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Abstract

We introduce a unified framework to jointly model im-
ages, text, and human attention traces. Our work is built
on top of the recent Localized Narratives annotation frame-
work [31], where each word of a given caption is paired
with a mouse trace segment. We propose two novel tasks:
(1) predict a trace given an image and caption (i.e., visual
grounding), and (2) predict a caption and a trace given
only an image. Learning the grounding of each word is
challenging, due to noise in the human-provided traces and
the presence of words that cannot be meaningfully visually
grounded. We present a novel model architecture that is
jointly trained on dual tasks (controlled trace generation
and controlled caption generation). To evaluate the quality
of the generated traces, we propose a local bipartite match-
ing (LBM) distance metric which allows the comparison
of two traces of different lengths. Extensive experiments
show our model is robust to the imperfect training data
and outperforms the baselines by a clear margin. More-
over, we demonstrate that our model pre-trained on the pro-
posed tasks can be also beneficial to the downstream task of
COCO’s guided image captioning. Our code' and project
page’ are publicly available.

1. Introduction

The development of powerful models and algorithms
within computer vision and natural language processing
proceeded along distinct trajectories with only occasional
overlap until recently. However, ideas from these two fields
are gradually converging, with a focus on building multi-
modal models, particularly for aligning visual and language
stimuli [25, 35, 34, 10]. The goal of these models is to

ICode: github.com/facebookresearch/connect-caption-and-trace
2Project page: http:/pages.cs.wisc.edu/~zihangm/connect_caption _trace

“Here we can see a person
wearing ski boards on his legs
and skating in the snow and
he is also wearing gloves,
helmet, goggles and we can
see a flag behind him and
trees present.”

image caption trace

Vision-And-Language Tasks We Address

Controlled Trace Generation | image + caption — trace

Controlled Caption Generation | image + trace — caption

Joint Caption + Trace Generation | image —> caption + trace

Figure 1: The three vision-and-language tasks, as illustrated
on a single example from the Localized Narratives dataset.
The first and third depicted tasks are novel.

mimic humans’ extraordinary abilities to compress infor-
mation and translate it across modalities. Several joint or
combined visual recognition and natural language under-
standing tasks have emerged as natural tests of these vision-
and-language models’ capabilities. Image captioning asks
a model to identify and localize the key scene elements in
an image and describe them in natural language form. Vi-
sual grounding, and specifically phrase localization, asks a
model to solve the reverse problem: given a natural lan-
guage query, identify the target object(s) of the query in
the image. Controlled image captioning, first introduced
in [12], combines the two tasks. Here, an external user is
asked to specify which parts of the image they want de-
scribed and in what order (e.g., by providing an ordered se-
quence of bounding boxes). The output captions are there-
fore explicitly grounded in the image. One application of
this line of work is automatically generating localized de-
scriptions of images for visually impaired users on social
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media services. This removes the need to rely on human-
written “alt” text, which is often missing in web images [0].

Vision-and-language models share common components
and techniques. Image captioning architectures are typi-
cally composed of two modules: an image encoder, which
ingests and interprets an image, and a language model de-
coder, which generates a natural language caption [39, 17].
Visual grounding models first identify the key components
of the image (i.e., bounding box proposals) and query (i.e.,
which words or phrases to focus on), extract features from
each, and then correlate them to predict the referred-to ob-
ject [33, 16, 30, 42]. Architectures for both tasks often rely
on attention [39, 15, 17, 25], a mechanism inspired by the
human visual system [32, |1]. Researchers have also de-
signed more complex models that can do both caption gen-
eration and grounding. For example, [27] and [42] can both
generate an unambiguous description of a specific object or
region in an image and automatically select an object given
a referring text expression.

Despite these advancements, existing image captioning
and visual grounding models cannot jointly generate long-
form, natural language captions and dense, word-level vi-
sual groundings. This is because existing image captioning
datasets only provide short captions with sparse ground-
ings at the noun level (Flickr30k Entities [30]) or phrase
level (Google RefEx [27], Flickr30k Entities [30] and Vi-
sual Genome [22]). To address these limitations, [31] intro-
duced the Localized Narratives dataset, in which annotators
were asked to describe an image with their voice while si-
multaneously drawing a mouse trace over the region they
are describing. This annotation framework provides rich,
longform image captions and dense visual grounding in the
form of a mouse trace segment for each word. The work
in [31] incorporates the annotated mouse trace to aid in
standard image captioning and controlled image captioning
tasks. However, it does not investigate the reverse problem
of directly predicting the mouse trace or explore the con-
nections between caption generation and trace generation.

In this paper, we take a step beyond [31] by requiring
models to directly predict the trace, which is analogous to
a fine-grained and temporally grounded log of human at-
tention. Besides controlled caption generation, where a
model generates a caption guided by the given ordered trace
from [3 1], we further introduce two challenging new tasks:
controlled trace generation, where a model must densely lo-
calize each word from a natural language caption in an im-
age, and joint caption and trace generation, where a model
is only given an image and must act as an annotator in the
Localized Narratives protocol. There tasks are shown in
Fig. 1. The task of predicting the trace is meaningful in two
ways. First, a point-wise trace is a straightforward means
for representing eye gaze. Learning the trace (independent
of specific use cases) could be variously useful, and this is

made possible by the efficient collection scheme described
in [31] which does not rely on expensive gaze trackers.
Second, this form of annotation yields “weakly-labeled”
word-level grounding. We demonstrate that such “weak”
word-to-trace alignment could offer benefits for some im-
portant vision and language tasks. Besides, the predicted
trace can provide a better explanation than most attention-
based image captioning approaches. To evaluate the gener-
ated traces, we propose a novel evaluation metric, local bi-
partite matching (LBM), to compare two traces of arbitrary
length. We present a flexible new transformer-based model
architecture that is trained in parallel on controlled caption
generation and controlled trace generation. The model also
incorporates a symmetric cycle loss to improve the quality
of the generated caption and trace. In addition to the three
tasks mentioned above, we show that our approach can ben-
efit downstream tasks by pre-training on our proposed tasks
before fine-tuning for the downstream setting.
To summarize, we make the following contributions:

* We introduce two novel tasks: () controlled trace gen-
eration and (7¢) joint caption and trace generation.

* We present a novel mirrored transformer model archi-
tecture (MITR), which is jointly trained and evaluated
on three vision-and-language tasks.

e We design an evaluation metric to address the chal-
lenge of computing the distance between two traces of
different lengths.

* By jointly learning from the mirrored trace genera-
tion task, our proposed method benefits the down-
stream task of guided caption generation on the COCO
dataset.

2. Related Work

Image Captioning Image captioning is typically for-
mulated using a generative model, creating descriptions
in textual space given the input image via CNN-to-
RNN/LSTM/Transformer [38, 9, 20, 13]. An increasingly
common addition to this basic architecture is a visual at-
tention mechanism which typically produces a spatial map
that identifies the specific image region(s) most relevant
to the current word prediction task [40, 3]. However, the
learned spatial attention may not well align with human at-
tention [14]. To model attention more directly, controlled
image captioning was first introduced in [39]. It requires the
user to provide a sequence of bounding boxes in the image
and outputs the image caption in the same order, describing
the objects in those bounding boxes. The authors in [31] ad-
justed the task by using an annotator’s mouse trace for the
control.

Visual Grounding The task of visual grounding is to
localize a region described by a given text query. Re-
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searchers have introduced multiple datasets to tackle this
problem, such as RefCOCO [42], Google RefEx [27],
Flickr30K [30], and DenseCap [19]. State-of-the-art ap-
proaches [41, 43, 24, 44] treat visual grounding as select-
ing the most matched box to the input text query. However,
the input query is typically short (the average length of cap-
tions in RefCOCO is 3.5 words) and the grounding is sparse
(each query corresponds to just a single box). By contrast,
our work focuses on denser word-to-region grounding.

Localized Narratives As described above, image cap-
tioning datasets only provide image-sentence pairs without
the spatial localization of words. Visual grounding datasets
only provide sparse region-sentence mapping. Recently,
Localized Narratives [3 | ] was proposed, which offers dense
word-region alignment for each full caption. This dataset
was collected by recording annotators’ voice and mouse
traces simultaneously when describing the image content.
The three modalities of image, trace, and caption signif-
icantly expands the scope of how we can connect vision
and language. While [31] only addressed a single task of
controlled captioning, we introduce two more novel and
challenging tasks, i.e., controlled trace generation, and joint
caption and trace generation. At first glance, these three
tasks as shown in Fig. 1 appear separate; however, we pro-
pose a unified framework using a mirrored transformer to
jointly model all three tasks.

3. Method
3.1. Three Tasks on the Three Modalities

We first introduce how we encode the new trace modal-
ity. The trace is a series of points with corresponding times-
tamps, each associated with a single word from the caption.
Instead of encoding each individual point, we convert the
trace into a sequence of word-aligned bounding boxes, i.e.,
one box per word. This encoding mitigates the local “draw-
ing” variation (by different annotators) within the same re-
gion, and thus more reliably allows the model to attend to
the full spatial extent of a referred region.

In order to generate this dense word-to-box alignment
from the provided trace points, we take the following steps:
(2) Split the trace into segments, with one segment per word
(using the word-to-trace alignment from Localized Narra-
tives). (¢¢) Generate one bounding box per trace segment,
by taking the axis-aligned minimum bounding box of the
convex hull of the mouse points. Then we introduce the
three tasks:

Controlled Trace Generation Given an image I and a
caption describing this image w = {wj,ws, -+ ,wy}, the
model is required to generate a trace indicating the visual
grounding corresponding to the caption, in the form of an
ordered region sequence r = {ry,r2, -+ ,r}.

Controlled Caption Generation Given an image I and
a mouse trace provided by the user that is mapped to a se-
quence of regions, r = {ry,r9, -+ ,rr}, the model gener-
ates a caption w = {wy,ws, - ,wy } describing the im-
age along this trace.

Joint Caption and Visual Trace Generation We further
propose a task which can be regarded as an extension of
standard image captioning: given an image I, the model
generates both caption w = {wy, ws, ..., wy} and its cor-
responding trace of ordered regions r = {ry, rs...,rr} that
matches the caption.

3.2. Mirrored Transformer for Three Modalities

Although the three tasks defined above are quite differ-
ent, they operate on the same set of three modalities: im-
age, caption, and trace. In this work, we propose a model
that effectively addresses all three tasks together in a uni-
fied framework with shared parameters, rather than build-
ing three separate models. Due to its symmetric structure,
we name this model architecture “MlIrrored TransformeR”
(MITR), as in Fig. 2.

Features The inputs to the model are subsets of: image
features, text features, and trace features. For image fea-
tures, we use pre-trained Faster R-CNN [3] to compute the
visual features of the detected regions. For the text feature,
we sum up the positional embeddings and the word embed-
dings, as in [36], where the position refers to the index of
the word within the caption. For the trace feature, we sum
up the positional embeddings and the input trace, which is
projected into d hidden dimensions. Specifically, we de-
fine the trace position as the index of the bounding box that
is aligned with the word in the corresponding caption. We
denote the input visual features, text features, and trace fea-
tures as ., T, T, respectively.

Model Architecture Asin Fig. 3, our model is composed
of three modules (corresponding to three modalities): im-
age encoder, caption encoder-decoder, and trace encoder-
decoder. Each module consists of a transformer with self-
attention. Specifically, the image encoder, h,, is defined as:

h, = FEN(MultiHead,, (2, ©,, x,)), (1)

where we follow [36] to define the feed-forward network
(FFN) as two linear transformation layers with a ReLLU ac-
tivation in between, and the MultiHead as:

MultiHead(Q, K, V) = Concat(heady, ..., head.) W

head; = Attention(QWiQ, KWE vw})),

K2

where the projections are parameter matrices. We refer
readers to [36] for additional details of MultiHead attention.
Note that there is no masking operation in the MultiHead
module from Eqn. (1), since we allow the model to attend
to all visual features when processing the caption and trace.

12681



I Masks (preventing attention)

Controlled Generation & Generation
HEE HEE EEE
HE HE | 1|
| ] | | ]

Mirrored Transformer

Controlled Generation
e EEE
]
|
A boy on a skateboard. In the I I I I
background there are a grassland
and trees. boy trees

TT TG

Figure 2: Overall architecture. Our proposed Mirrored Transformer (MITR) architecture effectively addresses the three tasks
together by sharing most of the network modules. The structure is mirrored for processing the caption and trace. Depending
on the task, we add a masking operation for the encoding/decoding of each module.
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Figure 3: Mirrored Transformer (MITR) architecture.

MHA stands for MultiHead Attention.

We then design a mirrored structure for the caption and
trace modules, based on the observation that the two modal-
ities are symmetric in the controlled caption generation and
controlled trace generation tasks. The caption encoder-
decoder, h,,, and trace encoder-decoder, h,., are defined as:

h., = MultiHead? (MultiHead’, (2, Zos, Zu ), P, hy)

h, = MultiHead? (MultiHead? (z,., Z,., 2,.), hy, hy)

Our caption and trace modules can switch roles between en-
coder and decoder seamlessly. Inspired by [26], this switch-
ing is implemented by a masking operation, where the en-
coder observes all inputs but the decoder only observes par-
tial previous information. This prevents the decoder from

attending to future information. We implement a masking
operation in either MultiHead’, or MultiHead!, depending
on the specified task:

* For controlled caption generation, the input caption is
shifted right by one position, and MultiHead, applies
masking to prevent leftward information flow. This en-
sures every position can only see its previous positions
in the attention module. Note, the input trace is not
shifted and MultiHead! does not have any masking.

* For controlled trace generation, the input trace is
shifted right by one position and MultiHead! applies
masking, while the input caption is not shifted and
MultiHead?, does not perform the mask operation.

* For the joint caption and trace generation task, both
the input caption and input trace are shifted right by
one position, and both MultiHead}, and MultiHead}
perform mask operations.

Our model also supports multiple layers. The mod-
ule between x,,, T, z, and h,, h,, h, can be repeated N
times. Specifically, MultiHead,, acts as the encoder, while
MultiHead, MultiHead?, MultiHead?, and MultiHead?
switch roles between encoder and decoder depending on
what task is being performed. All of these modules are
shared across different tasks.

Finally, once h, and h, have been computed,
MultiHead? and MultiHead? are used to fuse the infor-
mation from caption and trace modules. Note that in the
joint caption and trace generation task, both MultiHead?
and MultiHead? need to include a mask operation, while in
the other two tasks, no mask operation is needed.

3.3. Controlled Trace Generation: Distance Score

Given a ground truth trace of length ¢, represented as
a sequence of ¢ bounding boxes, and a predicted trace of
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length m, we need a score that can measure the distance be-
tween these two traces. When ¢ = m, the most straightfor-
ward way is to compute the L1 loss between pairs of bound-
ing boxes (where the two bounding boxes at the same index

; i) t ) — 1579 gt _
in the sequence form a pair): D(r?", 1) = 3, [r] =7

)

where |rflt — 77| is the mean L1 distance on the four coor-
dinates of the i-th bounding box.

However, there are two main challenges. First, when
q # m, we need to find the exact alignment between the
two sets of bounding boxes. Second, even when ¢ = m, we
may not want to force the two sets to match in the given or-
der because the dataset may contain examples where the lo-
cal bounding box ordering is not semantically meaningful.
[7] shows that if we treat each “trajectory” as a sequence
of points on a Riemannian manifold, a distance metric be-
tween two trajectories can be derived on a homogeneous
space. Such an idea is useful for the case where the sam-
ple dimension is much larger than the number of samples.
In our case, the sample dimension is small (4-D vector to
represent each bounding box), so we choose to simply cast
the evaluation task as a simple bipartite matching problem.
Note that standard bipartite matching is not a direct solu-
tion as it operates on two unordered sets of samples, ig-
noring the ordering within a trace. Instead, we propose to
add local constraints to the bipartite matching so that the
orderless matching can only happen within a local window.
On the one hand, it provides a way to match two ordered
sequences of bounding boxes; on the other hand, it allows
local disorder, which is robust to the noise in the dataset
annotation.

Consider two traces of lengths ¢ and m; without loss of
generality, we assume that ¢ < m. Let C' € R9*™ be the
cost matrix where Cj; is the mean L1 distance between the
four coordinates of the i-th box from the first trace and j-th
box from the second trace, and let X be the assignment ma-
trix. We solve the following linear programming problem
to get the distance between these two traces:

min  Tr(CX7T)

X
st, Xl,=1, X'1,<1,, X>0, X;;=0,
Vi,j st, 0<i<qg-—1, 0<j<m-—1,
j<{(z’—k)mJ or j>(i+1+k),
a q

where 1,, € R™ is all one vector and k is the window size
controlling the local range of disordered matching. For ex-
ample, when ¢ = m and k = 1, this allows one box from the
first trace to match with the box at the same index from the
second trace and also its left and right neighbors. After solv-
ing this linear programming problem, we use Tr(CXT)/q
as the distance score between two traces. We call our pro-
posed score the Local Bipartite Matching score (LBM). In
addition to using this as an evaluation measure, one could

further incorporate this score into training to learn traces for
a better matching score, by utilizing recently proposed dif-
ferentiable linear programming solvers [28, 1]. To keep the
presentation succinct, we do not discuss these extensions in
this paper.

3.4. Cycle Interaction of Trace and Caption

Another interesting finding of our model architecture is
that the controlled trace generation and controlled caption
generation are dual problems in one framework, i.e., the
output of one direction serves as the input of the other.
This inspires us to allow the two modules interact with each
other. First, we randomly permute the trace and feed it into
the controlled caption generation module, generating the
caption. Then, we feed this generated caption® into our con-
trolled trace generation model and enforce that the predicted
trace be close to the originally permuted trace by adding a
cycle loss. By doing so, we enrich the training set by adding
more meaningful but unseen trace-caption pairs. As shown
in Section 4.5, this further boosts the performance of both
tasks.

We denote our mirrored transformer model as f(), the
controlled trace generation task as ¥ = f(I,w), and the
controlled caption generation task as w = f(I,r). We en-
force the cycle consistency via

Lf"—>v‘v—>f' = DiStr(f(Iv f(Iv f))a F))

where Dist, is the L1 loss between the predicted trace and
the ground truth trace, and T is the randomly manipulated
trace. Specifically, we perform two types of manipulation:
(¢) randomly switch the trace within a mini-batch, and (:7)
cut a trace into .S segments and randomly permute these
segments to form a new trace. We show that both manipu-
lations are effective in improving the performance.

3.5. Total Loss Function

The final loss function can be formulated as:

Ltotal = )\1 L[trace] + >\2L[capti0n]
+ ALz sw—p + AaLjoings 2

where Liyace) is the L1 loss between the predicted trace
boxes and ground truth trace boxes for controlled trace gen-
eration, Licapion) 18 the cross-entropy loss of the caption for
controlled caption generation, Lz_,4 ¢+ is the cycle loss,
and Lijoing is the sum of the trace loss and the caption loss
for the joint caption and trace generation task.

3.6. Bridging the Gap between Training and Testing

Discrepancies between training and inference always ex-
ist in sequential prediction models [5]. At training, the

3Gumbel-softmax [ 18] is applied to approximate the non-differentiable
categorical sampling of words.
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#images # captions # words/capt
COCO Loc. Narr. [31] 123,287 142,845 41.8
Flickr30k Loc. Narr. [31] 31,783 32,578 57.1
ADE20k Loc. Narr. [31] 22,210 22,529 43.0
Open Images Loc. Narr. [31] | 671,469 675,155 34.2

Table 1: Localized Narratives built on top of COCO,
Flickr30k, ADE20k, and Open Images.

ground-truth input/output trace at each time step is pro-
vided, while at inference the unknown previous trace is re-
placed by a trace generated by the model itself.

In our proposed joint caption and trace generation task,
such discrepancies are even more severe than in standard
caption generation, as both the previous word and trace box
are generated by the model and thus are connected. The
generated trace especially suffers from noise because, un-
like the caption, the trace lacks syntax. A single offset could
cause the following trace boxes to quickly move to any-
where in the image. To alleviate this problem, we propose
a random replacement of the input trace boxes, where we
replace a box with [0,0, 1,1, 1] (corresponding to the whole
image) with probability p. As shown in Table 3, this ap-
proach improves the performance of joint caption and trace
generation by a clear margin.

4. Experiments
4.1. Dataset

We conduct experiments on four datasets: COCO,
Flickr30k, ADE20k, and Open Images, with annotations
from two different frameworks: COCO Captions [8] and
Localized Narratives [3 1], summarized in Table 1. We per-
form an ablation study on COCO and report the perfor-
mance of our best performing model on the other three
datasets in Localized Narratives and the downstream task
introduced in Section 4.7 (evaluated on the COCO Captions
annotations). We use the COCO2017 split for all experi-
ments except Section 4.7, where we follow [12] to use the
split they provide.

The annotations provided by Localized Narratives are
challenging to work with for a number of reasons. First,
the human-generated trace segment r; is a noisy visual rep-
resentation of the mentioned object, due to imperfect voice-
trace synchronization (e.g., if the annotator moves their
mouse without speaking), errors in voice-word synchro-
nization (from the automatic sequence-to-sequence align-
ment model in [31]), inconsistent drawing habits among an-
notators, and the different nature of mouse trace lines vs.
bounding boxes. Second, not every word can be mean-
ingfully grounded in the image, such as existentials (e.g.,
“there are”) and language referring to the observer (e.g., “in
this image, I can see ...”). By our estimate, such words ac-

count for at least 20% of the words in the COCO validation
captions from Localized Narratives. Traces for such words
are less meaningful than the other groundable words.

4.2. Experimental Setting

We use our mirrored transformer (MITR) defined in Sec-
tion 3.2 with N = 1 (as shown in Fig. 3). The hidden size
of attention layers is 512 and that of the feed-forward lay-
ers is 2048. We train the network with batch size 30 using
the Adam optimizer [21]. The initial learning rate is 5e—4,
which decays every 3 epochs with decay rate 0.8, for a total
of 30 epochs. We use the same training setup for all exper-
iments reported in this paper. The random masking rate for
joint caption and trace prediction is p = 0.5. In the follow-
ing, we denote controlled trace generation as Taskl, con-
trolled caption generation as Task2, and joint caption and
trace generation as Task3.

Controlled Trace Generation In this task, we represent
the trace as an ordered sequence of bounding boxes, and the
model predicts one bounding box for each word of the input
caption, as described in Section 3.1. Given a ground truth
trace 9 = {r{",rJ ... r9} and a predicted trace # =
{71, 72, ...,77} for the same image, we compute the local
bipartite matching (LBM) score proposed in Section 3.3 for

k=0and k = 1.

Controlled Caption Generation Given an image and a
trace, the model predicts the caption corresponding to the
trace. When evaluating the quality of generated captions,
we report the following widely adopted metrics: BLEU-
1, BLEU-4 [29], METEOR [4], ROGUE [23], CIDEr [37],
SPICE [2]. We use beam search with size 5.

Joint Caption and Trace Generation In this task, the
model is given only an image as input and outputs both
caption and trace simultaneously. The model produces out-
puts iteratively, generating one word and one corresponding
bounding box at each time step. At test time, we end the
generation when the caption generation branch outputs the
END token. In this process, since the model itself controls
the length of the output, the length of the predicted trace ¥
may differ from the length of the ground truth trace r9¢. The
max length for generating caption and trace is set to be 100.
We report our LBM metric for both ¥ = 0 and k£ = 1.

Baselines For controlled trace generation, we construct
the baseline by using a standard one-layer encoder-decoder
transformer architecture as defined in [36] and feed both
visual features and captions to the encoder. Similarly, for
controlled caption generation, we use the same architecture
as a baseline and feed both visual features and traces to the
encoder. For joint caption and trace generation, we con-
struct the baseline by also using the same architecture, but
only using visual features as input, and we train it on the
caption generation task.
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Method Trained on BLEU-1 BLEU-4 METEOR ROUGE; CIDEr SPICE
[31] Task2 0.522 0.246 N/A 0.483 1.065 0.365
Baseline Task2 0.563 0.255 0.240 0.453 0.997 0.293
MITR Task2 0.577 0.257 0.245 0.456 1.213  0.293
MITR Task2 + Taskl 0.586 0.272 0.252 0.470 1.329  0.307
MITR Task2 + Taskl + cycles | 0.596 0.282 0.257 0.476 1.390  0.309
MITR Task2 + Task1 + cycle, | 0.598 0.286 0.258 0.479 1.407 0.313
MITR(2 layer) Task2 + Taskl + cycle, | 0.607 0.292 0.263 0.487 1.485 0.317

Table 2: Quantitative results for Task 2 (controlled caption generation) on COCO. cycle, and cycle, refer to two types of
cycle loss defined in Sec 4.5. Results from [3 1] are not directly comparable to ours due to differences mentioned in Sec 4.3.

Method Trained on BLEU-1 BLEU-4 METEOR ROUGE; CIDEr SPICE LBM(k=0) LBM(k=1)
Baseline Task2 0.355 0.087 0.155 0.307 0.310 0.210 N/A N/A
MITR Task3 0.387 0.118 0.168 0.316 0.170  0.194 0.387 0.369
MITR Task3 + random mask 0.395 0.128 0.184 0.328 0.219  0.223 0.308 0.292
MITR Task3 + Task1 + Task2 + random mask | 0.417 0.125 0.178 0.323 0.216 0.213 0.283 0.267

Table 3: Quantitative results for Task 3 (joint caption and trace generation) on COCO.

Dataset Method  Trained on BLEU-1 BLEU-4 METEOR ROUGE; CIDEr SPICE LBM(k=0) LBM(=1)
Flickr30k Baseline Taskl N/A N/A N/A N/A N/A N/A 0.253 0.249
Flickr30k Baseline Task2 0.620 0.345 0.286 0.524 1.763  0.341 N/A N/A
Flickr30k MITR Task1 + Task2 + cycle, | 0.644 0.374 0.300 0.547 2.014  0.365 0.195 0.188
ADE20k Baseline Taskl N/A N/A N/A N/A N/A N/A 0.251 0.247
ADE20k Baseline Task2 0.565 0.278 0.259 0.475 1.288  0.341 N/A N/A
ADE20k MITR  Taskl + Task2 + cycle, | 0.580 0.297 0.269 0.490 1.463 0.354 0.177 0.168
Open Images Baseline Taskl N/A N/A N/A N/A N/A N/A 0.212 0.209
Open Images Baseline Task2 0.560 0.273 0.261 0.503 1.467 0.361 N/A N/A
Open Images MITR  Taskl + Task2 + cycle, | 0.573 0.292 0.271 0.520 1.584 0.372 0.180 0.171

Table 4: Quantitative results for Task 1 and Task2 on Localized Narratives of Flickr30k, ADE20k and Open Images.

4.3. Results on Individual Tasks transformer while [31] uses two layers; in addition, we pro-
cess the trace by cutting the trace by word while [31] cuts
the trace by a fixed time interval. Thus, results from [31]
are not directly comparable to ours. We mention the perfor-
mance of [31] in Table 2 for easy reference.

Controlled Trace Generation In Fig. 4 (top left), we
demonstrate the qualitative results of the controlled trace
generation: we can see that the trace closely follows the
ground truth trace and also semantically corresponds well

to the input caption. Table 5 shows the quantitative results. Joint Caption and Trace Generation The quantitative
From the table, we see that our proposed MITR outperforms results for this task are in Table 3. We can see that by
the baseline method constructed in Section 4.2 (standard modeling the trace at the same time as the caption, the per-
transformer with one encoder and one decoder [36]). formance of caption generation improves by a large mar-
gin over the baseline, which only models the caption. In
Method Trained on LBM (k=0) LBM (k=1) addition, our proposed random masking technique further
Baseline Taskl 0.208 0.204 improves the performance of Task 3 on caption generation
MITR Task1 0.171 0.159 by over 1% absolute improvement on all metrics, and on
MITR Task1 + Task2 0.169 0.157 . ..
MITR Task] + Task2 + cycle, 0.165 0.156 trace generation by nearly 20% relative improvement. The
MITR Task1 + Task2 + cycle, 0.166 0.155 qualitative results are shown in Fig. 4 (bottom). Without
MITR(2 layer) Taskl + Task2 + cycle, 0.163 0.154 human annotated attention traces to guide the caption gen-

eration, sometimes the same objects or descriptions are re-
peated multiple times in a single caption. This suggests that
future developments must keep an account of all the objects
referenced to avoid repetition.

Table 5: Quantitative results for Task 1 (controlled trace
generation). cycle, and cycle, refer to the two cycle losses
defined in Sec 4.5. Note: smaller values of LBM are better.

Controlled Caption Generatiop 'We show our quant'ita- 4.4. Joint Training Results

tive results in Table 2 and qualitative results on the right

side in Fig. 4. Our baseline model differs from the one in We demonstrate that, by performing joint training, our
[31] in several places: we use a one-layer encoder-decoder model can boost the performance of each individual task
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Task 1: Controlled Trace Generation

Predicted trace

Ground-truth caption

The image is taken on the road. In
the center of the image there

people. Onthe right there
is abench and people sitting on the
bench. At the top there is sky.

Task 2: Controlled Caption Generation

Ground-truth trace Predicted caption
This image is clicked on the road. In
the center there is horse

of persons. On the right
there is bench. On the bench there
are plants. In the background there
are trees.

Task 3: Joint Caption + Trace Generation

Image
AT,

Predicted caption

2 In this image we can see a zebra. On

are houses, trees and a vehicle.
On the top there is a sky.

Figure 4: Qualitative results on Tasks 1, 2, and 3 (with more results in the supplementary file).

while using approximately one half of the parameters and
training compute cost, compared with training one separate
model for each individual task. The quantitative results are
in Tables 5 and 2. Further, we can see from Table 3 that the
joint training of Task 1 and Task 2 can also help Task 3.

4.5. Cycle Loss Results

We show that, by enforcing cycle consistency, both con-
trolled trace generation and controlled caption generation
are further improved when joint training is used. The quan-
titative results are in Tables 5 and 2. We use cycle to repre-
sent cycle loss where a single trace is cut into segments and
then randomly permuted before forming a new trace, and
cycley, to represent cycle loss where the trace is permuted
along the batch dimension within a mini-batch. Adding
cycley, achieves over 1% absolute improvement on BLEU-
1 and BLEU-4 compared with our joint training result and
over 3% absolute improvement from our baseline model.

4.6. Results on Flickr30k, ADE20k, Open Images

We also report the performance of our best performing
model and the baseline model on another three datasets
(Flickr30k, AED20k, Open Images), where Localized Nar-
ratives are also collected [3 1]. The results are given in Table
4. As shown, our method achieves consistent improvement
over the baseline methods on all datasets.

B-1 B-4 M R C S
Ours w/o pretrain | 0.463 0.182 0.219 0.466 1.746 0.363
Ours w/ pretrain | 0.474 0.189 0.225 0.475 1.819 0.370

Table 6: Downstream task on guided caption generation.

4.7. Downstream Task

We further investigate the benefit of our joint training
framework. By pre-training using our joint training frame-
work on Localized Narratives [31] and fine-tuning on a
guided caption generation task [12] on COCO Captions [£],
we are able to get better results than directly training on
COCO Captions. In this experiment, we follow [12] to use
the COCO split provided by [20].

The task is defined as: given an image I and a se-
quence of ordered bounding boxes r = {ry,rq, -+ ,rr}
as guidance, the model generates a caption w =
{wy,ws, -+ ,wn}. This task is similar to our controlled
caption generation task (Task 2), but we do not assume any
correspondence between the boxes and words for both train-
ing and testing. Note that [12] considers a slightly different
setting, where the dense correspondences between boxes
and words are given during training but not at testing. Thus
a special gate function was proposed to automatically attend
the words to the boxes during test time. See the supplemen-
tary material for more details. The results are in Table 6,
where pre-training offers a clear gain.

5. Conclusion

We presented a unified framework for modeling vision,
language, and human attention traces. Our work is built on
top of the Localized Narratives framework and motivated
by the need for longform image captions and dense visual
grounding. We proposed a Mirrored Transformer model
architecture that was jointly trained on three vision-and-
language tasks. We demonstrated the effectiveness of our
approach through detailed experiments on four datasets.
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