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Abstract

Deep neural networks suffer from the major limitation of

catastrophic forgetting old tasks when learning new ones.

In this paper we focus on class incremental continual learn-

ing in semantic segmentation, where new categories are

made available over time while previous training data is not

retained. The proposed continual learning scheme shapes

the latent space to reduce forgetting whilst improving the

recognition of novel classes. Our framework is driven by

three novel components which we also combine on top of

existing techniques effortlessly. First, prototypes matching

enforces latent space consistency on old classes, constrain-

ing the encoder to produce similar latent representation for

previously seen classes in the subsequent steps. Second,

features sparsification allows to make room in the latent

space to accommodate novel classes. Finally, contrastive

learning is employed to cluster features according to their

semantics while tearing apart those of different classes. Ex-

tensive evaluation on the Pascal VOC2012 and ADE20K

datasets demonstrates the effectiveness of our approach,

significantly outperforming state-of-the-art methods.

1. Introduction

Semantic segmentation is a challenging computer vision

problem with many real-world applications ranging from

robot sensing, to autonomous driving, video surveillance,

virtual reality, and many others. For most applications, con-

tinuously improving the set of classes to be distinguished is

a fundamental requirement. Current state-of-the-art seman-

tic segmentation approaches are typically based on auto-

encoder structures and on fully convolutional models [38]

that are trained in a single-shot requiring all the dataset to

be available at once. Indeed, existing architectures are not

designed to incrementally update their inner classification

model to accommodate new categories. This issue is well-

known for deep neural networks and it is called catastrophic

forgetting [41, 18, 20], as deep architectures fail to update
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Figure 1. Our continual learning scheme is driven by 3 main com-

ponents: latent contrastive learning, prototypes matching and fea-

tures sparsity. Latent representations of old classes are preserved

via prototypes matching and clustering, whilst also making room

for accommodating new classes via sparsity and repulsive force of

contrastive learning. The decoder preserves previous knowledge

via output-level distillation. In the figure, bike and cars represent

old classes and leave more space to new classes (the dog) thanks to

the novel constraints (green dotted ovals versus gray-filled ovals).

their parameters for learning new categories while preserv-

ing good performance on the old ones.

Continual learning has been widely studied in image

classification [32, 36] and object detection [56, 34], while

has been tackled only recently in the semantic segmenta-

tion field [42, 58, 4, 33]. In this paper, we investigate class-

incremental continual learning in semantic segmentation.

Differently from the majority of previous approaches both

in image classification [36, 51, 3] and semantic segmen-

tation [58, 42, 4, 33], we do not mainly or solely rely on

output-level knowledge distillation. In this work, we focus

on latent space organization which has been only marginally

investigated in the current literature, and we empirically

prove it to be complementary to other existing techniques.

The main idea is depicted in Fig. 1, where some of the latent

space constraints are introduced. First, a prototype match-

ing is devised to enforce features extraction consistency on

old classes between the cumulative prototype computed us-

ing all previous samples and the current prototype (i.e., the

prototype computed on the current batch only). In other
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words, we force the encoder to produce similar latent rep-

resentations for previously seen classes in the new steps.

Second, a features sparsification constraint makes room in

the latent space to accommodate novel classes. To fur-

ther regularize the latent space, we introduce an attraction-

repulsion rule similar in spirit to the recent advancements in

contrastive learning. Finally, to enforce the decoder to pre-

serve discriminability on previous categories during classi-

fication, we employ a targeted output-level distillation.

Although continual semantic segmentation has only been

faced recently, it already comes with different experimen-

tal protocols depending on how the incremental data are

considered (see Section 3.1): namely, sequential (new im-

ages are labeled with both new and old classes), disjoint

(new images are labeled with only new classes, old classes

are assigned to the background) and overlapped (new im-

ages are labeled with only new classes, images are repeated

across training steps with different semantic maps associ-

ated to them). In this paper we devise a common framework

which allows to tackle all these scenarios and can be applied

in combination with previous techniques, which has never

been attempted before. We evaluate on standard seman-

tic segmentation datasets, like Pascal VOC2012 [16] and

ADE20K [76], in many scenarios.

Summing up, the main contributions of this work are: 1)

We investigate class-incremental learning in semantic seg-

mentation, providing a common framework for different ex-

perimental protocols. 2) We explore the latent space organi-

zation and we propose complementary techniques with re-

spect to the existing ones. 3) We propose novel knowledge

preservation techniques based on prototypes matching, con-

trastive learning and features sparsity. 4) We benchmark our

approach on standard semantic segmentation datasets out-

performing state-of-the-art continual learning methods.

2. Related Work

Continual Learning. Deep learning models are prone

to catastrophic forgetting [20, 30, 48], i.e., training a model

with new information interferes with previously learned

knowledge and typically greatly degrades performance.

This phenomenon has been widely studied in image clas-

sification task and most of the current techniques fall into

the following categories [10, 48]: regularization approaches

[5, 32, 73, 13, 36], dynamic architectures [69, 64, 35], pa-

rameter isolation [17, 53, 40] and replay-based methods

[66, 46, 55, 26]. Regularization-based approaches are by

far the most widely employed and mainly come in two

flavours, i.e., penalty computing and knowledge distillation

[25]. Penalty computing approaches [73, 32, 32] protect

important weights inside the models to prevent forgetting.

Knowledge distillation [52, 66, 36, 13] relies on a teacher

(old) model transferring or remembering knowledge related

to previous tasks to a student model which is trained to

learn also additional tasks. Parameter isolation approaches

[40, 39] reserve a subset of weights for a specific task to

avoid degradation. Dynamic architectures [64, 35] grow

new branches for new tasks. Replay-based models exploit

stored [3, 26, 51] or generated [66, 46, 55] examples during

the learning process of new tasks.

Continual Semantic Segmentation. Nowadays, deep

learning architectures have achieved outstanding results in

semantic segmentation [19, 21]. Current approaches are

based on fully convolutional models [38, 7, 6, 75, 72] and

exploit various techniques to cope with multi-scale and spa-

tial dependency. All these approaches, however, require

training data and segmentation maps to be available at once

(i.e., joint setting) and they experience catastrophic for-

getting if new tasks (e.g., new classes to learn) are made

available sequentially [42]. Hence, it emerged the need for

continual approaches specifically targeted to solve the se-

mantic segmentation task [47, 58, 42, 43, 33, 4]. Earlier

works focus on the continual semantic segmentation prob-

lem in specific scenarios, e.g., in medical imaging [47] or

remote sensing [58], extending standard image-level clas-

sification methods. More recently, standard semantic seg-

mentation datasets and targeted methods have been pro-

posed. In [42, 43] an exploration on knowledge distillation

techniques is proposed to alleviate forgetting: the authors

designed output-level and features-level distillation losses

coupled with freezing the encoder’s weights. Klingner et

al. [33] extend previous work not requiring old labels dur-

ing the incremental steps and proposing class importance

weighting to emphasize gradients on difficult classes. Cer-

melli et al. [4] study the distribution shift of the background

class when it incorporates previous and/or future classes

(disjoint and overlapped protocols, respectively). Back-

ground shift is addressed via unbiased versions of cross

entropy and output-level knowledge distillation losses to-

gether with an unbiased weight initialization rule for the

classifier. Nevertheless, previous works neglect accurate in-

vestigation of the latent space in continual learning.

Latent Space Organization. The analysis of the latent

space organization is becoming crucial towards understand-

ing and improvement of classification models [68, 49]. Re-

cently, some attention has been devoted to latent regulariza-

tion in continual image classification [1, 2, 27].

Besides this, one of the emerging paradigms is constrastive

learning applied to visual representations. Dating back to

[22], these approaches learn representations by contrast-

ing positive against negative pairs and have been recently

re-discovered for deep learning. Many works use a mem-

ory bank to store the instance class representation vector

[67, 77, 59, 23, 44, 9], while some others explore the us-

age of in-batch negative samples instead [14, 71, 28, 31].

The contrastive learning objective proposed in this work

moves from opposition of positive and negative pairs and
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also recalls features clustering (if features belong to the

same class) and separation (if features belong to different

classes), which has been recently applied to adapt semantic

segmentation models across domains [29, 37, 61].

Prototypes-based regularizing terms gained a great interest

and, in particular, have been largely used in the literature of

few-shot learning [15, 63, 60], to learn prototypical repre-

sentations of each category, and domain adaptation, to en-

force orthogonality [50, 65] or centroid matching [70, 12].

Finally, to minimize the interference among features we

drive them to be channel-wise sparse. Only limited atten-

tion has been given on sparsity for deep learning architec-

tures [2]; however, some prior techniques exist for domain

adaptation on linear models exploiting sparse codes on a

shared dictionary between the domains [54, 74].

Our work is the first combining together contrastive

learning, sparsity and prototypes matching to regularize la-

tent space for segmenting new categories over time.

3. Problem Definition and Setups

Before presenting the proposed strategies, we first in-

troduce the semantic segmentation task, which assigns a

class to each pixel in an image. We denote the input im-

age space with X ∈ R
H×W×3 with spatial dimensions H

and W , the set of classes (or categories) with C = {ci}
C−1
i=0

and the output space with Y ∈ CH×W (i.e., the segmen-

tation map). Given a training set T = {(xn,yn)}
N

n=1,

where (xn,yn) ∈ X × Y , we aim at finding a map M

from the input space to a pixel-wise class probability vector

M : X 7→ R
H×W×C . Then, the output segmentation mask

is computed as ŷn = argmaxc∈C M(xn)[h,w, c], where

h = 1, .., H , w = 1, ...,W and M(xn)[h,w, c] is the prob-

ability for class c in pixel (h,w). Nowadays, M is typically

some auto-encoder model made by an encoder E and a de-

coder D (i.e., M = E ◦ D). We call Fn = E(xn) the

feature map of xn, and y∗
n the downsampled segmentation

map matching the spatial dimensions of Fn.

In the standard supervised setting it is assumed that the

training set T is available at once and the model is learned

in one shot. In the continual learning scenario, instead,

training is achieved over multiple iterations each carrying

a novel category to learn and a subset of the training data.

More formally, at each learning step k the previous label set

Ck−1 is expanded with a set of novel classes Sk forming a

new label set Ck = Ck−1 ∪ Sk. Additionally, a new training

subset Tk ⊂ X × Ck is made available and used to update

the previous model into a new model Mk. Step k = 0 con-

sists of a standard supervised training performed with only

a subset of training data and classes. As in the standard in-

cremental class learning scenario, we assume the different

sets of new classes to be disjoint with the exception of the

peculiar background class c0, i.e., Si ∩ Sj = {c0}.

3.1. Experimental Protocols

Despite being quite a recent field, continual learning in

semantic segmentation already comes in different flavors.

Sequential: this setup has been proposed in [42, 43]. Each

learning step contains a unique set of images, whose pixels

belong to classes seen either in the current or in the previ-

ous learning steps. At each step, labels for pixels of both

old and novel classes are present.

Disjoint: this setup has been proposed in [4]. At each

learning step, the unique set of images is identical to the

sequential setup. The difference with respect to the sequen-

tial setup lies in the set of labels. At each step, only labels

for pixels of novel classes are present, while the old ones

are labeled as background in the ground truth.

Overlapped: this setup moves from the work of [56] for

object detection and has been adapted to semantic segmen-

tation in [4]. Each training step contains all the images that

have at least one pixel of a novel class, with only the novel

classes annotated while the rest is set to background. Dif-

ferently from the other settings, here images may contain

pixels of classes that will be learned in future learning steps,

but they are labeled as background in the current step.

4. Method

In this section, we provide a detailed description of the

core modules of the proposed method. Our approach lever-

ages a contrastive learning objective applied over the feature

representations, with novel prototypes matching and spar-

sity constraints. Specifically, features repulsion and attrac-

tion based on the semantic classes are enforced by grouping

together features of the same class, while simultaneously

pushing away those of different categories. We further reg-

ularize the distribution of latent representations by the joint

application of prototypes matching and sparsity. While pro-

totypes matching seeks for an invariant representation of the

features extracted for the old classes, the sparsity objective

encourages a lower volume of active feature channels from

latent representations (i.e., it concentrates the energy of fea-

tures on few dimensions) to free up space for new classes.

An overall scheme of our approach is shown in Fig. 2:

the training objective is given by the combination of a cross-

entropy loss (Lce) with the proposed modules. Lce is the

usual cross-entropy loss for all the classes except for the

background. The ground truth of the background, indeed,

is not directly compared with its probabilities, but with

the probability of having either an old class or the back-

ground in the current model [4]. Formally, at step k the

background probabilities M(xn)[h,w, c0] are replaced by
∑

c∈Ck−1
M(xn)[h,w, c]. The rationale behind this is that

the background class could incorporate statistics of previ-

ous classes in both the disjoint and overlapped protocols.

The other components are a prototypes matching target
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Figure 2. Overview of the proposed approach, with an old class (cat) and a new class (car). Latent representations of old classes are

preserved over time via prototypes matching and clustering, whilst also making room for accommodating new classes via sparsity and

repulsive force in contrastive learning. The decoder is constrained to act as in previous steps on previous classes via output-level distillation.

(Lpm), a contrastive learning objective (Lcl) and a sparsity

constraint (Lsp), which will be detailed in the following sec-

tions. The training objective is then computed as:

L′
tot = Lce + λpm · Lpm + λcl · Lcl + λsp · Lsp (1)

where the λ parameters balance the multiple losses and have

been tuned using a validation set (see Section 5). Our aim is

to seek for disentangled latent representations characterized

by semantic-driven regularization and to show that this ap-

proach can achieve comparable or superior results with re-

spect to standard regularization methods (e.g., output-level

knowledge distillation). We further integrate the proposed

framework with an output-level knowledge distillation ob-

jective [43] and we show that its effect is highly not overlap-

ping, achieving increased accuracy. The training objective

comprising an unbiased output-level distillation module is

defined as:

Ltot = L′
tot + λkd · Lkd (2)

4.1. Prototypes Matching

Prototypes (i.e., class-centroids) are vectors that are rep-

resentative of each category that appears in the dataset. Dur-

ing training, the features extracted by the encoder contribute

in forming the latent prototypical representation of each

class. To preserve the geometrical structure of the features

of old classes we apply prototypes matching. Current pro-

totypes p̂c (i.e., computed on the current batch of images)

are forced to be placed close to their representation learned

from the previous steps pc. We use the Frobenius norm

|| · ||F as metric distance [57, 45, 63]. More formally:

Lpm =
1

|Ck−1|
||pc − p̂c||F c ∈ Ck−1 (3)

The prototypes are computed in-place with a running av-

erage updated at each training step with supervision. At

training step t with batch B of B images, the prototypes are

updated for a generic class c as:

pc[t]=
1

Bt

(

B(t−1)pc[t−1]+
∑

xn∈B

∑

fi∈Fn
fi1[y

∗
i =c]

|1 [y∗
n = c] |

)

(4)

initialized to pc[0]=0 ∀c. fi∈Fn is a generic feature vector

and y∗i the corresponding pixel in y∗
n, 1 [y∗

n = c] indicates

the pixels in y∗
n associated to c and | · | denotes cardinality.

We update the prototypes only when we have ground

truth labels for that class to avoid incorporating the muta-

ble statistics of the background class: we exclude the back-

ground from the incremental steps in the disjoint protocol

(as it could contain old classes) and in the overlapped sce-

nario (as it could contain old and future classes).

For the current batch B of an incremental training stage,

the current (or in-batch) prototypes p̂c[t] are computed as:

p̂c[t] =
1

B

∑

xn∈B







∑
fi∈Fn

fi1[y
∗

i =c]

|1[y∗
n=c]| if sequential

∑
fi∈Fn

fi1[ẑ
∗

i =c]

|1[ẑ∗
n=c]| otherwise

(5)

where ẑ∗n (with pixels ẑ∗i ) is a pseudo-labeled segmenta-

tion map computed from the ground truth data by replacing

the background region with the prediction from the previ-

ous model, since in the disjoint and overlapped protocols

old classes are labeled as background. The difference be-

tween (4) and (5) lies in the usage of pseudo-labels: we use

them in (5) to compute prototypes for old classes in the cur-

rent batch since we may not have any label for them, but

we avoid to use them in (4), since there is no need to up-

date prototypes computed using the ground truth at previous

steps with data from less reliable pseudo-labels.
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4.2. Contrastive Learning

The second component is similar to recent contrastive

learning [9, 59] and clustering [29, 37] approaches to con-

straint the latent space organization. The underlying idea is

to structure the latent space in order to have features of the

same category clustered near their prototype and at the same

time to force prototypes to be far one from the other. We ar-

gue that this organization helps also in continual learning

to mitigate forgetting and to facilitate the addition of novel

classes, as features are clustered and there is more separa-

tion between the clusters. In formal terms, the constraint is

defined by a loss Lcl made of an attractive term La
cl and a

repulsive term Lr
cl, as follows:

La
cl =

1

|cj ∈y∗
n|

∑

cj∈y∗
n

∑

fi∈Fn

||
(

fi−pcj

)

1[y∗i =cj ]||F (6)

Lr
cl=

1

|cj ∈y∗
n|

∑

cj∈y∗
n

∑

ck∈y∗

n

ck 6=cj

1

||p̂cj−p̂ck ||F
(7)

The objective is composed of two terms: La
cl measures

how close features are from their respective centroids and

Lr
cl how spaced out prototypes corresponding to different

semantic classes are. Hence, the effect provided by the loss

minimization is twofold: firstly, feature vectors from the

same class are tightened around class feature centroids; sec-

ondly, features from separate classes are subject to a repul-

sive force applied to feature centroids, moving them apart.

4.3. Features Sparsity

To enforce the regularizing effect brought by contrastive

learning, we introduce a further feature-wise objective on

the latent space. We propose a sparsity loss to decrease the

number of active feature channels of latent vectors. First, to

give the same importance to all classes, we normalize each

feature vector with respect to the maximum value any of the

feature channels for that particular class assumes, i.e.:

f̄i =
fi

maxgj,l∈gj

y∗

j=y∗

i

gj,l
fi,gj ∈ Fn (8)

We design the sparsity constraint as the ratio between a

stretching function (we used the sum of exponentials) and a

linear function (i.e., the sum) applied over each feature vec-

tor, which is minimized when the energy is concentrated in

a few channels (since the normalized features assume val-

ues ≤ 1). The sparsity constraint is thus defined as:

Lsp =
1

|fi ∈ Fn|

∑

fi∈Fn

∑

j exp
(

f̄i,j
)

∑

j f̄i,j
(9)

While the contrastive learning objective forces features

to lie within tight semantically-consistent well-distanced

clusters, the sparsity constraint aims at narrowing the set

of active channels with the aim of letting room for the rep-

resentation of upcoming classes. In other words, by con-

straining features of the same classes to be tightly clustered

and to be spaced apart from features of other classes and

sparse, we can preserve geometrical space (few active chan-

nels) and expressiveness (division in well-separated clus-

ters) for the latent representation of future classes. Em-

pirically, we found entropy-based minimization methods in

the latent space [62] to be less reliable for our task. In the

Supplementary Material we show how to handle degenerate

cases of (9) and an ablation on other sparsifying strategies.

4.4. Output­Level Knowledge Distillation

The last component of our work is an output-level

knowledge distillation which we show to be complemen-

tary to the previously introduced strategies. Indeed, we add

knowledge distillation on top of all the other components

to transfer knowledge from the old model’s classifier to the

current one. While previous constraints regularize the latent

space achieving simultaneously an invariant features extrac-

tion with respect to previous steps and an easier addition

of novel categories, output-level knowledge distillation di-

rectly acts on the classifier, to preserve its discriminative

ability regarding old classes. In particular, we start from

the preliminary considerations of [42, 43] and we employ

the unbiased distillation proposed in [4] as natural exten-

sion to the case in which the background may contain other

categories. In this case we avoid to re-normalize the prob-

abilities from the previous step and, instead, we compare

the background probability from the previous step with the

probability of having either a new class or the background

(this accounts for the fact that the background in the previ-

ous steps may include samples of the new classes, see [4]).

5. Training Procedure

To train and benchmark our approach we resort to two

publicly available datasets following [56, 42, 43, 4]. The

Pascal VOC 2012 [16] contains 10582 images in the train-

ing split and 1449 in the validation split (that we used for

testing, as done by all competing works being the test set not

publicly available). Each pixel of each image is assigned to

one semantic label chosen among 21 different classes (20
plus the background). The ADE20K [76] is a large-scale

dataset of 22210 images, 2000 of which form the validation

split. The typical benchmark defined in [76] includes 150
classes, representing both stuff (e.g., sky, building) and ob-

ject classes (e.g., bottle, chair), differently from VOC 2012.

The proposed strategy is agnostic to the backbone archi-

tecture. For the experimental evaluation of all the compared

methods we use a standard Deeplab-v3+ [8] architecture

with ResNet-101 [24] as backbone (differently from [4] for

wider reproducibility) with output stride of 16. The back-
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bone has been initialized using a pre-trained model on Im-

ageNet [11] (see the Supplementary Material for a detailed

discussion of the impact of different pre-training strategies).

We optimize the network weights following [7] with SGD

and with same learning rate policy, momentum and weight

decay. The first learning step involves an initial learning

rate of 10−2, which is decreased to 10−3 for the following

steps as done in [56, 4]. The learning rate is decreased with

a polynomial decay rule with power 0.9. In each learning

step we train the models with a batch size of 8 for 30 epochs

for Pascal VOC 2012 and a batch size of 4 for 60 epochs for

ADE20K. Following [7], we crop the images to 512 × 512
during both training and validation and we apply the same

data augmentation (i.e., random scaling the input images of

a factor from 0.5 to 2.0 and random left-right flipping dur-

ing training). In order to set the hyper-parameters of each

method, we follow the same continual learning protocol of

[10, 4], i.e, we used 20% of the training set as validation

and we report the results on the original validation set of

the datasets. We use Pytorch to develop and train all the

models on a NVIDIA 2080 Ti GPU. The code is available

at: https://lttm.dei.unipd.it/paper_data/SDR/.

6. Experimental Results

We evaluate the performance of our method (denoted in

the tables with SDR, i.e., Sparse and Disentangled Repre-

sentations) against some state-of-the-art continual learning

frameworks. We report as a lower limit the performance of

the naı̈ve fine-tuning approach (FT), which consists in train-

ing the model on the newly available training data with no

additional provisions, while the upper limit is given by the

offline single-shot training (offline) on the whole dataset T
and on all the classes at once. Then, we compare with 3

recent continual semantic segmentation schemes: ILT [42],

which combines latent and output level knowledge distil-

lation, CIL [33], which adds class importance weighting

to output-level knowledge distillation, and MiB [4], which

deals with the background distribution shift and proposes an

unbiased weight initialization rule. We also report the re-

sults on LwF [36] (together with its single-headed version

LwF-MC [51]), that according to [4] is the best perform-

ing continual image classification algorithm when adapted

to semantic segmentation. For a fair comparison, all the

methods have been re-trained with a standard Deeplab-v3+

[8] architecture with ResNet-101 [24] as backbone.

6.1. Pascal VOC2012

Following previous works [56, 42, 43, 4], we design

three main experiments adding one class (19-1), five classes

at once (15-5) and five classes sequentially (15-1) added in

alphabetical order. In Table 1 we report comprehensive re-

sults on the three experimental protocols defined in Section

3.1. Results are averaged for mIoU of classes in the base

step (old), for classes in the incremental steps (new) and for

all classes, and are reported at the end of all the incremen-

tal steps. For [4] we also report the original results in their

paper (denoted with MiB†), that uses a different backbone

(thus different pre-trained model) and batch size.

We can appreciate forgetting of previous classes and in-

transigence in learning new ones even when adding as little

as one class (the tv/monitor class is added) in the scenario

19-1. FT always leads to the worst mIoU in terms of old,

new and all classes. Incremental methods designed for se-

mantic segmentation allow for a stable improvement across

the experimental protocols, in particular MiB, that is specif-

ically targeted to solve the disjoint and the overlapped sce-

narios, while CIL and ILT encounter difficulties in the over-

lapped scenario. Also LwF allows for a good improvement

while its single-headed version has lower performance in

this scenario. Our method (SDR) significantly outperforms

all the competitors in the disjoint and overlapped scenarios

(with a gap of more than 3% against the best competing ap-

proach in the disjoint setup), while in the sequential setup

the gap is smaller. Further adding on top of our method the

MiB framework (i.e., unbiased cross entropy, knowledge

distillation and classifier initialization), which we regard as

the current state-of-the-art approach for class incremental

semantic segmentation, the results increase on all the sce-

narios, showing that proposed techniques are complemen-

tary with respect to previous schemes.

When moving to the addition of 5 classes at once (i.e.,

potted plant, sheep, sofa, train, tv/monitor) we immediately

notice an overall increased drop of performance of all com-

pared methods, especially in disjoint and overlapped pro-

tocols, due to the increased domain shift occurring when

adding more classes at once with very variable content. In

this and in the following scenario, indeed, we are adding

to the model classes belonging to different macroscopic

groups, according to [16], which are responsible for a var-

iegate distribution: three indoor classes (potted plant, sofa

and tv/monitor), one animal class (sheep) and one vehicle

class (train). All compared methods obtain a relevant im-

provement with respect to FT but are always surpassed by

SDR, which in particular outrun the best competing method

(MiB) by more than 20% in the disjoint scenario.

In the final scenario we add the last 5 classes sequentially

in 5 consecutive learning steps. This approach leads to the

largest accuracy drop being the model exposed to a reiter-

ated addition of single classes, which are also coming from

different semantic contexts. In the sequential scenario LwF

and MiB (which is designed for background shift) show

poor final accuracy. ILT and CIL, instead, show results

comparable to our approach. In the disjoint and in the over-

lapped scenarios all the methods heavily suffer from the se-

mantic shift undergone by the background class: LwF (both

versions) and ILT have poor performance in these scenar-
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Table 1. mIoU on multiple incremental scenarios and protocols on VOC2012. Best in bold, runner-up underlined. †: results from [4].
19-1 15-5 15-1

sequential disjoint overlapped sequential disjoint overlapped sequential disjoint overlapped

Method old new all old new all old new all old new all old new all old new all old new all old new all old new all

FT 63.4 21.2 61.4 35.2 13.2 34.2 34.7 14.9 33.8 62.0 38.1 56.3 8.4 33.5 14.4 12.5 36.9 18.3 49.0 17.8 41.6 5.8 4.9 5.6 4.9 3.2 4.5

LwF [36] 67.2 26.4 65.3 65.8 28.3 64.0 62.6 23.4 60.8 68.0 43.0 62.1 39.7 33.3 38.2 67.0 41.8 61.0 33.7 13.7 29.0 26.2 15.1 23.6 24.0 15.0 21.9

LwF-MC [51] 49.2 0.9 46.9 38.5 1.0 36.7 37.1 2.3 35.4 70.6 19.5 58.4 41.5 25.4 37.6 59.8 22.6 51.0 12.1 1.9 9.7 6.9 2.1 5.7 6.9 2.3 5.8

ILT [42] 64.3 22.7 62.3 66.9 23.4 64.8 50.2 29.2 49.2 71.3 47.8 65.7 31.5 25.1 30.0 69.0 46.4 63.6 49.2 30.3 48.3 6.7 1.2 5.4 5.7 1.0 4.6

CIL [33] 64.1 22.8 62.1 62.6 18.1 60.5 35.1 13.8 34.0 63.8 39.8 58.1 42.6 35.0 40.8 14.9 37.3 20.2 52.4 22.3 45.2 33,3 15.9 29.1 6.3 4.5 5.9

MiB†[4] - - - 69.6 25.6 67.4 70.2 22.1 67.8 - - - 71.8 43.3 64.7 75.5 49.4 69.0 - - - 46.2 12.9 37.9 35.1 13.5 29.7

MiB [4] 68.2 31.9 66.5 67.0 26.0 65.1 69.6 23.8 67.4 73.0 44.4 66.1 47.5 34.1 44.3 73.1 44.5 66.3 35.7 11.0 29.8 39.0 15.0 33.3 44.5 11.7 36.7

SDR (ours) 68.4 35.3 66.8 69.9 37.3 68.4 69.1 32.6 67.4 73.6 46.7 67.2 73.5 47.3 67.2 75.4 52.6 69.9 58.5 10.1 47.0 59.2 12.9 48.1 44.7 21.8 39.2

SDR + MiB 70.6 24.8 68.5 70.8 31.4 68.9 71.3 23.4 69.0 74.6 43.8 67.3 74.6 44.1 67.3 76.3 50.2 70.1 58.1 11.8 47.1 59.4 14.3 48.7 47.3 14.7 39.5

offline 75.5 73.5 75.4 75.5 73.5 75.4 75.5 73.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4
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Figure 3. Qualitative results of competing approaches in different scenarios on disjoint VOC 2012 and ADE20K (best viewed in colors).

ios, while CIL is able to achieve some improvement only in

the disjoint scenario. The best competitor is again MiB that

is able to obtain a mIoU of 33% and 36.7% in the disjoint

and overlapped scenarios respectively. Our approach (SDR)

is able to significantly increase the final mIoU in both sce-

narios to 48.1% and 39.2%; it achieves a remarkable re-

sult especially in the disjoint scenario thanks to the novel

features-level constraints which help the model to maintain

accuracy on old classes while learning new ones.

Visual results for each scenario in the disjoint protocol

are shown in the first three rows of Fig. 3, where our method

is compared against all the competitors consistently obtain-

ing better segmentation maps. For example, our method

does not mislead the bus windows with tv/monitor instances

in row 1 differently from several competitors (which are

more biased toward predicting the novel class), and it is the

only one able to distinguish the bus in row 2 and the car in

row 3 from the similar-looking train class. Here, train is

added in the incremental step causing catastrophic forget-

ting of similar classes in competing approaches.
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Table 2. mIoU over multiple incremental scenarios on disjoint

setup of ADE20K. Best in bold, runner-up underlined.

100-50 100-10 50-50

Method old new all old new all old new all

FT 0.0 22.5 7.5 0.0 2.5 0.8 13.9 12.0 12.6

LwF [36] 25.0 23.9 24.6 5.4 5.6 5.5 32.2 22.9 26.0

LwF-MC [51] 8.6 0.0 5.8 0.0 0.9 0.3 2.8 0.5 1.2

ILT [42] 27.2 21.7 25.4 0.0 0.2 0.8 41.9 21.1 28.0

CIL [33] 0.0 22.5 7.5 0.0 2.0 0.6 14.0 11.9 12.6

MiB [4] 37.6 24.7 33.3 21.0 5.3 15.8 39.1 22.6 28.1

SDR (ours) 37.4 24.8 33.2 28.9 7.4 21.7 40.9 23.8 29.5

SDR+MiB 37.5 25.5 33.5 28.9 11.7 23.2 42.9 25.4 31.3

offline 43.9 27.2 38.3 43.9 27.2 38.3 50.9 32.1 38.3

Table 3. Ablation on disjoint VOC2012 15-1 in terms of mIoU.

Lce Lpm Lsp Lcl L′
kd Lkd old new all

X 5.8 4.9 5.6

X X 30.0 11.0 25.4

X X 18.7 9.0 16.4

X X X 40.4 12.9 33.9

X X X X 41.0 13.2 34.4

X X X X X 50.0 15.9 41.9

X X X X X 59.2 12.9 48.1

6.2. ADE20K

Following [4] we split the dataset into disjoint image sets

with the only constraint that a minimum number of images

(i.e., 50) have labeled pixels on Ck. Classes are ordered

according to [76]. In this comparison we report the same

competing methods of Section 6.1. The scenarios we con-

sider are the addition of the last 50 classes at once (100-

50), of the last 50 classes 10 at a time (100-10) and of

the last 100 classes in 2 steps of 50 classes each (50-50).

The results are summarized in Table 2, where we can ap-

preciate that the proposed approach outperforms competi-

tors in every scenario, in particular with a larger gain when

multiple incremental steps are performed. When adding 50

classes at a time LwF-MC and CIL achieve low results and

are outperformed by the other competitors (i.e., LwF, ILT

and MiB), which in turn are always consistently surpassed

by our framework. In the scenario 100-10, instead, all

competing approaches (except for MiB) are unable to pro-

vide useful outputs leading to extremely low results, while

our method stands out from competitors outperforming also

MiB by a good margin. Visual results for each scenario are

reported as last rows of Fig. 3, which confirm our considera-

tions showing how SDR produces less noisy predictions and

does not overestimate the background as some competitors.

6.3. Ablation Study

To evaluate the effect of each component, we report an

ablation analysis in Table 3 on the Pascal dataset in the chal-

lenging 15-1 scenario. As already noticed, FT leads to a

Table 4. Standard (non-incremental) semantic segmentation.

Lce Lsp Lcl mIoUVOC2012 mIoUADE20K

X 75.4 38.3

X X 75.8 38.7

X X 75.8 38.8

X X X 76.3 39.3

great degradation of mIoU. Early continual semantic seg-

mentation approaches use a classical output-level knowl-

edge distillation [42, 43, 33] which show discrete bene-

fits boosting the mIoU by almost 20%. Each component

of the approach significantly contributes to the final mIoU

providing non-overlapping and mutual benefits. Matching

prototypes, sparsifying features vectors and constraining

them via the contrastive objective regularize the latent space

bringing large improvements on both old and new classes.

We observe that also the contrastive loss brings a significant

contribution if applied alone improving the mIoU of 13.5%.

Introducing standard output-level knowledge distillation on

top increases the accuracy on old classes mainly, and its un-

biased version prevents forgetting even more accounting for

the background shift across the incremental learning steps.

Finally, we show that two of the proposed approaches

(namely, sparsity and contrastive learning) may be ben-

eficial also for the more general case of standard (i.e.,

non incremental) semantic segmentation. Hence, we con-

duct some additional experiments on Pascal VOC2012 and

ADE20K, reported in Table 4, showing the clear benefit of

the two components in this setup. On both datasets the out-

come is consistent, gaining 0.9% and 1% respectively, even

starting from an architecture (i.e., Deeplab-v3+) which is

already state of the art.

7. Conclusion

In this paper we presented some latent representation

shaping techniques to prevent forgetting in continual se-

mantic segmentation. In particular, the proposed constraints

on the latent space regularize the learning process reducing

forgetting whilst simultaneously improving the recognition

of novel classes. A prototypes matching constraint enforces

latent space consistency on old classes, a features sparsifi-

cation objective reduces the number of active channels lim-

iting cross-talk between features of different classes, and

contrastive learning clusters features according to their se-

mantic while tearing apart those of different classes. Our

evaluation shows the effectiveness of the proposed tech-

niques, which can also be seamlessly applied in combina-

tion of previous methods (e.g., knowledge distillation). Fu-

ture research will exploit the proposed techniques in differ-

ent tasks, such as standard semantic segmentation and class-

incremental open-set domain adaptation, and explore the

combination of our approach with output-level techniques.
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