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Abstract

Shapes are often designed to satisfy structural proper-

ties and serve a particular functionality in the physical

world. Unfortunately, most existing generative models fo-

cus primarily on the geometric or visual plausibility, ignor-

ing the physical or structural constraints. To remedy this,

we present a novel method aimed to endow deep generative

models with physical reasoning. In particular, we introduce

a loss and a learning framework that promote two key char-

acteristics of the generated shapes: their connectivity and

physical stability. The former ensures that each generated

shape consists of a single connected component, while the

latter promotes the stability of that shape when subjected

to gravity. Our proposed physical losses are fully differ-

entiable and we demonstrate their use in end-to-end learn-

ing. Crucially we demonstrate that such physical objectives

can be achieved without sacrificing the expressive power

of the model and variability of the generated results. We

demonstrate through extensive comparisons with the state-

of-the-art deep generative models, the utility and efficiency

of our proposed approach, while avoiding the potentially

costly differentiable physical simulation at training time.

1. Introduction

3D shape generation is a central problem in both com-

puter vision and computer graphics. The main challenge

is to minimize manual intervention in the design process,

while enabling the creation of new, diverse and plausible

shapes. Early efforts focused on synthesizing new shapes by

borrowing and assembling parts from existing collections,

combining probabilistic models with geometric constraints,

e.g., [23, 12, 39] among many others. More recently, deep

generative methods, in particular, adversarial networks [28]

and variational auto-encoders [51] have gained popularity in

various applications showing promising results. However,

existing works only focus on geometric, visual and struc-

tural plausibility, largely ignoring the fact that synthesized
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Figure 1: Visual results for 3D shape generation. We sample vec-

tors from the latent space of IM-Net [15] and PQ-Net [71] that we

decode using the corresponding baseline network (first row) and

our generative network trained with the proposed physical losses

(second row). Problematic regions are marked by red ovals. The

resulting shapes become more connected and physically stable.

shapes are also expected to satisfy physical and functional

constrains. Consequently, the generated content might ap-

pear to be a convincing example of a particular category

(e.g. a chair, a car etc.) but there is no guarantee that it

can be feasible and functional in the physical world. There

has been a steady stream of works in the design community

in studying 3D shapes from a functional perspective [36].

But, previous attempts in developing generative neural net-

works for unstructured [28, 51, 30] and structured [13, 44]

3D shapes have not yet jointly leveraged the power of an-

alyzing geometric, physical and functional representations.

Although it seems relatively straightforward for a human

designer to make cognitive connections between geometry,

physics and functionality, it is still challenging to train in-

telligent models to do the same.

In this paper, we introduce a physically-aware genera-

tive modeling method that makes a step to overcome these

limitations (cf Figure 1). We seek a latent representation

that incorporates geometric, structural and physical infor-

mation. Such a latent space enables many non-trivial ap-

plications including generating novel and realistic shapes,

physical shape optimization, etc. To this end, we introduce

a loss that endows existing deep generative models of 3D

shapes with physical reasoning.
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We focus on two commonly-encountered issues in

purely geometric generative models: the existence of dis-

connected components and the lack of stability when the

object is subjected to gravity or to trivial perturbations.

We demonstrate that both of these issues can be addressed

through a combination of novel loss functions and a care-

ful design of the training framework. Importantly, our ap-

proach requires no additional data or manual annotation.

Key to our approach are the implicit function represen-

tation of a 3D shape and a topological energy based on

tools from persistent homology [20, 21, 80, 53, 25] coupled

to promote the connectivity of the generated content. We

also integrate a neural stability predictor into the generative

framework to enhance the stability of generated 3D shapes

when subjected to gravity. Our proposed physical loss is

fully differentiable and we demonstrate its use in a variety

of end-to-end learning applications. Crucially, we demon-

strate that our physical objectives can be enforced without

sacrificing the expressive power of the model and variabil-

ity of the generated results through a careful design of the

generative modeling framework.

To the best of our knowledge, our work is the first end-

to-end physically-aware deep generative framework that at-

tempts to jointly encode geometry, structure and physics in

deep generative neural networks. Through extensive exper-

iments and comparisons with the state-of-the-art deep gen-

erative networks, we demonstrate that our framework im-

proves overall generative performance and physical plausi-

bility metrics.

Contributions Our overall contributions are threefold.

First, we demonstrate that incorporating physical reasoning

as a supervisory signal into existing deep generative models

can enhance the physical validity of the generated content.

Second, we propose two novel learning physical losses, and

explore the mutual dependency between geometry, structure

and physics by encoding this information in a joint latent

space. Third, we show that our framework is generalizable

to different networks and 3D shape representations.

2. Related work

2.1. 3D Deep Generative Models

In recent years, 3D computer vision community has been

actively investigating leveraging the power of deep genera-

tive models for 3D shape synthesis. Generative models of

voxel grids [70, 61, 27, 30] constitute a natural extension of

remarkable progress in image generation problems. How-

ever, this representation suffers from high computational

cost that hinders generation resolution and quality. Several

works propose a more efficient shape representation based

on octrees [63, 57] to alleviate the prohibitive memory re-

quirements but even this sparse representation is still limited

in terms of resolution and cannot capture the fine details of

3D shapes. To improve the generation quality, researchers

explored other shape representations such as point clouds

[2, 33] surface meshes [62, 29, 68, 26], multi-view depth

maps [5], implicit functions [15, 52, 41], etc.

The majority of these approaches, however, consider

low-level geometry while discarding the shape structure in

the generation process. Spatial layouts of objects and inter-

part relationships are known to be useful for understand-

ing visual information [46, 13]. Recently, several works

propose to learn shape structure along with the geometry.

Nash and Williams [51] propose to generate segmented 3D

objects in a part-by-part manner, while Li et al. [44] and

Mo et al. [47] introduce generative neural networks for

3D structures represented as binary trees and N-ary hier-

archies respectively. In contrast, work in [72, 71] considers

3D shapes as a sequence of part geometries. The approach

proposed in [40] further learns primitive abstraction to en-

rich 3D shape understanding and synthesis. In [66], shapes

are synthesized with part labeling. Another set of methods

generate 3D shapes by composing parts such as [58, 73, 19].

Similarly, Mo et al. [48] use a tree-hierarchy from [49] rep-

resentation to generate 3D shapes.

The methods mentioned above do not place particu-

lar emphasis on the physical plausibility of the generated

shapes and focus instead on the visual or structural quali-

ties. Although several works attempt to use physical con-

straints such as enforcing adjacency relationships [47], they

are still limited to connecting regions among shape parts.

More relevant to our work, [26] introduces a deep gen-

erative neural network that produces structured deformable

meshes with support stability. They further propose an op-

timization pipeline that uses the inferred support relation-

ships to refine the results to get physically stable and well

connected shapes. Another work, concurrent to ours, [59]

proposes to enhance the quality of the generated results by

iteratively enriching the training data set with filtered gen-

erated content. In our work, we explicitly embed physical

constraints into the training objective function. The phys-

ical understanding is hence explicitly derived from the ob-

jective function rather than implicitly from the data. This

leads to a better control of the physical quality and also pre-

vents promoting certain shape structures with superior per-

formance at the expense of the generated shapes’ diversity.

2.2. Physical reasoning in deep learning

There has been increasing interest in improving genera-

tive design by exploiting physical reasoning, which forms

an important signal in human-level object and scene under-

standing [32]. Existing works on this topic have focused

on exploring physics intuition to efficiently understand 3D

shapes [45, 79] and parse 3D scenes [75, 76, 18, 14]. Mod-

els from [69, 43, 7, 38, 9] were able to predict dynamics

from scenes in 2D and 3D scenarios. In [78, 22], authors
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further consider forces and physical quantities. We refer

the interested readers to a recent survey [77] on the ben-

efits of the joint representation and joint inference of core

concepts for AI with human-like common sense such as

physics, causality, intents, utility, etc.

2.3. Shape Optimization

Our work is also related to efforts in shape optimization,

which has a rich history motivated by applications rang-

ing from structural mechanics to electromagnetism [3, 1].

Triggered by applications in digital fabrication, shape op-

timization problems have also been studied in computer

graphics, aiming to find shape variations that meet certain

design goals including physical properties such as stabil-

ity [54, 67, 74], rotational dynamics [6], structural stabil-

ity and durability [64] and aerodynamic and hydrodynamic

constraints [8]. Unlike these approaches and more similar

to ours, authors in [8] employ a neural network to formulate

their optimization objective function. They train a Geodesic

Convolutional Neural Network [50] to build a differentiable

fluidynamics simulator that is then used to optimize input

shape parameters. Differently from the previous works, we

propose to learn a physically-aware auto-encoder that re-

constructs an input shape while addressing the physical fail-

ures in one forward pass.

2.4. Topological regularization

Finally, our connectivity losses are based on advances

in computational topology [20] and specifically on tools

from persistent homology [20, 21, 80, 25, 11]. These

techniques have been incorporated in applications includ-

ing shape segmentation [60], 2D classification [35], 2D

segmentation [37, 16], surface reconstruction [24], shape

matching [53], deep learning interpretability [10], autoen-

coder’s latent space regularization [34], etc. More rele-

vant to ours is the work in [25] which proposes to fine-tune

GAN-based generative model [70] weights using a topol-

ogy layer that computes persistent homology. Instead, we

propose a framework where the topological loss operates

on the latent representation making it generalizable and not

tied to the network architecture. We also demonstrate the

effectiveness of the topological regularization for other ap-

plications that go beyond shape generation including shape

auto-encoding and shape correction.

3. Method

3.1. Overview

The main idea of our work is to represent and generate

shapes by jointly considering their geometry, structure and

physical properties. Each shape from a particular category

is believed to meet geometric consistency as well as physi-

cal constraints. In this work we focus on man-made shapes

(such as chairs with attached footrest, tables, lamps, etc)

that should naturally be composed of a single connected

geometric component, and to be stable when subjected to

gravity and to trivial perturbation forces. To exploit these

two key physical cues, we introduce a connectivity loss

derived from computational topology and, a stability loss

based on a neural stability predictor. We then demonstrate

how to endow two recent state-of-the-art generative mod-

els: the unstructured IM-Net [15] and the structured PQ-

Net [71] with the proposed losses without sacrificing their

expressive power. The overview of our approach is depicted

in Figure 2. Given a generative network G pre-trained on a

shape category, we propose to further plug a mapping func-

tion Φ at the beginning of the pre-trained generator that

learns to capture physical reasoning. The idea consists of

learning to map each latent vector associated with a physi-

cally implausible shape into another latent vector that rep-

resents a ‘corrected’ version of the same shape. Our key

observation is that using this approach, the diversity of the

sampled shapes is preserved since the latent space of ob-

jects is unchanged, and furthermore only latent vectors of

physically implausible shapes are modified. Importantly,

this approach is architecture-agnostic since it only operates

on the latent space of objects.

The rest of this section is organized as follows: we first

introduce our physical objective function including the con-

nectivity and the stability losses in Sections 3.2 and 3.3.

Then, we explain the network architecture in Section 3.4,

and how we inject these two losses into state-of-the-art gen-

erative networks in Section 3.5. Finally, Section 3.6 de-

scribes the different applications covered by this work.

3.2. Connectivity Loss

As shown in Figures 1, 3 and 4, a common artefact in

existing deep generative networks is the failure of shape

connectivity. Ensuring a feasible geometry without spuri-

ous disconnected components or noise remains a challenge.

To remedy this, we propose to inform the 3D shape gen-

eration through topological priors to enhance connectivity

properties. To this end, we introduce a connectivity loss de-

rived from persistent homology tools [20, 21, 80, 53, 25].

In the following, we will give a brief overview of the 0-

dimensional persistent diagrams of real-valued functions

and their use in our setting. We refer the interested read-

ers to [80, 25, 53] for a more comprehensive overview.

3.2.1 Persistence diagram of real-valued function

Given a 3D domain V ⊂ R
3, we study the topological prop-

erties of a function f : V → R. In our case, V is a 3D

domain and f is an implicit shape representation predicted

by a generative network which is defined on a finite set of

points in V and linearly interpolated over V . Our main fo-
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Figure 2: An Overview of our physically-aware generative network. It consists of three parts: (1) a mapping network Φ that learns to map

an input latent vector associated with a physically implausible shape into another latent vector that represents a corrected version of the

same shape, (2) a pre-learned generative network that decodes the latent vector into a 3D shape and (3) a physical module consisting of a

topology layer and a neural stability predictor that evaluate the connectivity and stability properties respectively of the generated shapes.

cus is on the 0-dimensional homology associated with func-

tion f that reflects the number and the relative values of

its local maximum (respectively minimum). For such func-

tion f , we can build a persistence diagram to track how the

connected components (local maximum) of the super-levels

f−1[α,∞) change across different values of α ∈ R.

To build the persistence diagram of f , we use the ap-

proach advocated by [53]. We assume that our topologi-

cal space is a 3D voxel grid G. We think of each voxel

as vertex and we connect each face-connected voxels by an

edge. The information about the way local maximum of

f evolve across decreasing α values is captured by a set

of pairs (b, d) where b and d are respectively the birth and

death values of each local maximum achieved by some ver-

tex v. The birth value is simply f(v) and the death value

is the smallest α where f(v) ≥ f(w) for all w in the same

connected component as v in f−1[α,∞). This multiset of

birth-death pairs is known as the 0-dimensional persistence

diagram Pf = (bi, di)1≤i≤m where m is the number of lo-

cal maximum. To build Pf , we start by sorting the values of

f and processing the vertices of G in descending order. A

new point (b, d) is added whenever a new local maximum

is detected.

3.2.2 Connectivity loss and gradient

To put this into our context, suppose f is an implicit func-

tion defined over a 3D grid where the shape surface cor-

responds to the λ-isosurface with f values greater than or

equal to λ inside the surface. The number of connected

components of this shape simply equals the number of con-

nected components with a birth and death values in the

persistence diagram Pf that are, respectively bigger and

smaller than λ. We refer to this subset of the persistence

diagram by Pλ
f = (bλi , d

λ
i )1≤i≤mλ

with mλ ≤ m. For no-

tational convenience, we assume that bj − dj ≥ bi − di for

j < i. Hence, to control the connectivity of a 3D shape, we

propose to optimize the following loss:

Lc =
∑

2≤i≤mλ

(

bλi − dλi
)

. (1)

Note that we optimize starting from the second most persis-

tent component i = 2 since our target shape is expected to

have exactly one connected component. It has been shown

in [53] that the derivative of Lc can be computed with re-

spect to the values of f at G. The key tool is the existence

of a map π that maps each pair (bλi , d
λ
i ) ∈ Pλ

f to the pairs

of vertices in G that respectively create and remove the con-

nected component:

π : (bλi , d
λ
i )1≤i≤mλ

7→ (vb, vd). (2)

If the vertex function values are distinct (otherwise we se-

lect an arbitrary fixed vertex), then the mapping function π

is unique and it yields that [25, 53]:

∂Lc

∂v
=

∑

2≤i≤mλ

∂Lc

∂bi
✶π(bλ

i
)=v +

∑

2≤i≤mλ

∂Lc

∂di
✶π(dλ

i
)=v.

(3)

In the current implementation, the topological space G

is a voxel grid. Consequently, values of f are evaluated

at each voxel V (or equivalently vertex) of G. For implicit

field representation covered by this work, f(V ) equals f(x)
for x randomly sampled inside V .

It is important to point out that authors in [25] proposed

to improve the quality of a deep generative network us-

ing topological priors. Compared to their work, we avoid

the triangulation of the topological space and use a cubical

complex that is proved to be more efficient to study data

naturally given in a cubical form [65]. Besides, we only

consider a subset Pλ
f ⊂ Pf , since we empirically found it to

improve the performance, particularly for the task of shape
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auto-encoding, by avoiding shape variations that don’t im-

prove the λ-isosurface parameters while preserving the con-

nectivity optimization efficiency. Please refer to our supple-

mentary for more details about the comparison to [25].

To sum up, we propose a novel differentiable connec-

tivity loss that operates on 3D shape representation values

{f(x);x ∈ G} predicted by a generative network. f(x) can

be thought for instance as the distance of x to the decoded

shape surface [52] for a signed distance field representation,

or as the probability of x lying inside the decoded shape for

voxel [70] or occupancy field [15] representations, etc.

3.3. Stability Loss

Our neural stability predictor is a neural network classi-

fier that takes as input a 3D shape and predicts a probability

p ∈ [0, 1] that assesses whether the input is stable or not.

For a given generative model G, we train a neural stability

predictor ΨG using the corresponding generated content. To

this end, we first proceed with generating a database of 3D

shapes {Si}1≤i≤NG
using G. Then, we employ the Bul-

let Physics Engine [17] to simulate the behavior of each Si

when subjected to gravity and to trivial perturbation forces

(please see the supplementary material for the details of the

simulation settings). A shape Si is therefore labeled stable

{1} if it remains static and {0} otherwise. The ΨG archi-

tecture is tailored to the underlying shape representation;

we adopt a PointNet-like [55] approach and a 3D-CNN net-

work consisting of three convolutional layers as the base ar-

chitectures to learn respectively from point cloud and voxel

grid shapes. Both base architectures are followed by two

fully connected layers for the classification task. We use

sigmoid as the activation function of the last layer in order

to output the stability probability p.

3.4. Network architecture

Although our method is architecture-agnostic, in our ex-

periments we focus on two baseline generative networks:

the unstructured IM-Net [15] and the structured PQ-Net

[71]. Further experiments on a 3D-VAE can be found in

the supplementary material. To build our generative model,

we plug a mapping network Φ consisting of four fully con-

nected layers at the beginning of a pre-trained shape de-

coder, followed by our physical module (see Figure 2). For

our IM-Net [15] based generator, we use the baseline de-

coder provided by the authors. However, for our PQ-Net

[15] based one, we introduce several changes to obtain a

spatial representation that we can feed to the stability loss.

Specifically, we use the baseline sequential decoder fol-

lowed by the part decoder which results in a sequence of

voxel-based part implicit fields. Then, we additionally sam-

ple grid points that lie inside the inferred surface to which

we apply the inferred part size and position transforma-

tions. The obtained point cloud is then fed to a sampling and

grouping layers similarly to the work in [56] that downsam-

ple the point cloud to N=2048 points using furthest point

sampling.

3.5. Training and loss function

In this section, we describe the training process of our

model which is decomposed into two phases. In the first

phase, we train the generative network on a dataset D con-

sisting of shapes that we aim to represent and generate. In

the second phase, we retrieve the decoder part of the net-

work that we denote by G; G maps a latent vector from the

learned latent space V into a 3D shape. Then, we augment

G with our mapping network Φ inserted at the beginning of

G. Φ aims to learn a mapping of each latent vector asso-

ciated with a physically implausible shape into another la-

tent vector that represents a ’corrected’ version of the same

shape. We denote by G′ the resulting generative network

from this composition G′ = G ◦ Φ. During training, we

freeze G weights and enable Φ to capture the physical rea-

soning enforced by the connectivity and the stability losses.

At each iteration, we feed to G′ a batch of sampled vectors

from the pre-learned latent space of objects V of G. The

training loss consists of three parts:

Ltotal = Ez∈V [Lreg + αcLconn + αsLstab] , (4)

with αc and αs weighting coefficients.

The regularization loss Lreg: ensures the proximity to

the input latent vector and thus preserves physically valid

shapes and enforces Φ(z) to belong to the latent space of

shapes:

Lreg(z) = ‖z − Φ(z)‖2. (5)

The connectivity loss Lconn: promotes the topological

regularity of the produced shape as described in Section

3.2.2:

Lconn(z) =
∑

(bλ
i
,dλ

i
)∈Pλ

G′(z)
;i≥2(b

λ
i − dλi ). (6)

Note that for the part-based generative network PQ-Net

[71], G′(z) is a sequence of k parts expressed as {f1, ...fk}
where each fj is the implicit field associated with part j.

Lconn(z) equals in this case the mean of the connectivity

losses computed for each part:

Lconn(z) =
1

k

∑

fj∈G′(z)

∑

(bλ
i
,dλ

i
)∈Pλ

fj
;i≥2(b

λ
i − dλi ). (7)

Note that persistent diagrams are computed with a topolog-

ical space G of resolution 32, except for the PQ-Net [71]

based framework that uses a resolution 16 to compute each

Pλ
fj

for computational memory reasons.

The stability loss Lstab: we use the ΨG neural stability

predictor, trained as described in Section 3.3 to compute
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Lstab. Our goal is to encourage the stability probability of

the G′(z) to be close to one:

Lstab = max(1−ΨG ◦G′(z), α), (8)

with α = 0.5 to preserve the physically stable shapes.

3.6. Applications

The latent space of our generative network provides a

meaningful space for several tasks such as shape generation,

auto-encoding, and correction.

Shape generation: We use latent-GAN approach [2]

to sample new shapes using our physically-aware gener-

ative network. The generator and discriminator architec-

tures consist of three fully-connected layers and trained via

Wasserstein GAN loss with gradient penalty [4, 31]. At in-

ference time, the generator maps random vectors sampled

from the Gaussian distribution N (0, 1) into the pre-learned

latent space of objects, which is then decoded into a 3D

shape using our decoder.

Shape auto-encoding: We measure how accurately our

network can reconstruct the encoded shapes. To build our

auto-encoder, we retrieve the encoder part from each base-

line network [15, 71] pre-trained each following the settings

indicated by the authors. We then plug our physically aware

decoder G′ to reconstruct the encoded shapes. We compare

the performance of our approach to baselines.

Shape Correction: This application amounts to investi-

gating how corrupted shapes in terms of connectivity and

stability can be fixed using our framework. Shape correc-

tion is performed by a simple forward pass of an input voxel

shape of resolution 64 through our network consisting of a

3D-CNN encoder EG (with similar architecture as in [15])

and our pre-trained physically-aware decoder G′ based on

G among [15, 71]. To learn EG, we sampled voxel shapes

of resolution 64 decoded by G, that constitute together with

the corresponding latent vectors the learning set.

4. Experiments

We present quantitative and qualitative evaluations of

our approach on three tasks: shape generation, reconstruc-

tion and correction. We further provide experiments on

shape optimization task in our supplementary. Our exper-

iments are conducted using PartNet dataset [49]. We use

Chair category and remove shapes with more than 9 parts

as described in [71] and disconnected shapes (chairs with

footrest) resulting in 6253 shapes. Then we split the dataset

into training/validation/test using the official split of Part-

Net. For fairness, all networks are trained using this setting.

4.1. Physical metrics

An important component of our work is the introduction

of metrics for evaluating the physical validity of the gen-

erated content. Below, we describe the metrics we use to

evaluate the quality of the results.

Connectivity: We evaluate the connectivity properties of

the synthesized shapes. This evaluation is conducted on a

set of sampled shapes at a resolution 256 for IM-Net [15]-

based experiments and per part resolution 128 for PQ-Net

[71]-based ones. For each test shape, we extract the surface

using Marching Cubes which is then converted into a shape

graph; where mesh nodes are thought as graph vertices and

mesh edges as the graph edges. Note that we choose sam-

pling with high resolution to have a connectivity evaluation

that is correlated with the visual results, even though ob-

viously using lower resolution of Marching Cubes would

yield more connected shapes. For each sampled shape, we

derive the following connectivity properties from the as-

sociated shape graph using concepts from graph theory (i)

Average Connected Components (CC) counts the average

number of connected components per generated shape (ii)

Connection Ratio (CR): equals the number of shapes with

connected graph divided by the total number of evaluated

shapes (iii) Connection Ratio at 1% (CR@1) computes the

connection ratio CR after removing from each shape graph

connected components containing fewer than 1% of the to-

tal shape vertices. The motivation to compute CR@1 is to

distinguish corrupted shapes from noisy ones.

Stability: This measure reflects the behavior of the input

shape once placed on the ground in the common orientation

when subjected to gravity and to trivial perturbation forces.

We use two metrics (i) Average Potential Well (PW): Poten-

tial well (pw) of a stable shape equals the minimum energy

needed to bring the shape into a new saddle position, be-

yond which the shape loses its stability. For unstable shapes

under gravity, we set pw to zero. pw can be computed for

each shape by studying the position of its center of mass c

with respect to the support polygon P (defined as the con-

vex hull of all the points of the shape touching the ground).

It can be seen (see [42]) that up to a constant pw = d− cz ,

where cz is the height of c and d is its distance to the bound-

ary of P . PW is consequently the average pw values com-

puted for the evaluation set. To compute PW, we discard

shape connectivity and only focus on how shape volume is

generated with respect to its support polygon. Shapes are

normalized to be within a unit ball. (ii) Validity Ratio (VR)

equals the number of stable and connected shapes divided

by the total number of shapes to evaluate. Note that discon-

nected shapes are also unstable (except when disconnected

parts are placed on the ground which is a rare case). The

stability of the connected shapes is evaluated using the sim-

ulation process described in the supplementary material.

4.2. Physical Network training

To train our neural stability predictor ΨG associated with

a given generative network G, we first sample multiple
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G Classifier Accuracy

IM-NET [15]
DG 0.544

Mfunc 0.512

ΨG 0.964

PQ-NET [71]

DG 0.580

Mfunc 0.526

ΨG 0.986

Table 1: Quantitative stability classification results. Only ΨG

manages to predict shape stability.

shapes using G from which we select N = 10K shapes SG

equally divided into stable and unstable shapes, and work

with train/validation/test sets of a 80%-5%-15%. Note that

SG consists of voxel grid for experiments with [15] and

point cloud for the ones with [71]. Furthermore, we want to

draw attention to the relevance of our approach by proving

that stability enhancement cannot be handled by reasoning

on geometric plausibility or latent code consistency only.

To this end, we perform two more experiments where we

use the discriminator network described in Section 3.6 and

the minimum matching distance function Mfunc as stabil-

ity classifiers. DG takes as input a 3D shape and returns

a scalar; it is trained to output higher values for ground

truth training shapes from [49] than for the generated ones.

Mfunc takes as input a 3D shape from which we sample

2048 surface points and returns its smallest distance to our

test set from [49] using Chamfer Distance. While DG re-

flects the latent code consistency, Mfunc evaluates the geo-

metric plausibility of the decoded shapes. To evaluate DG

and Mfunc in understanding 3D shape stability, we feed

each test shape from SG to DG and Mfunc, then we com-

pute the Receiver Operating Characteristic curve to find the

optimal classification threshold that we use to calculate the

achieved accuracy of each classifier. Table 1 displays the

classification performance of each classifier on test set SG

for each G among IM-Net [15] and PQ-Net [71]. Results

prove that DG and Mfunc are not relevant for stability as-

sessment and that geometric plausibility and physical stabil-

ity are not necessarily correlated. Besides, we prove the fea-

sibility of training ΨG to predict the stability of 3D shapes.

Note that experiments with DG and Mfunc are shown for

reference and we do not intend this as a fair comparison

since our method explicitly aims to detect unstable shapes.

4.3. Shape Generation

We show both qualitative and quantitative results of

shape generation task in Figure 1 and Table 2 respectively.

Quantitative results are performed using randomly sam-

pled 2K shapes. We use the Minimum Matching Distance

(MMD) and the Coverage (COV) to evaluate respectively

the fidelity and the diversity of the generated shapes [2].

To this end, we randomly sample 2048 surface points from

IM-Net [15]

Net MMD COV CC CR CR@1 PW VR

B 7.25 51.60 2.01 58.1% 73.9% 7.32 55.5%

B+T 7.29 51.84 1.72 67.8% 82.8% 8.35 65.8%

B+S 7.06 51.35 1.68 68.7% 81.3% 9.90 68.5%

B+P 7.11 51.80 1.62 70.9% 84.0% 9.53 70.5%

PQ-Net [71]

Net MMD COV CC CR CR@1 PW VR

B 7.33 57.92 2.07 53.5% 66.2% 5.37 48.7%

B+T 7.46 57.10 1.79 62.3% 73.7% 6.04 57.2%

B+S 7.38 58.58 2.01 56.4% 69.2% 6.51 53.1%

B+P 7.36 58.11 1.74 65.2% 76.5% 6.42 60.5%

Table 2: Quantitative evaluation for shape generation. B: baseline

network; B+T: our network with topological loss only; B+S:our

network with stability loss only; B+P: our network with both phys-

ical losses. MMD is multiplied by 10
3 and PW by 10

2.

each generated shape and compare to our test set from [49]

using Chamfer distance. As the table shows, our physi-

cal losses play a strong role. By enforcing the topological

(connectivity) loss, our approach reduces noisy and discon-

nected components. However, this loss alone does not ad-

dress stability failures. As for stability, we observe that us-

ing the stability loss only improves the connectivity for our

IM-Net [15] -based generator, while it displays no improve-

ment for the PQ-Net [71]-based one. This can be explained

by the fact that the voxel-based neural stability predictor

used within our IM-Net [15] -based generator helps recov-

ering the connectivity since the stable shapes are necessar-

ily connected (except when disconnected parts are placed

on the ground which is a very rare case), while the connec-

tion property is much harder to understand when learning on

point clouds, which is the case for our PQ-Net [71]-based

one. Overall, we observe that jointly reasoning about con-

nectivity and stability results in more physically valid gen-

erated shapes. Note that the common trend of performance

improvement for MMD and COV metrics is also observed

when combining connectivity and stability regularization.

We conclude that our approach provides both meaningful

and diverse outputs. Due to page limit, more qualitative re-

sults are provided in the supplementary material.

4.4. Shape Autoencoding

In this experiment, we measure the contribution of our

physical losses in reconstructing shapes from our PartNet

[49] test set. We compare baselines IM-Net [15] and PQ-

Net [71] with our network where we replace the decoder

part G with our physically-aware decoder G′. Table 3 and

Figure 3 display quantitative and qualitative evaluations re-

spectively. We use the Intersection over Union (IoU) with

sampling resolution 64, Chamfer Distance (CD) on 10K

surface points with sampling resolution 256 for IM-Net [15]

and per part resolution 128 for PQ-Net [71], and physical
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Figure 3: 3D shape reconstruction results. First row: ground truth

shape; Second row: baseline network reconstruction. Problematic

regions are marked by red ovals; Third row: our network recon-

struction. Our approach yields better and more feasible results.

IM-Net [15]

Net IoU CD CC CR CR@1 PW VR

B 67.13 2.94 1.80 66.2% 77.7% 8.14 64.8%

B+T 70.42 3.21 1.60 71.5% 84.4% 8.55 70.2%

B+S 70.50 3.08 1.55 73.0% 83.4% 9.42 72.6%

B+P 70.05 3.22 1.47 74.8% 86.4% 9.61 74.7%

PQ-Net [71]

Net IoU CD CC CR CR@1 PW VR

B 66.08 2.91 1.27 84.5% 89.1% 8.24 81.9%

B+T 66.25 3.02 1.24 84.9% 90.2% 8.24 82.6%

B+S 65.00 2.98 1.25 84.8% 89.2% 8.32 82.3%

B+P 66.73 3.00 1.24 85.1% 90.0% 8.28 82.8%

Table 3: Quantitative evaluation for shape auto-encoding. B: base-

line network; B+T: our network with topological loss only; B+S:

our network with stability loss only; B+P: our network with both

physical losses. CD is multiplied by 10
3, IoU and PW by 10

2.

metrics as measurements. In general, our approach outper-

forms the baselines in terms of physical quality. Note how

the IoU is also improved, which proves that the physical

correction is performed in the plausible way that reconciles

differences with the underlying ground truth shape. How-

ever, we also observe an increase in CD that captures the

distance between surfaces. We attribute this to the tendency

of both physical losses to add volume to the input shape

since it is the most frequent solution to the different failures

such as connecting parts or adding legs. We aim to remedy

this in future work by defining a regularization function that

promotes solutions with the minimum additional volume.

4.5. Shape Correction

For each generative network G among IM-NET [15] and

PQ-NET [71], we use 10K voxel shapes of resolution 64
to train the encoder EG. Our test set is built by sampling

and selecting 2K corrupted 3D shapes from each baseline

G (V R equals 0.0%). Figure 4 shows several examples of
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Figure 4: 3D shape correction results. First row: corrupted input

shape. Problematic regions are marked by red ovals; Second row:

baseline network correction. Third row: our network correction.

Our approach outperforms the baselines.

input corrupted shapes that are fed to EG then decoded by

baseline G and our G′ decoders. For visual convenience, we

use the mesh representation of the input voxels in the pro-

vided figures. Our approach shows improvement over base-

line for both G networks. Furthermore, quantitative results

also support the superiority of our approach by increasing

the V R from 18.9% to 34.9% using our IM-Net [15] based

G′ and from 37.2% to 69.8% using our PQ-Net [71] based

G′. Overall, we find that physically-aware approach is con-

siderably more accurate than the baseline in remedying con-

nectivity and stability failures. Significantly, this improve-

ment is obtained with a single forward pass through our de-

coder, and the result can be further optimized at test time.

5. Conclusion

We have proposed an approach aimed at developing a

physically-aware generative neural network for 3D shapes.

We demonstrated that endowing generative networks with

physical reasoning can be successful to improve the gener-

ated content in terms of quality and feasibility. There are

two main limitations and areas of improvement. First, our

neural stability predictor relies on the training category. Al-

though it proved its merits in predicting the stability quality

of 3D shapes, we believe that shape stability is a univer-

sal cue and can be expressed in a generic and category ag-

nostic formulation. Second, using a mapping network that

operates only on latent vectors makes our approach gener-

alizable and simple to integrate without loss of expressive

power. However, extending it to retraining the weights of

the generative network can further enhance the generative

performance. We leave this as interesting future work.
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