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Abstract

High Definition (HD) maps are maps with precise def-

initions of road lanes with rich semantics of the traffic

rules. They are critical for several key stages in an au-

tonomous driving system, including motion forecasting and

planning. However, there are only a small amount of real-

world road topologies and geometries, which significantly

limits our ability to test out the self-driving stack to gen-

eralize onto new unseen scenarios. To address this issue,

we introduce a new challenging task to generate HD maps.

In this work, we explore several autoregressive models us-

ing different data representations, including sequence, plain

graph, and hierarchical graph. We propose HDMapGen, a

hierarchical graph generation model capable of producing

high-quality and diverse HD maps through a coarse-to-fine

approach. Experiments on the Argoverse dataset and an in-

house dataset show that HDMapGen significantly outper-

forms baseline methods. Additionally, we demonstrate that

HDMapGen achieves high scalability and efficiency.

1. Introduction

High Definition maps (HD maps) are electronic maps

with precise depictions of the physical roads, usually with

an accuracy of centimeters, together with rich semantics of

traffic rules, such as one-way-street, stop, yield, etc. HD

maps sit at the core of autonomous driving applications

as they provide a strong prior for the self-driving robots

to localize themselves in the 3D space [4, 34], predict

other vehicles’ motions [6, 40] and maneuver themselves

around [8, 20]. Furthermore, HD maps are critical build-

ing blocks of city modeling and simulation. Simulating

novel city environments finds a wide range of applications

in game design and urban planning.

Practically, HD maps are constructed according to a

strict mapping procedure: first, a fleet of vehicles with map-

ping sensor suites (containing LiDAR, Radar, and camera)
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Figure 1: Left: a hierarchical map graph generated from HDMap-

Gen. One traffic light controlled lane is shown as an example;

Right: a map with corresponding intersections and lanes rendered

from the hierarchical map graph.

are sent to capture the scene; then, the sensor data are pro-

cessed and stitched together to obtain map imagery; finally,

human specialists annotate on top of the imagery to provide

vectorized representations of the world geometry with se-

mantic attributes. On the other hand, we aim to produce

synthetic HD maps in a data-driven way, mainly due to two

reasons: (1) building HD maps from the real world is pro-

hibitively expensive; (2) the small number of real-world

maps prevent us from testing the generalization capability

of self-driving stacks in simulation, such as motion fore-

casting and motion planning.

Existing methods in modeling cities and maps are mostly

relying on procedural modeling, and hand-crafted genera-

tion rules [30], and are therefore not flexible and adaptable

to new scenarios. There is no previous attempt to generate

HD maps using modern deep generative models to the best

of our knowledge. The most related works are those which

generate city layouts [10]. Compared to HD maps, city lay-

outs are not suitable for autonomous driving applications

since they only contain coarse locations of the roads (with

a resolution of roughly 10 meters) and lack details such as

lanes of the roads or traffic lights.
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Unique attributes of HD maps pose new challenges to

modeling them: (1) HD maps are composed of physical

road elements with geometric features, e.g. marked straight

lanes and hypothesized turning lanes; (2) Lane maps con-

tain rich semantic attributes, e.g. the direction of lanes, the

association between traffic lights and lanes. By addressing

these challenges, our major contributions in this work are as

follows:

• We pose a new important and challenging problem to

generate HD lane maps in a data-driven way.

• We perform a systematic exploration of modern au-

toregressive generative models with different data rep-

resentations and propose HDMapGen, a hierarchical

graph generative model that largely outperforms other

baselines.

• We evaluate our model on the maps of the public Ar-

goverse dataset and an in-house dataset, covering cities

of Miami, Pittsburg, and San Francisco. Results show

that our model produces maps with high fidelity, diver-

sity, scalability, and efficiency.

2. Related Work

2.1. Street Map Modeling and Generation

City street modeling and generation is an important com-

ponent of computer-aided urban design. Most classical

works rely on procedural modeling methods [1, 2, 37, 5, 9,

12, 13, 28, 30, 38]. One of the more well-known methods

is the L-system [30], which generates road networks from a

sequence of instructions defined by hand-crafted production

rules. To impose more control over the generated results,

later works proposed to sample from procedural models ac-

cording to constraints or likelihood functions [33]. How-

ever, these methods are still constrained by the rules, there-

fore are not flexible in terms of generating maps with dif-

ferent city styles.

In recent years, deep learning methods have been applied

to map reconstruction and encoding. Several works [3, 18,

22, 25] attempted to extract and reconstruct road topologies

from overhead images. VectorNet [14] and LaneGCN [23]

proposed to efficiently encode roads using graph atten-

tion networks and graph convolutions, replacing traditional

rendering-based models. Chu et al. propose Neural Turtle

Graphics (NTG) [10], a generative model to produce roads

iteratively. They use an encoder-decoder RNN model that

encodes incoming paths into a node and decodes outgoing

nodes and edges. The goal of NTG is to generate city-level

road layouts. In comparison, we focus on high definition

road and lane generation, which is much more challenging.

2.2. Graph Generative Models

Our model architecture is inspired by the rapid

progress in the area of graph generation spearheaded

by seminal works such as graph recurrent neural net-

works (GRNN) [17], graph generative adversarial net-

works (GraphGAN) [36], variational graph auto-encoder

(VGAE) [19], and graph recurrent attention networks

(GRAN) [24]. More recently, Cao et al. proposed Mol-

GAN [11], and Samanta et al. proposed NEVAE [31] to

generate small molecule graphs. These methods all focus

on generating graph topologies, such as adjacency matrices.

In comparison, HD lane maps are graphs that come with

spatial coordinates and geometric features, which poses an-

other layer of complexity to the generation problem.

2.3. Geometric Data Generation

Given the geometric nature of maps, another line of

related work is geometric data generation. To generate

2D sketch drawings, Ha et al. proposed SketchRNN [16],

an RNN model with a VAE structure to sequentially pro-

duce sketch strokes following human drawing sequences.

To assemble furniture from primitive parts, GRASS [21]

and StructureNet [26] adopted several variations of auto-

encoding models. More recently, Nash et al. proposed Poly-

Gen [27], an autoregressive transformer model that gener-

ates 3D furniture meshes. Compared to human sketches,

furniture, and molecules, graphs of lane maps usually con-

sist of more nodes and edges. Instead of treating the whole

map as a sequence, our method generates a map with a two-

level hierarchy, greatly improving the generation quality.

3. Method

In Section 3.1, we explore different data representations

to generate HD maps and demonstrate the efficiency of us-

ing hierarchical graph. In Section 3.2, we introduce our au-

toregressive graph generative model HDMapGen that uses

a hierarchical graph as data representation.

3.1. Data Representation

To provide detailed road information to the autonomous

vehicle, HD maps used in applications such as autonomous

driving typically contain many essential components, in-

cluding lanes, boundaries, crosswalks, traffic lights, stop

signs, etc. In this work, we focus on generating lanes, which

are a core component of HD maps. A lane is usually repre-

sented geometrically by its central line as a curve, and the

curve is stored as a polyline with a sufficient amount of con-

trol points on it to reconstruct the curvature. Our goal is to

generate these control points of central lane lines. Mean-

while, each lane has a unique ID. Its predecessor and suc-

cessor lane IDs are also provided. Moreover, the lanes also
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Figure 2: Different data representations of HD maps. Sequence representation leads to a big diagonal adjacency matrix, and it also suffers

from revisiting the intersection points multiple times; plain graph representation results in a big sparse adjacency matrix; our proposed

hierarchical graph representation gives a smaller and denser adjacency matrix (of the global graph), which reduces generation difficulty

and improves efficiency.

have semantic attributes such as whether any traffic light

controls it or not.

For lane map generation, there are various ways to rep-

resent the lane objects. We explore three different data rep-

resentations: a sequence, a plain graph, and a hierarchical

graph, as shown in Figure 2. We will later show that the hi-

erarchical graph representation that HDMapGen utilizes is

the most efficient and scalable. Moreover, it vastly outper-

forms other representation methods.

Sequence. While assuming all lines (lanes in our case) are

connected, a straightforward representation is to sort all the

lines in a map and treat the entire map as one sequence of

points. This approach was adopted by SketchRNN [16].

Each point in the sequence has an offset distance in the x

and y direction (∆x,∆y) from the previous point, and a

state variable q ∈ {1, 2, 3}. The state q = 1 indicates that

the next point is starting a new lane object; the state q = 2
identifies the next point to continue in the same lane ob-

ject, and the state q = 3 indicates that the entire map gen-

eration has completed. One of the major disadvantages of

this method is that there is no perfect way to pre-define a

sequential ordering of these points. Secondly, to cover an

intersection point of multiple lanes requires revisiting that

point more than once. Under this representation, an inter-

section point will be represented as multiple independent

points in the sequence.

Plain Graph. The second baseline is to use a plain graph to

represent a map. This strategy was adopted in recent work

on road layout generation NTG [10]. Under this represen-

tation, a plain graph contains all control points as nodes

and all line connections between control points as edges.

Moreover, each node has a node attribute of 2D coordi-

nates (x, y). The points inside a lane object have a degree

of two, while the intersection points have a degree greater

than two. This representation solves the revisiting issue of

sequence generation. However, the method is still ineffi-

cient due to a large number of control points to guarantee

a high-resolution map. To generate an edge between every

pair of control points, it resorts to a very large adjacency

matrix.

Hierarchical Graph (HDMapGen). Here, we propose an

efficient and scalable alternative to use a hierarchical graph

to represent the map. Under this approach, we first construct

a global graph with key points as its nodes. Key points are

defined as the endpoints of lanes or the intersection points

of multiple lanes. Then the edge of the global graph repre-

sents whether a lane exists between two key points. Since

key points are a small subset (30%) of original points, which

require a much smaller adjacency matrix. In the second

step, we represent each lane’s curvatures details with a lo-

cal graph. Each lane is constructed with a uniquely defined

sequence of control points between two key points. Given

this fixed topology, we could directly predict the coordi-

nates of the local nodes. Moreover, we also predict a cor-

responding node mask to allow variations of the number of

control points during generation. As demonstrated in Fig-

ure 2, using a hierarchical graph has a better performance

to preserve the natural hierarchical structure information of

the HD map. Moreover, it also enables a smaller size of

the adjacency matrix and higher efficiency than using plain

graph and sequence.

3.2. Autoregressive Modeling

Autoregressive modeling has achieved remarkable per-

formance in many generation tasks[15, 27], especially

for sequential data such as speech [29] and text [32].

More recently, several studies such as GraphRNN [39] and

GRAN [24] also took an autoregressive approach for the

graph generation. In this work, we also use autoregressive

modeling for HD map generation.
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Figure 3: HDMapGen pipeline. At each step, global graph generator (top) produces a new node with its coordinates and its connections to

existing nodes, which is a row and a column in the adjacency matrix; local graph generator (bottom) further decodes coordinates of local

nodes between the two connected global nodes. We also demonstrate the global graph and the local graph generated from HDMapGen.

Our proposed HDMapGen is a two-level hierarchical

graph generative model, as shown in Figure 3. Firstly, the

global graph generation process outputs a graph with both

topological structures represented by adjacency matrix L,

and the geometric features represented by nodes’ spatial co-

ordinates C. Each node of the global graph is generated au-

toregressively. In our task, we first model the global graph

as an undirected graph and later assign the lane direction

information as the sequential order in the local graph. At

the current step t, the global graph decoder predicts the Ct

of this new node at t and all corresponding edges (lanes)

Lt,s between previously generated nodes s in a single shot,

where s ∈ [1, t − 1]. Then, it constructs a new row Lt and

column (due to the symmetry for the undirected graph) of

the adjacency matrix L. Then, we apply with a local graph

decoder, which outputs the curvature details in each lane

object Lt,s. The local graph outputs for each global edge

Lt,s are two sequences with a fixed length W of coordinates

{(Cj)t,s} and valid mask {(Mj)t,s} for each local node j,

where j ∈ [1,W ]. The mask defines which node is valid to

allow a variation of the number of nodes in each local graph.

The local graph decoder is also generating the local graphs

for all lane objects Lt,s in a single shot, which enables very

fast and efficient running. We further add another single-

shot semantic attribute decoder to predict semantic features

of all generated edges Lt,s. We introduce the details of the

key components of HDMapGen in the following text.

Global Graph Generation. To apply autoregressive mod-

eling, we firstly factorize the probability of generating adja-

cency matrix L and coordinates C of the global graph as

P (L,C) =

T∏

t=1

P (Lt, Ct | L1, C1, · · · , Lt−1, Ct−1),

where P (Lt, Ct | L1, C1, · · · , Lt−1, Ct−1) defines that at

the current step t, the conditional probability of generating

every new node’s attributes Ct and its edges Lt with nodes

generated from all previous steps 1 to t− 1.

Furthermore, since the process of generating Lt and Ct

at each step t are not independent, we explore three variants

of global graph decoder to study the performance with dif-

ferent priority of generating Lt or Ct. We use coordinate-

first to refer to generating node coordinate first and then

topology, defined as P (Lt, Ct) = P (Lt | Ct)P (Ct), as

shown in Figure 3. And we use topology-first to refer to first

generating graph topology and then generate node coordi-

nates, defined as P (Lt, Ct) = P (Ct | Lt)P (Lt). Another

simplified strategy ignores the dependency between nodes

and edges is named as independent, defined as P (Lt, Ct) =
P (Ct)P (Lt). More details are in Supplementary.

Inspired by GRAN [24], which has state-of-the-art per-

formance in sample quality and time efficiency, we also in-

corporate a recurrent graph attention network for the global

graph generation. The graph attention module [35] per-
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forms the node state update with the attentive message

passing, enabling a better representation of global infor-

mation. In the model, we firstly define an initial node

state E0
s before the message passing at each step t as

E0
s = WLLs + WCCs + b, s ∈ [1, t − 1], where WL,

WC and b are parameters of the MLP encoders taking topol-

ogy and geometry inputs. Then for all nodes including new

node t and nodes s already generated, we perform multi-

ple runs of message passing. For each run r, the message

mr
i,k between node i and its neighbor node k ∈ N(i) is

mr
i,k = f(Er

i − Er
k), where N(i) are the neighbor nodes

of i. And a binary mask is defined as Bi = 0 to indi-

cate if node i is already generated, or defined as Bi = 1
if under construction at step t. The node state Er

i is fur-

ther concatenated with this mask Bi into Ẽr
i = [Er

i , Bi].
And the attention weights arik for edge Li,k is defined as

arik = Sigmoid(g(Ẽr
i − Ẽk

i )). And the node state update

is then calculated as Er+1
i = GRU(Er

i ,
∑

k∈N(i) a
r
ikm

r
ik).

In this experiment, we use MLPs for both f and g. The

GNN model has 7 layers and a propagation number of 1.

After the message passing is completed, we take the fi-

nal node states Et and Es after message passing, and use

model MLP (Et − Es) to decode them into a mixture of

Bernoulli distribution for topology outputs Lt. And an-

other model MLP (Et) is applied to generate a 2D Gaus-

sian mixture model (GMM) for coordinate outputs Ct. The

entire model is optimized with the minimization of neg-

ative log-likelihood (NLL) for coordinate outputs and bi-

nary cross-entropy (BCE) for topology outputs. And for

the GMM, we further add a temperature term τ to control

the diversity (variance) during the sampling. The original

standard deviation σx and σy in GMM are modified into

σxτ and σyτ . We follow the common teacher-forcing strat-

egy for autoregressive model training by providing ground

truth of L1, C1, · · · , Lt−1, Ct−1 as inputs when predicting

P (Lt, Ct), which avoids performing the reparameterization

trick for the sampling process during the backpropagation.

Local Graph Generation. As the local graph to represent

the curvature details of lanes always has a unique topology

as a sequence of control points, we use a padding vector

with a fixed maximum length W to represent the sequence.

We model it as a sequence of coordinate output {(Cj)t,s}
and a corresponding valid mask {(Mj)t,s}, where j ∈
[1,W ]. Then the conditional probability of the local graph

during generation is defined as P ({(Cj)t,s}, {(Mj)t,s} |
Lt,s, Ct, Cs, Et, Es). The valid mask enables a variation in

the number of nodes in each graph. For the straight lines

which have been filtered with redundant control points af-

ter map preprocessing, the valid mask {(Mj)t,s} is all 0s,

while for the lanes at the corner which usually have mul-

tiple control points remained to guarantee the smoothness,

{(Mj)t,s} is likely to have more values of 1. And we use an

MLP model to generate the local graph. The models are op-

timized with the minimization of mean square error (MSE)

for coordinate output {(Cj)t,s}, and with the minimization

of BCE for the valid mask {(Mj)t,s}.

Semantic Attribute Generation. Like the local graph gen-

eration, we predict an additional attribute, traffic lights fea-

ture for the generated edge. Given a lane Lt,s between node

t and node s, we predict whether the lane is controlled by

traffic lights with an additional edge feature decoder using

MLP. We train this edge feature decoder for binary classifi-

cation with the minimization of BCE.

4. Experiments

In this section, we demonstrate the efficacy of our pro-

posed HDMapGen model to generate high-quality maps.

We explore three autoregressive generative models for se-

quence, plain graph, and hierarchical graph input represen-

tations and evaluate generation quality, diversity, scalability,

and efficiency.

4.1. Dataset and Implementation Details

Datasets. We evaluate the performance of our models on

two datasets across three cities in the United States. One is

the public Argoverse dataset [7], which covers Miami (total

size of 204 kilometers of lanes) and Pittsburg (total size of

86 kilometers). We randomly sample 12000 maps with a

field-of-view (FoV) of 200m×200m as the training dataset

for Miami and 5000 maps with the same FoV for Pittsburg.

We also evaluate an in-house dataset, which covers maps

from the city of San Francisco. We train on 6000 maps with

a FoV of 120m× 120m.

Map Preprocessing. The key components of HD maps,

the central line of drivable lanes, are usually over-sampled

to guarantee a sufficient resolution. However, graph neural

network is limited in scalability. So in a pre-processing step,

we remove redundant control points with a small variation

of curvature in each lane. This step enables us to remove

70% of points while not compromise the map quality. We

then define a hierarchical spatial graph based on the pre-

processed vector map. We use Depth-First-Search (DFS)

to construct the global graph’s adjacency matrix and define

the generation order for autoregressive modeling. The start

node is randomly selected. Then we define the sequence of

control points between global nodes as a local graph. The

sequential order is the same as the lane direction.

Implementation Details. HDMapGen uses graph atten-

tion neural network as the core part to perform the at-

tentive message passing for graph inputs. We use multi-

layer-perceptrons (MLPs) for all other encoding and decod-

ing steps. The graph node coordinates are normalized to

[−1, 1]. The model is trained on a single Tesla V100 GPU

with the Adam optimizer, where we use an initial learning

rate of 0.0001 with a momentum of 0.9.
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4.2. Baselines

We compare the quality of our hierarchical graph genera-

tive model HDMapGen with a sequence generative model in

SketchRNN [16] and a plain graph generative model Plain-

Gen derived from the global generation step of HDMapGen.

SketchRNN. We map all control points of the lane objects

inside each HD map into a sequence for a sequence gen-

erative model. Each sequential data point has a pair of 2D

coordinates and a state variable to define each line’s conti-

nuity. We choose an ascending order of spatial coordinates

to define the sequential order. We explore conditional and

unconditional variants for this model. For the conditional

generation, a target map is provided as both input and target

as a variational auto-encoder during training. Meanwhile, a

target map is still provided as input during sampling. For an

unconditional generation, a decoder-only model is trained

to generate the target maps.

PlainGen. The plain graph generative model has the same

implementation as the global graph generative model in

HDMapGen, and it takes the entire plain graph as inputs.

Every control point in the map is taken as a global node in

the plain graph. A corresponding edge is constructed to de-

fine whether these two nodes are connected. We use DFS

to construct the adjacency matrix and define the order of

generation. And we explore two variants of coordinate-first

and topology-first for this model.

4.3. Qualitative Analysis

Global Graph Generation. We first show the global graph

from HDMapGen in Figure 4. We could see with only a

small set of global nodes could represent a typical pattern

in HD maps to include two parallel crossroads. We also

demonstrate that the diversity of model outputs could be im-

proved by increasing the temperature τ . While the diversity

and realism trade-off still exist during generation, we find

an empirical bound of 0.2 for τ to guarantee high-quality

samples in our experiments.

Local Graph Generation. The local graph represents a

sequence of control points that reveal the curvature details

of each lane object. For lanes, the density of control points

usually increases at the corner of each lane. In Figure 5, we

show our model is capable of generating such features to

have smooth curves at the corner of each lane.

Semantic Attribute Generation. As shown in Figure 5,

the traffic lights and the traffic light controlled lanes gener-

ated from HDMapGen are mostly located on the crossroads

and turn roads. The generated semantic attributes are con-

sistent with the real-world urban scenes.

Comparison with Baselines. In Figure 6, we show the

qualitative comparison between our models and other base-

lines. The results show that the proposed hierarchical graph

generative model HDMapGen (both coordinate-first and

Figure 4: The diversity of the global graph from HDMapGen is

improved as temperature τ increases, but the realism suffers.

Figure 5: Semantic attributes of traffic lights and local graph of

lanes controlled by traffic light generated from HDMapGen.

topology-first) generate the highest quality maps and vastly

outperform other methods. They capture the typical fea-

tures of HD maps, including patterns like the overall lay-

outs, the crossroads, parallel lanes, etc. Moreover, they

are capable of generating maps with different city styles.

For the maps generated from HDMapGen with the inde-

pendent model, the problematic crossing of lanes happens

frequently, as the model fails to take the dependence of co-

ordinates and topology into account. For PlainGen, we find

the model to completely fail for this task, as it is too chal-

lenging to generate a graph with a much large number of

nodes and edges in this setting, compared to the hierarchi-

cal graph. For SketchRNN, we find the model can learn

the overall geometric patterns. However, there are a large

number of problematic cut-offs or dead-ends occurring in

the generated lanes. This is because, during the sequential

data generation, it is possible to stop generating a consecu-

tive point at any step and then re-start at any arbitrary loca-

tion. This property is not an issue for a sketch drawing task.

However, for HD map generation, the model needs to guar-

antee the continuity constraint between generated points.

4.4. Quantitative Analysis

4.4.1 Metrics

We design four metrics to quantify the generation results:

Topology fidelity. We use maximum mean discrepancy

(MMD) [17] to quantify the similarity with real maps on

graph statistics using Gaussian kernels with the first Wasser-

stein distance. The topology statistics we apply here is the

degree distributions and spectrum of graph Laplacian.

Geometry fidelity. We use geometry features, the length,

and orientation of lanes to quantify the similarity with real
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Figure 6: HD Maps with different city styles from hierarchical graph generative models HDMapGen (coordinate-first, topology-first and

independent) outperform plain graph generative model PlainGen, and sequence generative model sketchRNN.

maps. Then we compute the Fréchet Distance to measure

two normal distributions using these features.

Urban planning. We use the common urban planning

features, connectivity to represent node degree, node den-

sity within a region, reach as the number of accessible lane

within a region to evaluate the transportation plausibility,

and convenience as the Dijkstra shortest path length for

node pairs of our generated maps compared with real maps

[10]. We also use Fréchet Distance to measure two normal

distributions of these features.

As shown in Table 1, HDMapGen (both coordinate-

first and topology-first) outperform the baselines on most of

the metrics. The results are consistent with the qualitative

analysis: SketchRNN has a poor performance in topology-

related features, such as the degree. Since problematic cut-

offs or dead-ends of lanes frequently happen in SketchRNN,

so the generated maps have a very different distribution of

node degrees from real maps. PlainGen has a better perfor-

mance in the spectrum of graph Laplacian. As we evalu-

ate topology features by transforming outputs of all models

into the plain graph level, which might preserve the intrinsic

topology patterns for outputs from PlainGen.

Diversity. We use a metric quantified by Chamfer distance

to quantify the map-wise diversity of the global graph gen-

erated from HDMapGen. As shown in Table 2, we evalu-

ate the diversity on two levels, one is the novelty compared

to real map ground truth, the other is the internal diversity

among output samples. It shows that results generated with

varied temperatures are novel compared with real maps. For

internal diversity, we could see the Chamfer distance dras-

tically increases as the temperature becomes larger.

4.5. Ablation Studies

We further conduct ablation studies on the impact of us-

ing different dependence and generation priority on three

variants of HDMapGen models coordinate-first, topology-
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Measurement Urban Planning Geometry Fidelity Topology Fidelity

Metrics Fréchet Distance MMD

Features Conne. Densi. Reach. Conve. Len. Orien. Deg. Spec.

Methods 100 101 101 101 10−1 101 10−1 10−1

SketchRNN
conditional 0.50 21.20 13.43 49.4 2.04 1.77 1.03 4.94

unconditional 0.44 41.12 29.83 49.5 1.64 1.22 0.83 4.74

PlainGen
topology-first 0.54 5.18 14.57 22.6 1.85 1.54 0.17 0.31

coordinate-first 0.39 4.30 4.81 12.0 1.64 0.46 0.12 0.29

HDMapGen

independent 0.31 4.38 4.22 11.2 1.49 0.52 0.06 0.54

topology-first 0.26 4.06 4.47 9.9 1.49 0.37 0.05 0.63

coordinate-first 0.17 4.79 4.74 11.8 1.49 0.53 0.07 0.90

Table 1: Measurements of urban planning, geometry fidelity and topology fidelity on HDMapGen and baselines PlainGen and SketchRNN.

Urban planing (features of connectivity, density, reach and convenience) and Geometry (features of the length and orientation of lanes) are

quantified with a Fréchet Distance metric. Topology fidelity (features of node degree and spectrum of graph Laplacian) is quantified with

a MMD metric. For all metrics, lower is better. Results are evaluated on Argoverse dataset.

Temperature 0.1 0.2 0.3 0.4 0.5

Diversity GT 11.6 11.9 11.1 11.6 13.0

Diversity Output 2.75 4.83 5.83 6.62 8.34

Table 2: Diversity quantified by Chamfer distance (scaling by 10
4)

for global graph generated from HDMapGen using different tem-

peratures τ . Novelty is compared to ground truth or among outputs

internally. Results are evaluated on our in-house dataset.

first and independence.

We show the ablation results in Table 3. For coordinate-

first model, BCE, which quantifies the topology predic-

tion performance, is the best optimized. As after coordi-

nates are generated as a prior, then the topology prediction

could be better optimized. Meanwhile, for topology-first

model, NLL, which quantifies the geometry prediction per-

formance, is the best optimized with the generated topology

as prior. In contrast, independence model is the worst as it

fails to model the dependence of coordinate and topology

during generation.

Metrics coordinate-first topology-first independent

NLL -5.610 -6.142 -4.490

BCE 0.001 0.050 0.053

Table 3: Negative Log likelihood (NLL) and binary cross-entropy

(BCE) on the generated global graph from three variants of

HDMapGen including coordinate-first, topology-first and inde-

pendent. Results are evaluated on Argoverse dataset.

4.6. Scalability Analysis

We further experiment HDMapGen with a FoV of

400m× 400m. As shown in Figure 7, HDMapGen consis-

tently achieves promising results for large graph generation,

demonstrating its scalability.

4.7. Latency Analysis

We show a latency comparison in Table 4. HDMapGen

achieves a speed-up of ten-fold compared to SketchRNN.

HDMapGen is much more efficient due to (1) using a

Figure 7: The global node generation order (from blue to red) and

the scalability of our hierarchical graph generative model HDMap-

Gen to generate HD maps with a FoV of 400m× 400m.

smaller number of nodes to represent a global graph, and

(2) utilizing GRAN with state-of-the-art time-efficiency for

global graph generation and a single-shot decoder for the

local graph generation.

Model HDMapGen PlainGen SketchRNN

Time [s] 0.20 0.89 2.28

Table 4: The generation time of an HD map with a FoV of

200m×200m on Argoverse dataset using HDMapGen, PlainGen,

and SketchRNN. HDMapGen is clearly the fastest.

5. Conclusion

In this work, we introduce a novel and challenging task

to generate HD maps in a data-driven way. We performed

a systematic exploration for autoregressive generative mod-

els with different data representations. Our proposed hierar-

chical graph generative model HDMapGen largely outper-

forms other baselines. We further demonstrated the advan-

tages of HDMapGen in generation quality, diversity, scala-

bility, and efficiency on real-world datasets.
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[25] Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. Deep-

roadmapper: Extracting road topology from aerial images.

In ICCV, 2017.

[26] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,

Niloy Mitra, and Leonidas J Guibas. Structurenet: Hierarchi-

cal graph networks for 3d shape generation. arXiv preprint

arXiv:1908.00575, 2019.

[27] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W

Battaglia. Polygen: An autoregressive generative model of

3d meshes. arXiv preprint arXiv:2002.10880, 2020.

[28] G Nishida, I Garcia-Dorado, and D G Aliaga. Example-

driven procedural urban roads. Computer Graphics Forum,

2015.

[29] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen

Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-

ative model for raw audio. arXiv preprint arXiv:1609.03499,

2016.

[30] Yoav IH Parish and Pascal Müller. Procedural modeling of

cities. In Proceedings of the 28th annual conference on Com-

puter graphics and interactive techniques, pages 301–308,

2001.

4235

https://www.esri.com/en-us/arcgis/products/esri-cityengine
https://www.esri.com/en-us/arcgis/products/esri-cityengine


[31] Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gómez,
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