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Abstract

The Huber loss is a robust loss function used for a wide

range of regression tasks. To utilize the Huber loss, a pa-

rameter that controls the transitions from a quadratic func-

tion to an absolute value function needs to be selected. We

believe the standard probabilistic interpretation that relates

the Huber loss to the Huber density fails to provide ade-

quate intuition for identifying the transition point. As a re-

sult, a hyper-parameter search is often necessary to deter-

mine an appropriate value. In this work, we propose an

alternative probabilistic interpretation of the Huber loss,

which relates minimizing the loss to minimizing an upper-

bound on the Kullback-Leibler divergence between Laplace

distributions, where one distribution represents the noise in

the ground-truth and the other represents the noise in the

prediction. In addition, we show that the parameters of

the Laplace distributions are directly related to the tran-

sition point of the Huber loss. We demonstrate, through a

toy problem, that the optimal transition point of the Huber

loss is closely related to the distribution of the noise in the

ground-truth data. As a result, our interpretation provides

an intuitive way to identify well-suited hyper-parameters by

approximating the amount of noise in the data, which we

demonstrate through a case study and experimentation on

the Faster R-CNN and RetinaNet object detectors.

1. Introduction

A typical problem in machine learning is estimating a

function Fθ that maps from x ∈ R
n to y ∈ R given a set

of training examples D = {xi, yi}Ni=0. The parameters of

the function θ are often determined by minimizing a loss

function L,

θ̂ = argmin
θ

N
∑

i=0

L(yi − Fθ(xi)) (1)

and the choice of loss function can be crucial to the perfor-

mance of the model. The Huber loss is a robust loss func-

tion that behaves quadratically for small residuals and lin-

early for large residuals [9]. The loss function was proposed

over a half-century ago, and it is still widely used today for

a variety of regression tasks, including 2D object detection

[4, 14, 16, 18], 3D object detection [2, 3, 10, 22], shape and

pose estimation [6, 11, 20], and stereo estimation [1].

A challenge with utilizing the Huber loss in practice is

selecting an appropriate value to transition from a quadratic

error to a linear error. Under certain assumptions, mini-

mizing a loss function can be interpreted as maximizing the

likelihood of yi given xi,

θ̂ = argmax
θ

N
∏

i=0

p(yi|xi, θ) (2)

when p(yi|xi, θ) ∝ exp [−L(yi − Fθ(xi))]. Therefore, the

estimate θ̂ that minimizes the Huber loss can be interpreted

as the maximum likelihood estimate of θ when p(yi|xi, θ)
is the Huber density [9]. The Huber density can be diffi-

cult to interpret; as a result, hyper-parameter search is often

employed to identify a satisfactory transition point for the

Huber loss.

In this work, we propose an alternative probabilistic in-

terpretation of the Huber loss. Our interpretation assumes

yi is a noisy estimate of the true value y∗i , and we show that

minimizing the Huber loss is equivalent to minimizing an

upper-bound on the Kullback-Leibler (KL) divergence,

N
∑

i=0

D (p(y∗i |yi)‖q(y∗i |xi, θ)) (3)

when p(y∗i |yi) and q(y∗i |xi, θ) are Laplace distributions and

the scale of the distributions are directly related to the tran-

sition point of the Huber loss. For real-world problems, the

value of yi corresponding to xi is often provided by a hu-

man annotator; therefore, it is likely to contain some amount

of noise. We believe that approximating the amount of noise

in the ground-truth is a more intuitive way to determine the

transition point for the Huber loss than reasoning about the

Huber density.

In the following sections, we survey the related work

(Section 2), review the Huber loss and maximum likeli-

hood estimation in detail (Section 3), propose our alter-
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native probabilistic interpretation of the Huber loss (Sec-

tion 4), utilize a toy problem to illustrate the relationship

between the optimal transition point of the Huber loss and

the noise distribution of the ground-truth (Section 5), lever-

age our interpretation to analyze the loss functions utilized

by modern object detectors (Section 6), and show that our

proposed interpretation can lead to better hyper-parameters

(Section 7).

2. Related Work

Noy and Crammer [17], remarked on the similarity be-

tween the Huber loss and the KL divergence of Laplace

distributions, which motivates their use of a Laplace-like

family of distributions in the PAC-Bayes framework. How-

ever, they did not explore the relationship beyond this ob-

servation. In this work, we further pursue the connection

between the Huber loss and the KL divergence of Laplace

distributions, and we identify the links between the param-

eters of the Huber loss and the parameters of the Laplace

distributions.

Lange [12], proposed a set of potential functions for im-

age reconstruction that behave like the Huber loss, but un-

like the Huber loss, these functions are more than once dif-

ferentiable. In this work, we propose a loss function which

is similar to a potential function in [12]. However, our pro-

posed loss is derived directly from the KL divergence of

Laplace distributions; whereas, the potential functions in

[12] are derived through double integration of symmetric

and positive functions.

3. Background

3.1. Huber Loss

Loss functions commonly used for regression are

L1(x) = |x| and L2(x) = 1
2x

2. Both of these func-

tions have advantages and disadvantages; L1 is less sen-

sitive to outliers in the data, but it is not differentiable at

zero. Whereas, the L2 is differentiable everywhere, but it is

highly sensitive to outliers. Huber proposed the following

loss as a compromise between the L1 and L2 losses [9]:

Hα(x) =

{

1
2x

2, |x| ≤ α

α
(

|x| − 1
2α

)

, |x| > α
(4)

where α ∈ R
+ is a positive real number that controls the

transition from L1 to L2. The Huber loss is both differen-

tiable everywhere and robust to outliers.

A disadvantage of the Huber loss is that the parameter

α needs to be selected. In this work, we propose an intu-

itive and probabilistic interpretation of the Huber loss and

its parameter α, which we believe can ease the process of

hyper-parameter selection. Next, we review how minimiz-

ing the loss functions are related to maximum likelihood

estimation.

3.2. Maximum Likelihood Estimation

Assume we have some data D = {xi, yi}Ni=0 indepen-

dently drawn from some unknown distribution. Let us

model the relationship between xi and yi as

yi = Fθ(xi) + ǫ (5)

where Fθ is a deterministic function parameterized by θ,

and ǫ is random noise drawn from some known distribution.

The goal of maximum likelihood estimation is to identify

the parameter θ̂ that maximizes the likelihood of yi given xi

across the dataset D. Note that maximizing the likelihood

of yi given xi is equivalent to minimizing the negative log

likelihood,

θ̂ = argmax
θ

N
∏

i=0

p(yi|xi, θ)

= argmin
θ

−
N
∑

i=0

log p(yi|xi, θ).

(6)

Consider the case when the noise ǫ is drawn independently

from a zero-mean Gaussian distribution. The probability

density for yi given xi becomes

p(yi|xi, θ) =
1√
2πσ2

exp

(

− (yi − Fθ(xi))
2

2σ2

)

(7)

where σ ∈ R
+ is the standard deviation of the noise, and

the negative log likelihood becomes

− log p(yi|xi, θ) = log
√
2πσ2 +

(yi − Fθ(xi))
2

2σ2
. (8)

Notice that

θ̂ = argmin
θ

−
N
∑

i=0

log p(yi|xi, θ)

= argmin
θ

N
∑

i=0

(yi − Fθ(xi))
2

(9)

by assuming a constant σ and dropping the constant term.

Therefore, identifying θ̂ that minimizes the L2 loss over the

dataset is equivalent to the maximum likelihood estimate

of θ when p(yi|xi, θ) follows a Gaussian distribution. In

addition, minimizing the L1 loss can be shown to be the

same as the maximum likelihood estimation when the noise

is drawn from a Laplace distribution. In [9], it is demon-

strated that minimizing the Huber loss provides the maxi-

mum likelihood estimate when the probability density takes

the form p(yi|xi, θ) ∝ exp [−Hα(yi − Fθ(xi))], which is
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sometimes referred to as the Huber density. The Huber loss

is a combination of the L1 and L2 losses; therefore, the

Huber density is a hybrid of the Gaussian and Laplace dis-

tributions.

The Huber density is more complicated than either the

Gaussian or Laplace distribution individually, and we be-

lieve this complexity makes it challenging to use this inter-

pretation of the Huber loss for selecting the parameter α.

For this reason, we propose an alternative probabilistic in-

terpretation.

4. Proposed Method

Like above, assume we have a dataset D = {xi, yi}Ni=0,

but let us consider the following relationships:

y∗i = yi + ǫ1 (10)

y∗i = Fθ(xi) + ǫ2 (11)

where y∗i is an unknown value we would like to estimate

with Fθ(xi), yi is a known estimate of y∗i , and ǫ1 and ǫ2
are random noise variables drawn independently from sep-

arate but known distributions. Since y∗i is hidden, we are

unable to estimate θ̂ by directly maximizing the likelihood

of y∗i given xi. Alternatively, we can estimate θ̂ by mini-

mizing the Kullback-Leibler (KL) divergence between the

distributions p(y∗i |yi) and q(y∗i |xi, θ). Intuitively, p(y∗i |yi)
represents our uncertainty in the label yi, and q(y∗i |xi, θ)
represents our uncertainty in the model’s prediction Fθ(xi).
Also, note that minimizing the KL divergence is equivalent

to minimizing the cross entropy,

θ̂ = argmin
θ

N
∑

i=0

D (p(y∗i |yi)‖q(y∗i |xi, θ))

= argmin
θ

−
N
∑

i=0

(
∫ ∞

−∞

p(y∗i |yi) log q(y∗i |xi, θ)dy
∗
i

)

(12)

since the entropy of p(y∗i |yi) is constant. If p(y∗i |yi) is

a Dirac delta function centered on yi, i.e. the label con-

tains zero noise, minimizing the cross entropy is equiva-

lent to minimizing the negative log likelihood of q(yi|xi, θ).

Therefore, finding θ̂ by minimizing the KL divergence is ex-

actly the maximum likelihood estimate of θ when y∗i = yi.
Let us assume both the labels and the predictions are con-

taminated with outliers, i.e. both ǫ1 and ǫ2 are drawn from

Laplace distributions. The corresponding probability densi-

ties are

p(y∗i |yi) =
1

2b1
exp

(

−|y∗i − yi|
b1

)

(13)

and

q(y∗i |xi, θ) =
1

2b2
exp

(

−|y∗i − Fθ(xi)|
b2

)

(14)

where b1 ∈ R
+ and b2 ∈ R

+ define the scale of the label

uncertainty and prediction uncertainty, respectively. Fur-

thermore, the KL divergence becomes

D (p(y∗i |yi)‖q(y∗i |xi, θ))

=
b1 exp

(

− |yi−Fθ(xi)|
b1

)

+ |yi − Fθ(xi)|
b2

+ log
b2
b1

− 1

(15)

by integrating over all values of y∗i . For a derivation, please

refer to Appendix A. In the following sections, we propose

a loss derived from the KL divergence of Laplace distribu-

tions, show that it is related to the Huber loss, and use the

relationship to gain further insight into the Huber loss.

4.1. Proposed Loss Function

We propose the following loss function:

Dα,β(x) =
α exp

(

− |x|
α

)

+ |x| − α

β
(16)

which is derived from the KL divergence of Laplace distri-

butions (Equation (15)) by removing the existing constant

terms and by adding a new constant term to ensure the min-

imum value is always zero. The variable x is equal to the

difference in the means of the Laplace distributions. The

parameter α ∈ R
+ directly corresponds to the scale of the

noise in the label (b1), and β ∈ R
+ corresponds to the scale

of the noise in the prediction (b2). As a result, the param-

eters, α and β, have an intuitive and probabilistic interpre-

tation related to the variance of the Laplace distributions.

Since our modification to Equation (15) simply removes the

constant penalty for the mismatch in the standard deviation

of the distributions, our loss function is identical to the KL

divergence when b1 = b2 = α = β.

4.2. Relationship to the Huber Loss

To demonstrate the relationship between our proposed

loss and the Huber loss, let us start by considering the be-

havior of our loss function when |x| is small with respect to

α. The second-order approximation of Equation (16) about

zero is

Dα,β(x) ≈ Dα,β(0)+D′
α,β(0)x+

D′′
α,β(0)

2
x2 =

1

2αβ
x2.

(17)

Refer to Appendix B, for a derivation of the derivatives and

a proof of their existence at x = 0. Furthermore, when |x|
is large with respect to α the exponential term in Equation

(16) goes to zero,

Dα,β(x) ≈
|x| − α

β
. (18)
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As a result, Equation (16) can be approximated using the

following piecewise function:

Dα,β(x) ≈
{

1
2αβx

2, |x| ≤ α
|x|−α

β , |x| > α.
(19)

Like the Huber loss, our proposed loss behaves quadrati-

cally when the residual is small and linearly when the resid-

ual is large. In addition, the following configurations tightly

bound the Huber loss:

Dα,1/α(x) ≤ Hα(x) ≤ Dα/2,1/α(x). (20)

The relationship between the loss functions is illustrated in

Figure 1, and a formal proof of the bounds is provided in

Appendix C.

Minimizing the Huber loss with parameter α is equiva-

lent to minimizing an upper-bound on the KL divergence of

two Laplace distributions when the scale of the label distri-

bution b1 = α, and the scale of the prediction distribution

b2 = 1/α. Conversely, minimizing the KL divergence of

two Laplace distributions with b1 = α/2 and b2 = 1/α is

equivalent to minimizing an upper-bound on the Huber loss

with parameter α. We believe this alternative probabilistic

interpretation of the Huber loss provides significant insight

into the parameter α, which we demonstrate in the remain-

ing sections.

4.3. Properties of the Loss Function

Notice that scaling x by a positive real number, γ ∈ R
+,

is equivalent to Dα,β(γx) = Dα/γ,β/γ(x) whereas scaling

the loss by λ ∈ R
+ is equivalent to λDα,β(x) = Dα,β/λ(x).

Both of these properties are trivial to show through alge-

braic manipulation.

In the following sections, we will analyze the Huber loss

with the approximation Hα(x) ≈ Dα,1/α(x). Combining

the above properties with the approximation, we observe

that

λHα(γx) ≈ Dα/γ,1/αγλ(x). (21)

Therefore, scaling the input to the Huber loss is equivalent

to inversely scaling the label and prediction distributions,

and scaling the output is equivalent to inversely scaling the

prediction distribution.

5. Toy Problem: Polynomial Fitting

Our proposed interpretation of the Huber loss suggests

there is a relationship between the parameter of the loss and

the scale of the label noise. We would like to determine

whether or not knowing this relationship and having a good

estimate for the noise can help us select a good parameter

for the loss. We employ a toy problem, where we control the

amount of label noise, to show that the optimal α parameter

is closely related to the scale of the label noise.

For our toy problem, we fit a one-dimensional poly-

nomial to a set of sample points. To create our training

examples, D = {xi, yi}Ni=0, we randomly sample xi ∈
[−δ, δ] uniformly and generate its corresponding label as

yi = Fθ∗(xi) + ǫ where θ∗ ∈ R
D are the parameters of

the ground-truth polynomial and ǫ is noise randomly drawn

from a distribution we specify. To create our test set, we use

the same process but with ǫ = 0.

We estimate the parameters of the predicted polynomial,

θ̂ ∈ R
K , by minimizing the sum of the Huber loss over the

training examples. For many tasks, the exact model for the

data is unknown, and the mismatch between the true and es-

timated model could be a source of noise in the predictions.

For this reason, we set K > D.

To evaluate the estimated parameters, we compute the

root mean square error (RMSE) over the test set. We use

gradient descent to identity θ̂, and we use grid search to

identify the optimal learning rate and α parameter.

For each experiment, we sample N = 10000 points with

δ = 2. We arbitrarily select the parameters of our ground-

truth polynomial as θ∗ = [6,−3,−25, 15, 20,−10]; there-

fore, D = 6 and Fθ∗(x) = 6x5−3x4−25x3+15x2+20x−
10. Furthermore, we set K = D + 2. Since the Huber loss

is designed to be robust to outliers, we sample ǫ from three

different heavy-tailed distributions: the Laplace, Logistic,

and Cauchy distributions. The results of our experiments

are shown in Figure 2, which illustrates there is a near lin-

ear relationship between the scale of the label noise and the

optimal α parameter for each of the distributions. This sug-

gests that knowing or estimating the label noise can enable

us to identify a suitable α parameter.

Next, we will demonstrate with a real-world problem

that approximating the label noise when it is unknown is

an intuitive and effective method for selecting well-suited

hyper-parameters.

6. Case Study: Faster R-CNN

With our proposed interpretation, we analyze the loss

functions used in a modern object detector, Faster R-

CNN [18], which is arguably one of the most important

advancements in object detection in recent history. Their

work has inspired the development of several other object

detectors including SSD [16], FPN [13], RetinaNet [14],

and Mask R-CNN [7], all of which leverage the same loss

functions for bounding box regression.

The Faster R-CNN network architecture consists of two

primary parts, a region proposal network and an object de-

tection network. The proposal network identifies regions

that may contain objects, and the detection network refines

and classifies the proposed regions. To regress a bounding

box, both the proposal network and the detection network

utilize the Huber loss. In their work, a bounding box is pa-

rameterized by its center and dimensions. Let us start by an-
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α = 0.1

α = 1

α = 10

Loss Functions Derivatives

Figure 1: A comparison between the Huber loss (Hα) and our proposed loss (Dα,β) derived from the KL divergence of

Laplace distributions. The loss function Hα is lower-bounded by Dα,1/α and upper-bounded by Dα/2,1/α. The left column

depicts the loss functions and the right column visualizes their derivatives. In addition, each row of the figure depicts a

different set of hyper-parameters.

(a) Laplace Distribution (b) Logistic Distribution (c) Cauchy Distribution

Figure 2: The results of our toy problem. The x-axis is the parameter that controls the scale of the respective noise distri-

butions and the y-axis is the optimal α parameter for the Huber loss. For each distribution, there is an approximate linear

relationship between the noise and the optimal parameter.
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alyzing the center prediction; the target for the x-coordinate

of the center is

t∗x =
x∗ − xa

wa
(22)

where x∗ is the x-coordinate of the ground-truth center, xa

is the x-coordinate of the corresponding anchor, and wa is

the width of the anchor. A similar target is used for the cen-

ter’s y-coordinate except the height of the anchor is used

instead of the width. For the proposal network, the anchors

are predefined, whereas the detection network uses the pro-

posals as its anchors.

In the paper, the authors state that they use λH1(tx− t∗x)
to penalize the model’s prediction, tx, during training where

λ = 10 is a weighting parameter [18]. To interpret this

loss, let us first re-write the residual in terms of the center

displacement,

tx − t∗x = tx − x∗ − xa

wa

=
(txwa + xa)− x∗

wa
=

x− x∗

wa

(23)

where x = txwa + xa is the predicted x-coordinate of the

center. Utilizing Equation (21), we see that λH1(tx− t∗x) ≈
Dwa,wa/λ(x−x∗). Based on this interpretation, the scale of

noise in the prediction is one-tenth the width of the anchor,

but the scale of the label uncertainty is the full width of the

anchor. Obviously, assuming the labels contain this amount

of uncertainty is inappropriate. As it happens, the loss func-

tion and targets used in the current implementation of Faster

R-CNN differ significantly from the paper [5]. Interpreting

the implementation is important because it is the foundation

for several other object detectors [7, 13, 14, 16].

In the implementation of Faster R-CNN [5], the authors

scale the Huber loss by 1/α. Furthermore, the ground-truth

targets have been shifted and scaled,

t̃∗x =
t∗x − µx

σx
(24)

by constant values µx ∈ R and σx ∈ R
+. Let us repeat our

analysis with these modifications. Like before, we begin

with re-writing the residual,

tx − t̃∗x = tx +
µx

σx
− x∗ − xa

σxwa

=
[(txσx + µx)wa + xa]− x∗

σxwa
=

x̃− x∗

σxwa

(25)

where x̃ = (txσx + µx)wa + xa. Next, let us consider the

relationship between their loss function and our proposed

loss function:

λ

α
Hα(tx − t̃∗x) ≈ Dασxwa,σxwa/λ(x̃− x∗). (26)

With these additional complexities, the authors were un-

knowingly able to independently manipulate the scale of the

label and prediction noise. To train the proposal network,

λ = 1, α = 1/9, and σx = 1, and to train the detection net-

work λ = 1, α = 1, and σx = 1/10. For both networks, the

scale of the label noise is similar, a ninth and tenth of the an-

chor width, which is a much more reasonable assumption.

With this interpretation, the scale of prediction uncertainty

is significantly larger for the proposal network compared

to the detection network, the full width of the anchor ver-

sus a tenth of the width. Intuitively, it makes sense to have

a smaller prediction uncertainty for the detection network

because it is designed to refine the output of the proposal

network; however, a proposal uncertainty of this magnitude

may be too extreme.

Likewise, we can perform the same analysis for the di-

mensions of the bounding box. The target for the width of

the bounding box is

t∗w = log
w∗

wa
(27)

and there is a similar target for the height of the bounding

box. As before, the target is shifted and scaled by µw ∈ R

and σw ∈ R
+,

t̃∗w =
t∗w − µw

σw
. (28)

By re-writing the difference, we obtain the following:

tw − t̃∗w = tw − logw∗ − logwa − µw

σw

=
(twσw + µw + logwa)− logw∗

σw

=
log w̃ − logw∗

σw

(29)

where w̃ = exp (twσw + µw)wa is the predicted width of

the bounding box. Since the log of the width can be difficult

to interpret, let us consider the following approximation:

log
w∗

wa
≈ w∗

wa
− 1 (30)

which is the first-order approximation of the logarithm

when w∗

/wa ≈ 1. This is not an outlandish assumption be-

cause the intersection-over-union (IoU) between the anchor

and the ground-truth bounding box needs to be significant

for the ground-truth to be matched with the anchor.1 Now,

the difference can be approximated as

tw − t̃∗w ≈ tw +
µw + 1

σw
− w∗

σwwa

≈ (twσw + µw + 1)wa − w∗

σwwa
≈ w̃ − w∗

σwwa

(31)

1Refer to Appendix D for experimental validation of the target approx-

imation.
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where w̃ ≈ (twσw + µw + 1)wa, which conforms with the

first-order approximation of the exponential function when

twσw+µw ≈ 0. Leveraging our interpretation of the Huber

loss, we observe

λ

α
Hα(tw − t̃∗w) ≈ Dασw,σw/λ(log w̃ − logw∗)

≈ Dασwwa,σwwa/λ(w̃ − w∗).
(32)

In this case, λ = 1, α = 1/9, and σw = 1 for the proposal

network, and λ = 1, α = 1, and σw = 1/5 for the detec-

tion network. Interestingly, the label noise is assumed to be

higher for the detection network compared to the proposal

network, which could be less than optimal.

It is unclear how the authors arrived at these peculiar

hyper-parameters, undoubtedly through some form of pa-

rameter sweep. Based on our interpretation, we believe

the hyper-parameters could be improved upon, which we

demonstrate in the following section. In general, we believe

that our interpretation can aid in hyper-parameter selection

by eliminating inappropriate values.

7. Experiments

In this section, we perform experiments on Faster R-

CNN as well as another modern object detector, RetinaNet.

Our goal is not to obtain state-of-the-art object detection

performance, there is a wealth of literature that improves

upon these methods; instead, our goal is to demonstrate that

our proposed interpretation of the Huber loss can lead to

hyper-parameters better suited to the task of bounding box

regression. Furthermore, our aim is not to replace the Hu-

ber loss with our proposed loss; rather, we want to leverage

the relationship between the losses to gain insight into the

Huber loss.2 For these reasons, we limit our modifications

to the following hyper-parameters: α, λ, σx, σy , σw, and

σh (refer to Section 6 for more details).3

7.1. Faster R­CNN

To conduct our experiments, we utilize the implemen-

tation and framework provided by the authors of Faster R-

CNN [5]. The deepest neural network supported by their

framework is VGG-16 [19], and the largest dataset is MS-

COCO 2014 [15]. For all of our experiments, we train the

Faster R-CNN model with a VGG-16 backbone on the MS-

COCO 2014 training set and measure the object detection

performance on the validation set. The MS-COCO 2014

dataset [15] contains objects from 80 different classes, and

it includes over 80k images for training and 40k images for

validation. The metric used to measure object detection per-

formance is the mean average precision (mAP) at various

2For completion, we demonstrate that replacing the Huber loss with our

proposed loss function produces comparable results in Appendix E.
3The hyper-parameters µx, µy , µw , and µh are all set to zero in the

implementation, and they are left unchanged in all the experiments.

intersection-over-union (IoU) thresholds. To evaluate our

experiments, we consider the mAP at 0.5 IoU and 0.75 IoU

thresholds, as well as, the mAP averaged over 0.5-0.95 IoU

thresholds. Unless otherwise stated, we use the default con-

figurations set by the authors to train and test the models.

For our initial experiment, we train a model using the

hyper-parameters as they are described in the publica-

tion [18]. Afterwards, we evaluate the parameters as they

are specified in the current implementation of Faster R-

CNN [5]. Lastly, we leverage our interpretation to propose

three new sets of hyper-parameters. A full list of the param-

eters used as well as their corresponding interpretation is

provided in Table 1 and Table 2, respectively. Notice for our

proposed hyper-parameters, the label noise does not vary

between the proposal and detection network, only the pre-

diction noise varies. Based on our interpretation, we believe

the label noise should not change between the two networks

while the prediction noise should.

The results of the experiments are presented in Table 3.

We were unable to exactly reproduce the results as they

are listed in [18], likely due to changes made to the im-

plementation by the authors that are unrelated to the hyper-

parameters of the Huber loss. Regardless, in our experi-

ments, the published hyper-parameters perform the worst

by a significant margin, which should not be a surprise

given our interpretation. The authors of Faster R-CNN were

able to improve performance of the detector by tuning the

hyper-parameters in the implementation [5]. We were able

to further improve performance by reducing the estimated

amount of noise in the labels and predictions. Specifically,

we were able to raise performance at larger IoU thresholds.

Achieving an improvement in mAP at higher thresholds re-

quires more accurate bounding boxes; therefore, it makes

sense that reducing the estimated uncertainty increases per-

formance at those thresholds. Experiment A and B trade-off

performance at 0.5 and 0.75 IoU, and Experiment C identi-

fies a good balance between both. These results are signifi-

cant because they were obtained by leveraging the intuition

provided by our proposed interpretation of the Huber loss

without the need for an exhaustive hyper-parameter search.

7.2. RetinaNet

As previously discussed, Faster R-CNN uses two net-

works or stages to perform object detection. Whereas, Reti-

naNet [14] uses only a single stage; therefore, it uses one

network to regress the bounding box and classify the ob-

jects. For our experiments, we utilize the official imple-

mentation of RetinaNet [21]. In the RetinaNet implementa-

tion, the loss function utilized to regress bounding boxes is

identical to the loss function used for the proposal network

in the Faster R-CNN implementation [5]. For this reason,

we repeat Experiments A and B from Section 7.1 with the
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Table 1: List of Hyper-Parameters

Parameters
Publication Implementation Experiment A Experiment B Experiment C

Proposal Detection Proposal Detection Proposal Detection Proposal Detection Proposal Detection

λ 10 10 1 1 1/4 1/2 1/2 1 1/4 1
α 1 1 1/9 1 1 1 1 1 1 1
σx 1 1 1 1/10 1/20 1/20 1/20 1/20 1/20 1/20
σy 1 1 1 1/10 1/20 1/20 1/20 1/20 1/20 1/20
σw 1 1 1 1/5 1/10 1/10 1/10 1/10 1/10 1/10
σh 1 1 1 1/5 1/10 1/10 1/10 1/10 1/10 1/10

Table 2: Interpreted Scale of the Label and Prediction Uncertainties

Bounding Box
Publication Implementation Experiment A Experiment B Experiment C

Proposal Detection Proposal Detection Proposal Detection Proposal Detection Proposal Detection

x∗ wa wa
wa/9 wa/10 wa/20 wa/20 wa/20 wa/20 wa/20 wa/20

y∗ ha ha
ha/9 ha/10 ha/20 ha/20 ha/20 ha/20 ha/20 ha/20

w∗ wa wa
wa/9 wa/5 wa/10 wa/10 wa/10 wa/10 wa/10 wa/10

h∗ ha ha
ha/9 ha/5 ha/10 ha/10 ha/10 ha/10 ha/10 ha/10

x̃ wa/10 wa/10 wa
wa/10 wa/5 wa/10 wa/10 wa/20 wa/5 wa/20

ỹ ha/10 ha/10 ha
ha/10 ha/5 ha/10 ha/10 ha/20 ha/5 ha/20

w̃ wa/10 wa/10 wa
wa/5 2wa/5 wa/5 wa/5 wa/10 2wa/5 wa/10

h̃ ha/10 ha/10 ha
ha/5 2ha/5 ha/5 ha/5 ha/10 2ha/5 ha/10

Table 3: Faster R-CNN Performance

Parameters
Mean Average Precision (mAP) @

0.5 IoU 0.75 IoU 0.5-0.95 IoU

Baseline [18] 41.5 - 21.2

Publication 42.8 18.7 21.0

Implementation 44.7 23.1 23.8

Experiment A 44.7 24.0 24.2

Experiment B 44.2 25.0 24.6

Experiment C 44.6 24.9 24.7

Table 4: RetinaNet Performance

Parameters
Mean Average Precision (mAP) @

0.5 IoU 0.75 IoU 0.5-0.95 IoU

Implementation 60.1 42.9 40.4

Experiment A 60.6 43.5 40.8

Experiment B 58.9 42.3 39.8

RetinaNet model.4

Since RetinaNet is a more recently proposed detector,

the implementation supports more sophisticated backbone

networks and newer datasets. For all of the experiments, we

train the RetinaNet model with a ResNet-101 [8] backbone

on the MS-COCO 2017 [15] training set and measure the

object detection performance on the validation set utilizing

the same metrics as Section 7.1.

The results of the experiments are presented in Table 4.

Experiment A was able to achieve higher performance

across the board, while Experiment B degraded perfor-

mance significantly at 0.5 IoU. We observed a similar trend

4Experiment C is not repeated since A and C use the same parameters

for the proposal network.

in Section 7.1. These results demonstrate that our proposed

interpretation can identify well-suited hyper-parameters for

a task regardless of the underlying meta-architecture, back-

bone network, and dataset.

8. Conclusion

In this work, we propose an alternative probabilistic in-

terpretation of the Huber loss. Our interpretation connects

the Huber loss to the KL divergence of Laplace distribu-

tions, which provides an intuitive understanding of its pa-

rameters. We demonstrated that our interpretation can aid

in hyper-parameter selection, and we were able to improve

the performance of the Faster R-CNN and RetinaNet ob-

ject detectors without needing to exhaustively search over

hyper-parameters.

The vast majority of recent papers that utilize the Huber

loss [1, 2, 3, 6, 7, 10, 11, 13, 16, 22], use the formulation as

described in the Fast or Faster R-CNN publications [4, 18].

Therefore, these methods as well as future methods have

the potential to be improved significantly by leveraging our

proposed interpretation of the Huber loss to identify better

suited hyper-parameters for their respective tasks.
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