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Abstract

We present DeepSurfels, a novel hybrid scene represen-

tation for geometry and appearance information. DeepSur-

fels combines explicit and neural building blocks to jointly

encode geometry and appearance information. In contrast

to established representations, DeepSurfels better repre-

sents high-frequency textures, is well-suited for online up-

dates of appearance information, and can be easily com-

bined with machine learning methods. We further present

an end-to-end trainable online appearance fusion pipeline

that fuses information from RGB images into the proposed

scene representation and is trained using self-supervision

imposed by the reprojection error with respect to the input

images. Our method compares favorably to classical tex-

ture mapping approaches as well as recent learning-based

techniques. Moreover, we demonstrate lower runtime, im-

proved generalization capabilities, and better scalability to

larger scenes compared to existing methods.

1. Introduction

Realistic 3D model reconstruction from images and

depth sensors has been a central and long-studied problem

in computer vision. Appearance mapping is often treated

as a separate post-processing step that follows 3D surface

reconstruction and is usually approached using batch-based

optimization methods [18, 19, 23, 87] that are unsuitable

for many applications that do not have access to the en-

tire dataset at processing time, for instance, robot naviga-

tion [8, 9, 26], augmented reality [51, 68], and virtual re-

ality [14, 43, 44] applications, Simultaneous Localization

and Mapping (SLAM) systems [93], online scene percep-

tion methods [28, 69], and many others.

Common online fusion methods like KinectFusion [50]

are well suited for online geometry fusion and can effi-

ciently handle noise and topological changes. However,

due to their high memory requirements at high voxel res-

olutions, they have strong limitations when it comes to

encoding high-frequency appearance details on the sur-

face. On the other hand, meshes with high-resolution tex-

ture maps [19, 23, 87] are well-suited for encoding high-

frequency appearance information in an efficient manner,

but they have difficulties in handling topology changes in

an online reconstruction setting. Moreover, recent learning-

based approaches [49, 54, 72, 73] have achieved high-

quality results by learning geometry and texture mapping

directly from RGB images. However, they are not well

suited for local online updates, do not scale to large-scale

scenes, and easily overfit to the training data.

In this paper, we approach the problem of online appear-

ance reconstruction from RGB-D images by combining the

advantages of 1) implicit grids, which easily handle topo-

logical changes and where low resolution is often sufficient

to encode the scene topology, 2) scalable high-frequency

appearance along the surface via texture maps or learned

feature maps, and 3) a learned scene representation to build

a framework for learning-based appearance fusion that al-

lows for online processing and scalability to large scenes.

To this end, we propose a novel scene representation Deep-

Surfels and an efficient learning-based online appearance

fusion pipeline which is illustrated in Figure 1.

Our DeepSurfels representation is a hybrid between

an implicit surface that encodes the topology and low-

frequency geometric details and a surfel representation that

encodes high-frequency geometry and appearance informa-

tion in form of surface-aligned patches. These patches are

arranged in a sparse grid and consist of surface-aligned tex-

els that encode appearance information either in the classi-

cal form of RGB color values or, as proposed, via learned

feature vectors. The sparse grid allows for efficient vol-

umetric rendering and enables explicit scene updates that

are crucial for online fusion, while the 2D patches enable

quadratic memory storage complexity like meshes or sparse

grid structures. Depending on the DeepSurfel parameters

it can approximate between simple colored voxels (high

grid resolution, 1 × 1 patches) and textured meshes with

high texture atlas resolutions (lower grid resolution, higher

patch resolution). Our online appearance fusion pipeline it-

eratively fuses RGB-D frames into estimated DeepSurfels

geometry and is optimized by using a differentiable ren-

derer for self-supervision and the reprojection error as train-
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Figure 1. Overview of our online appearance fusion pipeline and the DeepSurfel scene representation. The Appearance Fusion

network efficiently aggregates appearance information from a stream of camera views into the proposed DeepSurfel representation St−1

that maintains high-frequency geometric and appearance information. DeepSurfels is a sparse grid of 2D patches that consist of surface-

aligned texels, which encode appearance information either as RGB color values or learned feature vectors. The proposed Appearance

Rendering network interprets aggregated and interpolated geometric and appearance information stored in DeepSurfels for rendering novel

viewpoints. In this example we used DeepSurfels with a sparse 64
3 patch grid with 8× 8 resolution surfel patches.

ing signal. In this way, the pipeline does not require any

ground-truth texture maps and the training procedure allows

for efficient transfer to new sensors and scenes without the

need for acquiring costly ground-truth data.

While we eventually target full online reconstruction of

both geometry and texture from monocular video, we only

focus on online appearance estimation in this paper. Even

in a setting with known geometry, our online approach has

scalability advantages: We can fuse arbitrary numbers of

input frames and the grid-aligned surfels have performance

advantages during feature aggregation across local neigh-

bors and for controlling the sampling density. Our grid-

aligned surfel patches can also be seen as a spatial align-

ment of per-voxel sub-features being anchored along the

surface. In contrast to works that only save a single fea-

ture vector per voxel, e.g. DeepVoxels [72], we can directly

relate sub-features with particular image pixels via projec-

tive mapping and as such simplify the network learning task

and improve output accuracy. As opposed to many novel

view synthesis works [49, 72, 73], we do not overfit onto a

single scene, but train a network that generalizes over multi-

ple scenes without re-training. While those methods iterate

many times over each input image in a slow optimization

process, our method processes every image only once with

a single network forward pass and is thus much faster. From

the application point of view, our approach is thus closer to

classical texture mapping methods like [18, 19, 23, 87].

We compare our novel scene representation and appear-

ance fusion pipeline to existing methods on single and

multi-object datasets and show that our scene representa-

tion better captures high-frequency textures. Moreover, our

method generalizes well and compares favorably even to ex-

isting texture optimization methods that jointly optimize all

images together. This is a crucial step towards a fully end-

to-end appearance fusion method that can be deployed to

real-world applications. In sum, our key contributions are:

• DeepSurfels. A novel scalable and memory-efficient 3D

scene representation closing the gap between traditional

interpretable and modern learned representations.

• Online Appearance Fusion Pipeline. An end-to-end dif-

ferentiable and efficient online appearance fusion pipeline

compatible with classical and learned texture mapping.

The method yields competitive texturing results without

heavy optimization as every input frame is processed only

once with a single network forward pass.

• Generalized Novel View Synthesis. Contrary to other

learning-based methods [49, 72, 73] that overfit onto a

single scene, our method generalizes to new scenes with-

out retraining.

2. Related Work

Our method relates to, and builds upon previous work on

scene representations and appearance estimation which are

reviewed in the following subsections.

2.1. Scene Representations

Scene representations can be broadly divided into ex-

plicit geometric and learned representations.

Explicit Geometric Representations. The major advan-

tage of explicit geometric representations is their direct in-

terpretability. Point clouds [1, 20, 56] are a lightweight and

flexible 3D representation being the raw output of many 3D

scanners, RGB-D cameras, and LiDARs. However, they are

less suitable for the extraction of watertight surfaces due to

lacking topology and connectivity information. This also

impedes realistic rendering with detailed textures and com-

plex lighting. Mesh representations [29, 33, 41, 89] scale

well and texture mapping is convenient. However, topo-

logical changes are difficult to handle in an online pro-

cess. Voxel-grids [10, 24, 40, 62, 77, 97] – as a natural

extension of pixels to 3D space – easily handle topologi-

cal changes but are difficult to use with textures and com-
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plex light models. Another problem arises from the cu-

bic memory complexity of the dense representation, which

makes it expensive to capture precise shape details of com-

plex objects. Surface elements (Surfels) [59, 70, 88, 94]

are non-connected point primitives that reduce geometry to

the essentials needed for rendering, thus being more mem-

ory efficient than meshes while still providing good render-

ing properties. Our DeepSurfel representation provides sev-

eral advantages over existing explicit representations: 1) it

maintains better connectivity information than point clouds

and surfels, 2) scales better than voxel grids while still com-

patible with octree [75, 101, 102] and voxel hashing [32, 53]

approaches that improve memory efficiency, 3) provides

better rendering quality than point clouds or voxel grids, 4)

enables fast rendering, and 5) allows local updates.

Learned Shape Representations. Recent learned im-

plicit representations have achieved impressive results in

modeling geometry [13, 46, 47, 56]. They learn a neural

network to predict the signed distance or occupancy for a

given query point. These approaches struggle to scale to

larger scenes and to capture high-frequency details as they

tend to learn low-frequency functions which often results in

over-smoothed geometry [60]. This problem has been ap-

proach by the idea of using local features [11, 31, 57, 98] or

directly regressing local geometries [91, 92] for improved

scalability and representation power of implicit representa-

tions. Our proposed DeepSurfels follows this direction us-

ing only local learned features for scalability. Unlike most

learning-based methods, we do not encode the scene by net-

work optimization. Instead, we train a network to estimate

latent features following a data-driven approach, which bet-

ter generalizes and facilitates online updates.

2.2. Appearance Estimation

Classical Texture Mapping. The classical way of color-

ing a surface from a set of input images with known camera

pose is to un-project the image information onto the sur-

face and perform a selection or blending operation to fuse

the color information [3, 18, 95]. Due to errors in the cam-

era alignment or in the surface geometry, blurry textures or

patch seams affect results and additional texture alignment

procedures have been proposed [5, 19, 22, 25, 37, 38, 79,

82, 87] to tackle these problems. Better texture mapping re-

sults have been achieved with an optical flow-like correction

in texture space [19, 23, 87], patch-based optimization [6],

or via 2D perspective warp techniques [36]. With signif-

icantly more computation effort, it is also possible to bet-

ter leverage the redundancy of multiple surface observations

from different views and to compute super-resolved texture

maps via energy minimization [23, 27, 85, 86] or with deep

learning techniques [39, 63]. All previously mentioned

methods share the strategy of aggregating appearance infor-

mation in patches or texture atlases with corresponding co-

ordinates onto a mesh-based surface, while other works use

voxel grids [35, 45, 50, 71, 78, 104], or mesh colors [4, 99].

An overview of texture mapping methods with different rep-

resentations is given in [80, 100].

Learned Appearance Representations. Recent learned

appearance representations have achieved state-of-the-art

results and outperformed most classical texturing methods.

They encode visual information into learned features and

store them in voxel grids [21, 44, 48, 58, 61, 74], point

clouds [2], or meshes [64, 83, 103] which are rendered using

neural networks. [54, 55] use a neural network conditioned

on geometry to generate a learned texture representation.

[52] combines geometry and appearance to generate a joint

implicit representations. Worrall et al. [96] learn a disen-

tangled representation to interpret and manipulate learned

feature-based scene representations. SRNs [73] encode the

scene into a neural network and render novel views using

a neural ray-tracer. NeRF [49] inputs the viewing direc-

tion together with point coordinates which allows to also

model illumination and complex non-Lambertian surfaces.

Other works [65, 66] take advantage of local features for

higher representation power, while [30, 84] uses appropri-

ate loss terms to correct for geometric misalignment. Re-

cent trends and applications of neural renderers are summa-

rized in [81]. However, these methods are currently lim-

ited to fixed-size scenes, do not scale well to larger real-

world scenes, or are unsuitable for online processing of ap-

pearance information. The global volumetric appearance

reconstruction approach [7] additionally separates albedo,

roughness, and lighting. Liu et al. [42] present a learned

approach for shape and texture reconstruction that linearly

fuses shape and color information in a voxel grid as in [17]

and post-process the grid with a multi-resolution neural net-

work. However, pure post-processing methods may not be

able to revert errors of an incorrect earlier linear fusion.

Global vs Local Appearance Representations. Existing

learned scene representations can be separated into global

and local approaches. [49, 54] are global approaches en-

coding the scene into a single feature vector or the weights

of a neural network, while [72] can be considered a local

approach that uses a dense grid of feature vectors. For bet-

ter scalability and higher representation power, we follow

the local direction. Further, the local storage of appearance

keeps the updates of the encoded information local. More-

over, it allows to exploit geometric relations better con-

straining the learning problem for improved generalization.

Online Appearance Aggregation. Most texture map-

ping methods process all input images in a batch-based way

after the geometry estimation step and are implemented

as a separate post-processing step, whereas only a minor-

ity addresses the problem of online appearance reconstruc-

tion. A popular work is KinectFusion [50] and related

works [36, 45, 104], which estimate surface and appear-
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Figure 2. DeepSurfel surface fitting. In a recursive fitting procedure, we align the texels of each patch with the underlying SDF surface

by shifting its location and adjusting its normal. d denotes queried signed distance, ~n denotes SDF gradient ∇SDF in x, y, z directions.

ance information from a stream of RGB-D images. Other

works fuse both geometry and appearance information di-

rectly into an oriented surfel cloud [70, 88, 94]. The major

drawback of these methods is limited capacity to store high-

frequency appearance along the surface and low-quality

renderings. Therefore, we propose an efficient online ap-

pearance estimation pipeline mitigating these limitations.

3. DeepSurfels 3D Scene Representation

We propose DeepSurfels as a powerful, scalable, and

easy-to-use alternative to mitigate previously mentioned

problems of many scene representations.

Data Structure. DeepSurfels is a set of patches with L×L

texels that can either store color information or learned fea-

ture vectors. The elementary building block is an oriented

texel τ ∈ R
c that is associated with its weight parameter ω

and is stored on the objects’ surface, where c denotes the

number of feature channels. This number can be chosen

arbitrarily for learned appearance fusion as suited for the

problem setting, while we set c = 3 for deterministic RGB

texturing. The texels τ are arranged in an L× L resolution

patch Pxyz : {i, j → τij ; i, j ∈ [1, L]} that is located in a

sparse patch grid P = {Pxyz}x≤X,y≤Y,z≤Z , where X,Y, Z

represent DeepSurfels’ grid resolution. Although the spa-

tial patch size can be chosen arbitrarily, we empirically ob-

served that texturing works best when the patch size is equal

to the grid cell size such that there is no overlap between

neighboring patches. For efficiency reasons, it is sufficient

to store patches only for grid cells that intersect the objects’

surface. However, it is also possible to allocate more layers

around the iso-surface to account for noisy geometry as it is

common for geometric fusion approaches [50].

Surface Fitting. We propose a recursive algorithm to align

each texel τij of the patch with the implicit surface of the

geometry. We compute the patch position and orientation

from a signed distance function (SDF) representing the Eu-

clidean distance to the closest surface.

Initially, every patch Pxyz in the grid P is positioned at

the center of its grid cell. Then, the patches are shifted to

the closest surface by using the pre-computed SDF, oriented

according to the SDF gradient ∇SDF in all x, y, z direc-

tions, and rotated to maximize the surface coverage. These

patches are subdivided into κ2 non-overlapping patches of

L
κ
× L

κ
resolution, where κ ≥ 2 is the smallest integer to

non-trivially divide L. Each sub-patch is aligned again us-

ing the SDF field, where we trilinearly interpolate the SDF

value at non-integer grid positions. This patch subdivision

and alignment is repeated recursively until the resolution

reaches 1 × 1 when patches represent texels that lie on the

isosurface. This process is visually illustrated in Figure 2.

4. Online Appearance Fusion Pipeline

We also propose a pipeline for learning appearance fu-

sion (depicted in Figure 3) that incrementally fuses RGB

measurements into DeepSurfels at every time step t and

yields DeepSurfel state St. The input to our pipeline are

intrinsic Kt and extrinsic Rt camera parameters, an RGB

image It ∈ R
H×W×C , and corresponding depth map Dt ∈

R
H×W , where H , W and C denote image height, width,

and the number of channels respectively. The pipeline con-

sists of four main components detailed in the following.

Differentiable Projection Π. The projection module ren-

ders a super-resolved feature map F̂t−1∈R
kH×kW×c, where

k is an upsampling factor inspired by [16] to ensure dense

coverage of the geometry. There are three steps to render

this feature map from already stored scene content.

First, each pixel in the incoming frame Dt is subdivided

into k2 distinct sub-pixels ptij (i ∈ [1, kH], j ∈ [1, kW ]),
thus forming an upsampled image grid.

Second, by leveraging camera and depth information, the

center of the sub-pixel ptij is un-projected into the scene.

From the un-projected scene point, the closest DeepSurfel

texel and all texels within the surrounding l∞ ball are se-

lected. The size of this ball is chosen proportional to the

size of the un-projected sub-pixel in the world space.

Third, an efficient uniform average of the selected texels

determines the value of the feature entry f̂ t−1

ij ∈ F̂t−1 (1):

f̂ t−1

ij =
1

|T t
ij |

∑

τ∈T t
ij

τ , (1)

where T t
ij is the set of selected texels. This algorithm is

simple, leverages the grid representation for fast rendering,

and can flexibly render further optionally stored features or

a surface normal map N̂t−1 that we jointly denote as meta

features M̂t−1. Note that all operations are differentiable
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Figure 3. Overview of our learned appearance fusion pipeline. The pipeline consists of an Appearance Fusion module that integrates

a new RGB measurement It into DeepSurfels St−1 and a differentiable Appearance Rendering module that interprets and renders the

content of representation for a given viewpoint. White blocks denote differentiable deterministic operations, rectangular blocks denote

data, rounded rectangular blocks are trainable modules, and ⊗ is a feature stacking operation.

and the selection can be implemented as a differentiable

multiplication by an indicator function.

Fusion Network. The input image It is deterministically

upsampled Ikt ∈ R
kH×kW×C by factor k (nearest-neighbor

interpolation) and stacked ⊗ with the super-resolved fea-

tures F̂t−1⊗M̂t−1⊗Ikt . This stacked representation is em-

bedded into a higher-dimensional feature space by a train-

able linear transformation (Feature Embedding module Fig-

ure 3). Then, the embeddings are refined by Blending Net-

work that consists of five convolutional layers (3× 3 kernel

size) interleaved with dropout and leaky ReLU activations.

This network, based on a small receptive field, produces re-

fined features aware of neighboring information that allevi-

ates the problem of discretization artifacts, which can occur

for low DeepSurfels resolutions. Lastly, these features are

compressed by Feature Compression W layer to a lower

dimensional feature space that is defined by DeepSurfels’

number of channels. The final output is an updated feature

map F̂t that blends old information from F̂t−1 with the new

appearance information from It.

Inverse Projection Π−1. While the fusion module and

the explicit geometry representation preserve spatial coher-

ence, this module is responsible for integrating the new ap-

pearance information in a temporally coherent way. With-

out temporal coherence, a new observation could overwrite

old states minimizing the reprojection error for the current

frame while erasing valuable prior information. The in-

verse projection module Π−1 integrates the updated fea-

ture map F̂t into the representation St−1 to produce the

new state St. For efficiency reasons, only texel values

∀τt−1 ∈
⋃kH,kW

i,j T t−1

i,j and their weights ωt−1 that were

intersected by at least one of the sub-pixels are updated us-

ing the following moving average scheme:

τt =
1

ωt−1+1

(

τt−1ωt−1 +

∑kH,kW

i,j f̂ t
ij Iτt−1∈T

t−1

ij

∑kH,kW

i,j Iτt−1∈T
t−1

ij

)

,

ωt = ωt−1+1, (2)

where IE is an indicator function being one, if E is true, and

zero otherwise. The texel weights are initialized to ω0 = 0.

The new state St is optimally computed in 2D space

without interrupting the gradient flow. This way, the scene

is seamlessly stored in RAM or disk and can only be par-

tially loaded and updated, which is crucial for scalability.

Appearance Rendering Module. In a first step, this

module extracts compressed scene content St using Π and

embeds these features into a higher dimensional space via

a transposed linear compressor (Feature Decompression

WT ) which acts as a regularizer. Pre-computed meta fea-

tures M̂t−1 are optionally appended and all features are

downsampled by a custom masked average pooling with

a stride of k and k × k kernel size, where the mask indi-

cates which features to ignore (features that are empty or

located outside the scene space). The current H × W res-

olution feature map is passed through the seven-layer con-

volutional Rendering Network refining features and filling

potential holes that occur when the scene representation is

sparsely populated. Lastly, the high-level features are de-

coded to RGB values by (Feature Decoder) three linear lay-

ers interleaved with Leaky ReLU activation functions. The

final output is activated using HardTanh activation for gen-

erating valid normalized RGB values.

Loss and Optimization. The entire pipeline is trained end-

to-end from scratch until convergence using the reprojection

error between the rendered image Ît and input image It as

self-supervision. Thus, the network can learn to optimally

fuse and encode appearance information from 2D training

data without any ground-truth textures. Our pipeline is

trained using a weighted combination of L1 and L2 loss

between input image It and rendered image Ît given by

L(It, Ît) =
1

C ·H ·W

∑

p∈It,p̂∈Ît

||p− p̂||1+
1

2
||p− p̂||2 (3)

We empirically found that a 1 : 1

2
weight ratio worked

best in our experiments. The entire pipeline has less than

0.6M parameters and was optimized using the Adam opti-

mizer [34] with a learning rate of 10−4 and batch size 1,

except for the generalization experiment, where we used 2.

Please see the supplementary material for more details.
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Ours Texture TSDF Waechter Surfel-

GT Ours Deterministic Fu et al. [23] Fields [54] Coloring [71] et al. [87] Meshing [70]

PSNR↑ / SSIM↑: 32.94 / 0.950 29.44 / 0.889 32.14 / 0.912 27.99 / 0.856 24.89 / 0.621 18.52 / 0.631 9.928 / 0.510

PSNR↑ / SSIM↑: 35.42 / 0.966 32.03 / 0.958 27.23 / 0.835 27.80 / 0.841 27.37 / 0.810 16.24 / 0.370 12.31 / 0.458

Figure 4. Qualitative and quantitative comparison on novel view synthesis with DeepSurfels on a 128
3 sparse grid with learned 3-

channel 4 × 4 feature patches. The experiment demonstrates that our scene representation is able to better represent high-frequency

textures compared to other state-of-the-art methods. ”Ours deterministic” shows direct rendering from RGB surfel patches. Please note

that SurfelMeshing [70] is the only method in this comparison which also estimates geometry while the other methods use known geometry.

GT Ours TSDF Coloring

PSNR/SSIM 34.03/0.924 33.13/0.911 27.58/0.818

Ours deterministicNeRF

33.39/0.917

GT Ours Ours deterministic TSDF Coloring

PSNR/SSIM 32.63/0.912 31.42/0.888 25.11/0.76633.15/0.891

NeRF

Figure 5. Novel view synthesis for Replica [76] indoor scenes. The figure shows different views on two scenes (left and right). Our

learned approach has been trained only on the room on the left. NeRF [49] is optimized separately on both scenes.

5. Evaluation

We evaluate our method by comparing the representation

power of both, our learned and our deterministic approach

(direct rendering from RGB surfels) with state-of-the-art

methods on novel view synthesis tasks. We further demon-

strate how our method generalizes to different scenes for a

small number of distinct training samples and provide an

ablation study to validate the design choices for our model.

The supplementary material provides further details.

Datasets. We conduct experiments on datasets gen-

erated from Shapenet [12], publicly available human and
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Figure 6. Qualitative results of our model on unseen scenes from ShapeNet [12]. Compared to deterministic rendering from RGB

values, DeepSurfels with learned (3+3)-channel 6×6 patches on a sparse 32
3 grid yields significantly more high-frequency details. As it

is shown in the close ups, storing learned features in the texels is particularly useful to correct discretization artefacts.

GT Ours SRNs [73] GT Ours DeepVoxels

PSNR↑ / SSIM↑: 22.19 / 0.93 16.74 / 0.65 22.54 / 0.91 20.12 / 0.84

Figure 7. Comparison of SRNs [73] and DeepVoxels [72] to our

learned DeepSurfel fusion with a 64
3 grid of 8-channel 1× 1 res-

olution feature patches on the synthetic cube dataset from [72].

Our method produces fewer blur artifacts and multi-view incon-

sistencies and overall yields significantly better images reconstruc-

tion results than both baselines. Note that both baselines perform

global appearance fusion with unknown geometry.

cat1 models, the indoor Replica dataset [76], and the cube

scene from [72]. Replica dataset images were rendered with

Habitat-Sim [67] and all other models with Blender [15].

Metrics. We quantify model performances with the fol-

lowing two metrics [90]. PSNR: The Peak Signal-to-Noise

Ratio is the ratio between the maximum pixel value in the

ground-truth image and the pixel-wise mean-squared er-

ror between ground-truth and rendered image. SSIM: The

Structural Similarity Index measures similarity between

patches of rendered and ground-truth images. We omit

other perceptron based metrics because we are interested in

recovering the true pixel value as our fusion approach can

be used for more general types of data.

Novel View Synthesis. The model is optimized on 500
randomly rendered 512 × 512 training images for the cat

and human model and the results for a single unseen frontal

viewpoint2 are compared with state-of-the-art batch (Fu et

al. [23], Texture Fields [54], Waechter et al. [87]), and on-

line methods (SurfelMeshing [70], TSDF Coloring [17]) on

a 1283 grid. The results in Figure 4 demonstrate that our

approach compares favorably even to slower batch-based

methods in representing high-frequency textures. Figure 7

further shows that our approach does not suffer from blurry

13D models from free3d.com and turbosquid.com.
2For a fair comparison with the results of Texture Fields [54].

artifacts as the recently proposed SRNs [73], or from multi-

view consistency issues like DeepVoxels [72]. Note that

these approaches jointly estimate geometry and appearance

while we only estimate appearance. Table 2 shows the ef-

fect of varying the number of channels on the cube dataset

for DeepSurfels of 4× 4 patches on a 643 sparse grid.

Generalization. Our pipeline scales and generalizes well

on realistic room-size scenes. We trained our pipeline on

288 480×640 images of one Replica [76] room represented

with DeepSurfels of 11cm voxel size with (3+3)-channel

6× 6 resolution patches. We disentangled 3 color channels

to improve generalization. The pipeline evaluation is per-

formed on every 25th unseen frame in a sequence of frames

generated by a moving agent in the Habitat Sim [67]. Fig-

ure 5 shows results of our trained pipeline on an optimized

(left) and a non-optimized (right) scene. Our learned ap-

proach outperforms baselines in representing fine details.

We further demonstrate that our pipeline generalizes

well when trained on a larger set of distinct scenes. We ren-

der 100 312× 312 training images from 150 Shapenet [12]

car scenes and test the pipeline on 50 unseen scenes by fus-

ing 100 views and evaluating results on additional 60 un-

seen viewpoints. The whole pipeline is trained to be frame

order independent by randomly shuffling scenes and frames

after each optimization step. Results on test scenes (Fig-

ure 6, Table 1) indicate that our learned approach improves

for discretization artifacts and overall yields sharper results

which are supported by higher PSNR and SSIM scores.

Ablation Study. For the unobserved test car scenes, we

quantify in Table 1 the impact of: (i) depth as a meta fea-

ture that helps our method to reason about the confidence of

updates since pixels with larger depth values are less impor-

tant; (ii) multi-view consistency regularization that corrects

for geometric misalignments and improves interpolation

among neighboring viewpoints by adding an additional er-

ror signal (3) for a viewpoint closest to the fused frame; (iii)

pixel ray directions with surface orientation map to improve

reasoning about light information and non-Lambertian sur-
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Method PSNR↑SSIM↑

B
as

el
in

es

SurfelMeshing [70] 13.92 0.2748

Waechter et al. [87] 18.27 0.4753

Fu et al. [23] 18.84 0.5196

TSDF Coloring [17] (323) 21.57 0.6375

TSDF Coloring [17] (643) 24.05 0.7552

TSDF Coloring [17] (1283) 26.68 0.8526

Ours Det. (323, 6×6, 3) 27.20 0.8723

Ours Det. (643, 4×4, 3) 28.73 0.9036

A
b
la

ti
o
n

Learned (323, 6×6, 3+3) 28.27 0.8777

+ depth 28.31 0.8782

+ multi-view consist. 28.36 0.8889

+ viewing direction &

surface orientation 28.89 0.8907

D
ee

p
S

u
rf

el
P

ar
am

et
er

s

32
3, 1×1, 213+3 22.95 0.7083

64
3, 1×1, 213+3 25.41 0.7940

64
3, 4×4, 3+3 29.92 0.9086

64
3, 5×5, 3+3 30.15 0.9126

64
3, 6×6, 3+3 30.27 0.9147

128
3, 1×1, 213+3 26.75 0.8324

128
3, 2×2, 3+3 30.23 0.9133

128
3, 3×3, 3+3 30.51 0.9181

128
3, 4×4, 3+3 30.60 0.9196

128
3, 5×5, 3+3 30.63 0.9200

128
3, 6×6, 3+3 30.64 0.9202

Table 1. Ablation study on

ShapeNet [12] cars. The top

part of the table compares

various baselines. Our de-

terministic coloring at 323 is

still better than TSDF Color-

ing at 1283 resolution. The

mid part shows the impact

of the proposed losses. The

bottom part shows the in-

fluence of the voxel grid,

surfel patch and channel res-

olution, demonstrating that

quality improvements satu-

rate for higher resolutions.

3+3 denotes 3 feature and

3 color channels (disentan-

gled) per texel. We also

compare to 1×1 patches with

213+3 channels correspond-

ing to the same number of

features as for 6×6, 3+3,

demonstrating the benefit of

a spatial sub-feature align-

ment in our network.

#Channels PSNR↑ SSIM↑

2 25.95 0.9432

4 26.72 0.9506

6 27.33 0.9568

10 28.27 0.9638

Table 2. Varying number

of feature channels for the

cube [72] dataset on 64
3 sparse

grid with 4 × 4 patches. Addi-

tional feature channels improve

the reconstruction quality.

faces; (iv) DeepSurfel parameters (grid and patch resolu-

tion). For almost all experiments use 3 feature and 3 dis-

entangled color channels (denoted as 3+3 in Table 1) which

outperforms the baselines. We observe that every attribute

(i-iii) improves generalization and that higher DeepSurfel

resolution (iv) consistently benefits reconstruction quality.

(v) Lastly, we demonstrate the benefit of explicitly model-

ing the reprojection of pixel colors via texels which can be

seen as subfeatures of a large feature vector stored in every

voxel. We compare the proposed 6 × 6 patches, 3+3 chan-

nels to 1× 1 patches, 213+3 channels which amounts to the

same number of features per voxel. We argue that the bene-

fit of using more features per voxel quickly saturates unless

subfeatures are anchored along the surface and trained with

separate pixel data as supported by our results.

Real-world data. In Fig. 8 we present results on unseen

real-world data from [45] for which our method yields the

most detailed appearance reconstructions.

Runtime. Our method takes 57ms and 21ms for fusing and

rendering a single 312×312 frame on 323 DeepSurfels with

6-channel patches with resolution 6 × 6 (Table 1). This is

significantly faster compared to other deep learning meth-

ods that overfit on a single scene. For example, the state-

Ground 

Truth

Ours

Ours 

deterministic

Training scene (Lion) Evaluation scenes (Gate, Bricks)

TSDF 

Coloring

Figure 8. Novel-view synthesis on unseen real-world data [45].

Our DeepSurfel method with 4 × 4 patches is trained on the Lion

scene for 80 training iterations and then evaluated on the Gate and

the Bricks scenes. The images show novel viewpoints.

of-the-art method NeRF [49] requires ∼ 2 days for training

on a single scene being unable to generalize to other scenes,

while our method can easily be used on unseen scenes with-

out any optimization as demonstrated in Figure 5, which is

a speed up of over a thousand times on unobserved scenes

for comparable or even favorable results.

Limitations. Similar to traditional methods like TSDF

Coloring, our method is sensitive to camera-geometry mis-

alignment which can lead to blurry results. Moreover, we

currently do not model view-dependent effects which may

result in washed-out colors due to the local feature averag-

ing. When trained on small datasets our method may distort

colors that were not seen during training.

6. Conclusion

We introduced DeepSurfels, a novel scene representation

for geometry and appearance encoding, that combines ex-

plicit and implicit scene representation to improve for scala-

bility and interpretability. It is defined on a sparse voxel grid

to maintain topology relations and implements 2D geome-

try oriented patches to store high-frequency appearance in-

formation. We further presented a learned approach for on-

line appearance fusion that compares favorably to existing

offline and online texture mapping methods since it learns

to correct for typical noise and discretization artifacts.

As future work we consider the joint online fusion of

shape and appearance and address some weaknesses of our

appearance fusion pipeline such as the limitation in filling

large missing parts and rendering translucent surfaces.
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[104] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chen-

glei Wu, Marc Stamminger, Christian Theobalt, and

Matthias Nießner. Shading-based Refinement on Volu-

metric Signed Distance Functions. ACM Transactions on

Graphics, 2015. 3

14535


