model generates a caption w =
{w1, w2, · · · , wN}. This task is similar to our controlled

caption generation task (Task 2), but we do not assume any

correspondence between the boxes and words for both train-

ing and testing. Note that [12] considers a slightly different

setting, where the dense correspondences between boxes

and words are given during training but not at testing. Thus

a special gate function was proposed to automatically attend

the words to the boxes during test time. See the supplemen-

tary material for more details. The results are in Table 6,

where pre-training offers a clear gain.

5. Conclusion

We presented a unified framework for modeling vision,

language, and human attention traces. Our work is built on

top of the Localized Narratives framework and motivated

by the need for longform image captions and dense visual

grounding. We proposed a Mirrored Transformer model

architecture that was jointly trained on three vision-and-

language tasks. We demonstrated the effectiveness of our

approach through detailed experiments on four datasets.
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