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Abstract

We present GATSBI, a generative model that can trans-

form a sequence of raw observations into a structured latent

representation that fully captures the spatio-temporal con-

text of the agent’s actions. In vision-based decision making

scenarios, an agent faces complex high-dimensional obser-

vations where multiple entities interact with each other. The

agent requires a good scene representation of the visual

observation that discerns essential components and con-

sistently propagates along the time horizon. Our method,

GATSBI, utilizes unsupervised object-centric scene repre-

sentation learning to separate an active agent, static back-

ground, and passive objects. GATSBI then models the in-

teractions reflecting the causal relationships among decom-

posed entities and predicts physically plausible future states.

Our model generalizes to a variety of environments where dif-

ferent types of robots and objects dynamically interact with

each other. We show GATSBI achieves superior performance

on scene decomposition and video prediction compared to

its state-of-the-art counterparts.

1. Introduction

An ideal intelligent agent should be able to learn various

tasks in diverse environments without relying on specific sen-

sor configurations or control parameters. Recent approaches

employ visual observation as the sole input to infer the phys-

ical context of the agent and its surroundings, thus aim to

adapt to a general setup. One may interpret the visual in-

put via conventional computer vision techniques employing

deep neural networks [20, 33]. While they exhibit perfor-

mance comparable to human perception, such approaches

require a large volume of annotated database. Not only are

the groundtruth labels costly to obtain, but also such super-

vised approaches are limited to specific tasks that they are

trained on.

In contrast, unsupervised generative models extract the

Figure 1. Our method, GATSBI, can explicitly identify the agent

by utilizing the keypoint-based heatmap. Thus, the observation is

decomposed into the agent, background, and objects. In addition,

GATSBI infers the dynamic properties of the agent and temporally

models the agent-centric interaction with the objects.

latent variables that encode the compositional relationship

between different entities without prior knowledge [25]. The

quality of representation can be verified by the ability of

reconstructing the input video sequence from the disentan-

gled latent variables [5]. In an ideal case, the latent variables

contain the time-varying composition between the agent and

the set of objects, and the structural knowledge must prop-

agate temporally with a consistent inference of the latent

dynamics. The latent dynamics of the learned representation

reflect the underlying physics between the extracted entities,

thus the agent can leverage the latent dynamics in predicting

the various physical contexts conditioned on its own action.

We propose a fully-unsupervised action-conditioned

video prediction model, named Generative Agent-cenTric

Spatio-temporal oBject Interaction (GATSBI). Our method is

explicitly designed for vision-based learning of robot agents

and is able to distinguish the active, passive and static com-
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ponents from the robot-object interaction sequence, Fig. 1.

Conditioning only on actions and a few frames, the learned

latent dynamics can predict the long-term future observa-

tions without any prior labels of individual components or

physics model.

Our generative model sequentially factorizes each video

frame into individual components and extracts the latent dy-

namics. Specifically, our unsupervised network first models

relatively large scene components as 2D-Gaussian mixture

model (GMM). In addition, a group of 2D-Gaussian key-

points captures actively moving pixels in response to the

given action. One of the GMM modes that matches best

with the keypoint-based representation is selected and re-

fined to learn the latent dynamics of the active agent. In the

meantime, small passive objects are extracted by attention-

based object discovery models [30]. Finally, graph neural

networks (GNN) encodes the interactions between the active

agent, passive objects, and static background that are disen-

tangled in the extracted latent variable. The three different

categories of the scene entities are reflected as inherent phys-

ical properties within the graphical model, which correctly

updates the state of each object in response to the diverse

interactions.

In summary, GATSBI is an unsupervised representation

learning framework that infers a decomposed latent represen-

tation of the observation sequence and predicts associated

latent dynamics in an agent-centric manner. GATSBI can

distinguish various components and correctly understand the

causal relationship between them from a sequence of visual

observations without specific labels or prior. Being able to

locate the active agent, the acquired latent representation

is aware of the dynamics in response to the control action,

and can readily be applied to an agent in making physically-

plausible decisions. We provide extensive investigation on

both qualitative and quantitative performance of GATSBI

for video prediction on various robot-object interaction sce-

narios. We also compare our model with previous methods

on spatio-temporal representation learning and show their

promise and limitation.

2. Related Work

2.1. Object­centric Representation Learning

Deep generative models project the high-dimensional

visual observation into low-dimensional latent representa-

tions [5, 25, 35]. Especially, object-centric representation

learning extracts a structured representation that can be

mapped into semantic entities.

The representation can be grouped into three categories

depending on how the entities are distinguished: attention-

based, spatial mixture-based, and keypoint-based methods.

Attention-based methods [6,7,12,26,36,37] use spatial atten-

tion for object discovery and capture the locally consistent

spatial features. They are good at detecting a large number

of scene entities that are confined to small segments of the

scene [7]. Spatial mixture methods [3,11,15,16], on the other

hand, represent relatively large scene entities with Gaussian-

mixture model (GMM). In contrast to the attention-based

method, they struggle with scaling to a larger number of

scene entities [31]. Keypoint-based methods [28, 32] extract

keypoints from feature maps in an unsupervised way and are

recently getting attention for their flexibility in representa-

tion. All of the three approaches have different capabilities of

representation, and we carefully coordinate them to correctly

disentangle various scene components in an unsupervised

setting. As a concurrent work, [2] augments typical convolu-

tional neural networks (CNN) with a graph architecture to

find the scene structure during the pixel encoding process.

2.2. Latent Dynamics Model from Visual Sequence

The latent representation with discovered objects can be

extended to model the temporal transition and interaction of

the detected objects [6, 7, 23, 26, 27, 36, 37, 39]. Specifically,

state-space model (SSM) [5, 8, 14, 24] utilizes recurrent neu-

ral networks (RNN) [4, 21] to pass latent information over

a long time sequence, then a graph neural network (GNN)

is used to model the interaction between entities [27]. Con-

current works temporally extend spatial mixture model to

achieve the same objective [43, 44]. The aforementioned

works use object-centric representation to model passive dy-

namics within the scene, but do not model the intelligent

agents.

On the other hand, several recent works incorporate the

action (i.e., control command) of the agents in the latent

representation [1, 13, 17–19, 29, 40, 41, 45]. While one can

use the convolutional recurrent neural network to embed the

entire past observations and actions to yield rich temporal in-

formation [1], most works first extract the low-dimensional

latent dynamics model from the observation with action-

conditioned SSM, and integrate the learned latent model

into the agent’s policy [29] or vision-based planning [19].

However, these approaches use a simple variational au-

toencoder to extract the latent state and thus cannot rep-

resent entity-wise interaction. Previous approaches using

structured representation in control tasks either do not de-

tect active agents [40] or are not tested on the scenes with

agents [30, 42]. Compared to these approaches, GATSBI

learns representation that explicitly locates active agents

and is suitable for learning the different physical properties

of agent-object interactions or that of object-object interac-

tions.

3. GATSBI: Generative Agent-centric Spatio-

temporal Object Interaction

Given a sequence of observation o0:T and action a0:T ,

GATSBI is designed to embed individual frames into a set of
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Figure 2. A probabilistic graphical model of GATSBI. Left: in the

training phase, a set of structured latent variables zt is inferred

(dashed lines) by leveraging recurrent states ht and observation ot.

Right: after updating ht from zt conditioned on observations for a

few steps, GATSBI consecutively generates (solid lines) the future

observations by leveraging recurrent states.

decomposed latent variables zt which allows us to explicitly

represent the dynamics of the agent and resulting entity-wise

interactions within the latent space.

Our representation of the observation bases on the vari-

ational autoencoder (VAE) [25] that encodes the high-

dimensional visual observation o into a low-dimensional

latent variable z sampled from a probabilistic distribution.

We can approximate the probability distribution of the obser-

vation pθ(o) by maximizing the following empirical lower

bound,

log pθ(o) ≥ E [log pθ(o|z)]−DKL (qφ(z|o) ‖ pθ(z)) . (1)

The lower bound on the right side of the inequality is the

evidence lower bound (ELBO) [25] and optimized with neu-

ral networks parameterized by θ and φ. pθ(o|z), qφ(z|o),
and pθ(z) represent the observation likelihood, posterior

distribution, and the prior distribution, respectively.

Adopting the state-space model (SSM) [24], we can tem-

porally expand the basic VAE as in Fig. 2. Given a sequence

of observation o0:T and the action a0:T , the set of structured

latent embedding z0:T is also defined as a temporal variable.

In order to maintain the consistent structured representation

of the complex observation sequence, RNN memorizes the

information to the hidden state h0:T ,

ht = LSTM(zt−1,CNN(ot−1), ht−1). (2)

The hidden state ht is leveraged with the action at−1 for both

posterior inference and prior generation. The posterior dis-

tribution qφ(zt|ot, at−1, ht) projects the high-dimensional

observation into the latent space (inference, dashed line in

Fig. 2). Sampling qφ provides the compact semantic of

the scene from which the agent can make a decision. Fur-

ther, pθ(zt|at−1, ht) models the prior knowledge of such

semantic given the action [29]. We can model a function

that predicts the future semantics by incorporating pθ with

proper latent dynamics model, and generate new observa-

tions (generation, solid line in Fig. 2).

GATSBI further encodes the spatio-temporal context by

factorizing the latent embedding zt into the background,

agent, and objects. The history ht is factorized accordingly

to represent the entity-wise states, and we train dedicated

LSTMs in Eq. (2) for each posterior-prior sampling of the

individual entities. This way GATSBI maintains the spatio-

temporal consistency of different entities.

In addition, we guarantee a comparable contribution of

the action to the latent dynamics by enhancing its dimension.

Since the action as a raw vector is relatively low-dimensional

compared to the observation, we increase the dimension of

the action with a multi-layer perceptron ât = MLP(at). In

contrast to the entity-wise history ht, ât is shared across

different modules of GATSBI. During the sampling process,

the action at plays a key role in identifying the scene entities

and modeling the interaction among them.

In summary, GATSBI is a recurrent-SSM that samples

a disentangled zt conditioned on at−1 and entity-wise ht.

In the following, we further explain the action-conditioned

entity-wise decomposition (Sec. 3.1) and the interaction dy-

namics between them (Sec. 3.2).

3.1. Entity­wise Decomposition

Figure 3. An overall scheme of GATSBI. mixture module extracts

large components leaving the objects. keypoint module specifies

the agent from the mixture and the remaining entities are assigned

as background. Object module passes the objects into interaction

module where a GNN updates the state of objects.

GATSBI disentangles different entities from the observa-

tion sequence and models the interaction between them. A

similar goal has been achieved using attention-based object

discovery [6, 7, 12, 26, 36, 37], but they can only represent

passive interactions among small objects. Specifically, they

divide the frame into a coarse grid and individual objects are

assigned into one of the cells. However, when the agents are

actively interacting with and manipulating objects within the

scene, the motions of agents cannot be constrained within

the size of a cell. GATSBI is explicitly designed to locate

an active agent in an unsupervised fashion, which appears in

diverse motion and shape.

At a high-level, GATSBI decomposes the entities within

the observation in three steps as shown in Fig. 3. First,

the mixture module acquires latent variables that embed the
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Gaussian mixture model (GMM) of the static background

and the active agent. Next, one of the mixture modes is

specified as an agent by the keypoint module, whereas the

remaining modes are specified as the background. The key-

point module detects dynamic features in observation, where

the movement is highly correlated with the action of the

agent. In the meantime, the object module discovers pas-

sive scene entities adapting attention-based object discovery

[30]. The resulting entities are the active agent, static back-

grounds, and the passive objects. Finally, the interaction

module constructs the agent-centric interaction graph with

the decomposed entities, and updates the hidden state of the

object properties. This makes GATSBI accurately reflect the

complex interactions caused by the agent.

Figure 4. Spatio-temporal GMM. (a): Conditioning on the recur-

rent states h
m,c

t,k and the action of the agent, the mixture module

spatially decomposes observation ot into K individual latent vari-

ables z
m,c

t,k that comprise the mixture µmix
t . (b): The recurrent

states of each mask variable is temporally updated hm
t,k → hm

t+1,k

from autoregressive zmt,k and µmix
t , (c): while temporal update of

each component variable hc
t,k → hc

t+1,k is done by zct,k and µmix
t .

Mixture Module. The GMM-based representation learn-

ing [3, 11, 15] is one way to extract separate entities in the

latent representation given the observation o. In contrast

to the standard latent representation z of VAE, it assumes

that there exist K entities in the scene, and each entity is

embedded into separate latent variables zk, k = 1, . . . ,K
that follow a Gaussian distribution. Therefore the overall

distribution is represented as the mixture of K Gaussians.

We handle the structure and the appearance of individ-

ual components separately, and this information should be

consistently propagated over a time sequence. As shown

in Fig. 4, omitting the time index t, GATSBI factorizes the

latent variable for each entity zk into a mask zmk and the

corresponding component zck. The observation likelihood

pθ(µ
mix|zm1:K , zc1:K) conditioned on these is formulated as

pθ(µ
mix|zm1:K , zc1:K) =

∑K

k=1
πθ(z

m
k )pθ(ok|z

c
k). (3)

For k-th entity, the latent variables for mask zmk generate

the observation mask of M pixels in the image πθ(z
m
k ) ∈

[0, 1]
M

whereas zck encodes the component appearance and

generates the observation pθ(ok|z
c
k). The mask variable

zm1:K is formulated such that the occupancy of individual

scene entities are decided sequentially, i.e., πθ(z
m
1:K) =∏K

k=1 πθ(z
m
k |zm1:k−1). Then zc1:K is conditioned on the mask

zm1:K . This makes zmk first determine how much portion

each entity k contributes to o then zck determine how each

component looks like.

As mentioned, the spatial decomposition is temporally

extended where the entity-wise history hm
t,k and hc

t,k follow

the update rule defined as Eq. (2). At each time step t, we

condition the sampling of latent variables of the first mask

on the enhanced action from the previous time step ât−1 as

well as its own history hm
t,k=1,

zmt,1 ∼ qφ(z
m
t,k=1|ot, ât−1, h

m
t,k=1). (4)

We optimize qφ and pθ with the ELBO objective in Eq. (1).

In this way, the posterior network qφ learns the latent tran-

sition from zmt−1,k to zmt,k that is induced by at−1. In addi-

tion, with the sequential inference of the mask latent vari-

ables, conditioning on zmt,1 transfers the effect of enhanced

action for all modes of the mixture model. Therefore, action-

conditioning effectively increases the correlation between

the action and the masks, and eventually coordinates the

motion of the agent with the temporal change of the masks.

The equations for the full sampling process and the objec-

tive of the mixture module are included in Sec.A.1 of the

supplementary material.

With the limited number of modes for the Gaussian mix-

ture, objects in the observation are less prone to be captured

by the mixture module. The weighted sum of components

constitutes a reconstruction of the scene where only the agent

and background entities exist µmix
t =

∑K

k=1 πt,kot,k. As

only the agent and the backgrounds forms µmix
t , we can find

the salient feature which solely consists the objects ot−µmix
t .

We use this for better object discovery.

Figure 5. Keypoint module. By comparing against the keypoint

map γt, we find the index of the agent mask, and fine-tune it to

segment out the exact morphology of the agent. The dynamics of

keypoints and the mask of the agent are shared through enhanced

action output.

Keypoint Module. Even though the mixture module ex-

tracts the spatial layout of different entities, it is not trivial
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to assign a specific index of modes k for the agent under

general visual configuration. In the keypoint module, we

utilize a swarm of N object keypoints [32] to describe the

morphology of the agent and also represent the implication

of their motions.

Fig. 5 describes how the keypoint module can extract

the agent information from the mixture module. Given ob-

servation, the keypoint module detects salient features that

actively move in response to the enhanced action ât as a

set of keypoints. The detected keypoints are aggregated to

construct a keypoint map γt, from which we can compare

and select the matching index k of the mixture mode. The

details for finding the index are described in Sec. A.2 of the

supplementary material.

More importantly, we modify the training objective in

[32] as

DKL (qφ(z
r
t |ot, h

r
t , ât−1) ‖ pθ(z

r
t |h

r
t , ât−1)) + ‖γt − πr

t ‖.
(5)

The former term is the KL-divergence from ELBO in Eq. (1)

conditioned on the history of the keypoints hr
t and the en-

hanced action ât−1. The latter term represents the pixel-wise

l2 distance between the aggregated keypoint map γt and the

mask of the robot agent πr
t = πθ(z

m
t,k=r) with the index

k = r specified for the agent.

Object Module. The object module adapts the attention-

based object discovery by G-SWM [30] to find small objects

that could not be captured by the mixture module. In addi-

tion, the object module can discover the rich attributes of

individual components as well as their relational context.

For the completeness of the discussion, we briefly introduce

the formulation.

The input scene is first divided into coarse grid cells [12].

For each (u, v)-th cell of the 2D grid, a list of latent at-

tributes are specified as z(u,v) = (zpres(u,v), z
where
(u,v) , z

what
(u,v), . . .).

Each of the latent variables represents: the likelihood for

its existence; position in the image space; its appearance;

and optional other features [7, 27]. The dynamic history

ho
t of the latent vectors zot = {z(u,v)}t is condensed with a

recurrent-SSM as other modules such that the module main-

tains the temporal consistency. The explicit representation

of the latent vectors zot enables probabilistic encoding of

the various interactions in the state ho
t . The information is

accumulated in ho
t using a fully-connected graph neural net-

work [27, 30], whose nodes represent the discovered entities,

and the edges encode the dynamic interaction between them.

We further extend the approach and posit our agent-centric

object interaction.

3.2. Interaction

The interaction module models the agent-centric inter-

action and can generate physically plausible future frames.

After the entity-wise decomposition, GATSBI can extract

information of the active agent zrt , h
r
t and I passive objects

zot,i, h
o
t,i, i ∈ I . The graph-based interaction in [27, 30] en-

codes the interaction dynamics of object i using the object

feature ut,i,

Ĩt,i =
∑

j 6=i
fo(ut,i, ut,j). (6)

The interaction module of GATSBI extends the above

formulation with two modifications. First, we confine the

physical interaction only among k nearest neighbors, instead

of the fully-connected graph in Eq. (6). By focusing on the

entities in close proximity, we greatly reduce the number

of edges in the graph. The reduced formulation not only

allows the network to handle a larger number of objects,

but also enhances the prediction accuracy as shown in the

experimental results.

Second, GATSBI can model the interactions considering

the spatio-temporal context, and separately handle the active,

passive, and static components of other entities. This is the

immediate benefit from the entity-wise decomposition in

Sec. 3.1 and successfully modeling the acting agent within

the scene. The spatial component uses the latent embedding

of the object zot,i and the surrounding observation, which is

obtained by cropping the non-object observation µmix
t near

the object. Recall that µmix
t is reconstructed from the mixture

module and corresponds to the scene without objects. The

temporal aspect of an interaction is calculated along object

feature uo
t,i and agent feature ur

t . Similar to the object feature

in [27,30], the agent dynamics ur
t is modeled from the latent

variable of the agent zrt and its history hr
t .

The total interaction It,i upon the object i is

∑
j∈N (i)

fo(uo
t,i, u

o
t,j) + fs(µmix

t , uo
t,i) + f t(ur

t , u
o
t,i).

(7)

Here fo, fs, and f t are neural networks that encode different

interactions: fo extracts passive interaction among objects

included in N (i), the k-nearest-neighbor objects, while f t

encodes the response to the movement of the agent. Lastly,

fs takes only positional information into account. The state

of each object i is updated with the aggregated dynamics as

ho
t+1,i = LSTM(It,i, h

o
t,i). As demonstrated in Sec. 4, our

unsupervised formulation accurately predicts the physical

contact between the agent and multiple objects, and learns

reasonable consequences to interactions.

4. Experiments

We evaluate the performance of extracted representation

on four synthetic datasets, namely ROLL, PUSH1, PUSH2,

and BALLS using physics-based robot simulators [22, 34].

The first three synthetic datasets involve a variety of interac-

tions of agents under different appearances of background,
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Figure 6. Spatial decomposition and temporal prediction results of GATSBI. (a): For ROLL dataset, GATSBI decomposes a scene into the

agent, background, and objects. G-SWM disentangles scene into the background and the objects. Both OP3 and ViMON do not capture

explicit scene entities. (b): Long-term prediction results of scenario with a difference of Cartesian pose defined as action. GATSBI predicts

the long-term trajectory of agent and its interaction. Prediction of G-SWM is relatively inaccurate, and OP3 loses track of the agent.

agent, and object, whereas BALLS dataset contains the in-

teraction sequence of multiple balls. Additionally, we use

BAIR [10] to test our algorithm in a real-world dataset. The

input observation is a video sequence that contains a robot

agent interacting with objects, and the action space of the

agent is defined as the 7 degree-of-freedom (DoF) joint ve-

locities (6 DoF pose of the end-effector + gripper). The code

and the dataset are available.1 GATSBI is compared against

the state-of-the-arts in the structured scene prediction: G-

SWM [30], OP3 [40], and concurrent work ViMON [44].

We first show the results of spatial decomposition in Sec. 4.1

then examine the spatio-temporal prediction in Sec. 4.2. Fi-

nally, the design choices are verified with the ablation study

in Sec. 4.3. Additional experimental results and settings are

in the supplementary material.

4.1. Qualitative Results on Spatial Decomposition

The spatial decomposition is verified by a precise segmen-

tation of the agent, background, and objects. Fig. 6 (a) shows

the spatial decomposition result with the ROLL dataset. OP3

and ViMON decompose the scene into different mixture

modes without knowledge about different entities. OP3 as-

signed the robot agent into several slots, and ViMON failed

to separate the object entities, which shows an inherent prob-

lem of GMM-based approaches [31]. GATSBI overcomes

this limitation of the GMM-based approaches by combining

with attention-based object discovery, and successfully rep-

resents both amorphous shape and small entities. G-SWM

utilizes attention-based object discovery to detect multiple

entities of foreground objects but fails to represent a complex

environment with the background because they use a uni-

modal Gaussian representation. While all previous works do

not model the agent layer, GATSBI is designed to explicitly

1https://github.com/mch5048/gatsbi

decompose the scene into background, agent, and objects.

4.2. Agent­centric Spatio­temporal Interaction

The precise spatial decomposition of GATSBI plays an

essential role to make a physically plausible prediction in

response to the agent. We test the performance of the video-

prediction task. Given the initial five frames of a video

sequence, the task is to predict the subsequent frames. For

a fair comparison, previous works are modified to observe

action sequence in the latent dynamics model. For G-SWM,

which adopts a recurrent-SSM as GATSBI, we addition-

ally augment its background latent dynamics with the input

action, as the background slot is assumed to contain informa-

tion related to agent movements. We use the configuration

of OP3 that uses the action sequence to train for BAIR cloth

manipulation dataset [9] and ViMON is also modified to

adopt the action in the latent dynamics.

Fig. 7 shows a subset of frames predicted after observing

the first five frames of PUSH1 dataset. As expected, GATSBI

generates the agent-object interaction sequence that is nearly

identical to the ground truth. G-SWM predicts a similar

configuration of the agent, but the resulting movement of

the object is not correctly predicted. OP3 generates slightly

degraded robot agent configurations. The agent in ViMON is

approximately similar, but the shape is blurry and not exact.

The results imply that the segmentation of the agent and the

agent-centric interaction contribute to accurate prediction

of both the trajectory of the agent and the consequences of

physical interaction.

The contribution of agent-centric representation of

GATSBI is more prominent when tested with the real dataset,

Fig. 8. Even though the motion of the agent in BAIR dataset

is much more stochastic than the synthetic datasets, GATSBI

robustly predicts the noisy movement of the agent. Since

GATSBI adopts the object discovery module from G-SWM,
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Figure 7. Spatio-temporal prediction results on PUSH1 dataset. Left: the prior generation process results over 25 prediction steps. The figure

compares the reconstruction of predicted futures for each method. Right: Quantitative evaluation of predicted video frames. PSNR (higher

is better) and LPIPS (lower is better) are plotted in 95%-confidence interval.

the reconstructions of foreground objects of the two models

are nearly identical. However, G-SWM fails to predict the

trajectory of the agent as the agent and action information is

mixed in the background slot whereas GATSBI dedicates a

separate layer for the agent. OP3 makes a relatively accurate

prediction on the trajectory of the agent, but fails to capture

the meaningful context of the scene, and ViMON totally fails

to generate meaningful temporal context.

The graphs on the right side of Fig. 7 and 8 present the

quantitative evaluation of the video prediction in terms of

peak signal-to-noise ratios (PSNR) and learned perceptual

image patch similarity (LPIPS) [46]. PSNR (higher is better)

is a widely-used metric for video prediction that aggregates

the pixel-wise differences of the predicted frames compared

to the ground truth, and LPIPS (lower is better) measures

how realistic the predicted frames are. GATSBI achieves

superior performance in terms of both metrics. We observe

that the mixture models of OP3 and ViMON have limited

capacity to express detailed visual features and cannot faith-

fully recover the observation even for the first five frames

(shaded in gray) where the ground truth is given. After the

five frames, the system starts to make pure predictions and

the performance rapidly deteriorates for all other approaches.

In contrast, the curves for GATSBI are relatively smooth

in both PSNR and LPIPS. It demonstrates that GATSBI

leverages the information from observation much more ef-

fectively than other methods. Additional results with all of

the datasets are available in the Sec. E of supplementary

material.

Table 1 summarizes the performance with all four datasets

measured with Fréchet video distance (FVD) [38]. FVD

(lower is better) measures the distance in the feature space

to reflect the similarity of human perception. GATSBI cor-

rectly models the latent dynamics of the agent and objects,

Table 1. FVD (lower is better) comparison for all methods on the

four robotics dataset. The lower value implies the generated frames

are closer to that of ground truth in the feature space. Bold values

indicate the best performing method for each dataset. Values inside

the parenthesis denote the 95%- confidence interval for each setup.

Models ROLL PUSH1 PUSH2 BAIR

GATSBI 484.0 (27.57) 630.4 (37.68) 859.0 (35.43) 1620 (55.63)

G-SWM 627.3 (30.00) 910.6 (76.89) 1072 (32.92) 2603 (121.4)

OP3 1025 (39.33) 1118 (35.19) 2568 (90.01) 2904 (128.0)

ViMON 1217 (28.98) 1620 (58.9) 2823 (93.54) 3983 (204.9)

and consistently exhibits superior results in all datasets. G-

SWM can make a relatively precise trajectory prediction on

synthetic datasets with the entity-wise decomposition and

outperforms OP3 and ViMON by a large margin. However,

it fails to model the agent-object interaction.

We further evaluate the GATSBI with PUSH2 dataset

which we created with a different agent that moves signifi-

cantly, interacting with more objects. In addition, we create

a challenging setting by providing the change of translation

and rotation of end-effector. The correct action configuration

needs to be inferred from the relative action information and

the history of agent motions. Fig. 6 (b) shows the five con-

secutive predicted frames with the noticeable agent-object

interaction. The robot agent moves its end-effector and hits

the yellow cube. GATSBI, with the explicit embedding of

the agent dynamics incorporated in the interaction model,

predicts the passive movement of the yellow cube. In con-

trast, G-SWM only predicts the motion of the agent and fails

to capture the interaction. Lastly, OP3 and ViMON show

poor prediction of the agent, and could not propagate the

objects through time.

4.3. Ablation Study on Interaction

This section provides the ablation study on the interaction

module. Further studies on the mixture and keypoint module
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Figure 8. Spatio-temporal prediction results of BAIR dataset. Left: action-conditioned video prediction result on real-world robot dataset.

Right: PSNR and LPIPS on BAIR dataset. Solid colored mean values are shaded by 95%-confidence interval.

Table 2. PSNR (higher is better), LPIPS (lower is better), FVD

comparison among the three interaction modes.

Mode PSNR LPIPS FVD

INTER1 22.80 (0.2202) 0.2089 (6.227e-3) 841.6 (51.17)

INTER2 24.78 (0.1767) 0.1570 (2.672e-3) 484.0 (27.575)

INTER3 25.44 (0.1765) 0.1463 (2.622e-3) 482.5 (22.320)

are included in the Sec. E.6 of supplementary material.

Comparison of Interaction Modes. Here we compare

different methods of processing interactions, and demon-

strate that the latent information of the agent enhances the

performance of video prediction. First mode considers the in-

teraction of individual objects as G-SWM, but the remaining

components are regarded as a static background (INTER1).

The other two methods extract the variables of the agent

and The latent dynamics is incorporated into the interac-

tion graph. INTER2 encodes the variable of the agent as a

localized feature for each object, whereas INTER3 (ours)

uses it as a global feature of the interaction network. We

provide the detailed implementation of each mode in the Sec.

A.3 of supplementary material. Table 2 shows the compari-

son among the three interaction models in terms of PSNR,

LPIPS, and FVD in 95%-confidence interval. INTER3 per-

forms the best, implying that the agent information provides

sufficient constraints on all the objects within the scene.

Agent-free Object Interactions. Finally, we evaluate the

k nearest neighbors search method in the object-object in-

teraction model of GATSBI. We generate synthetic scenes

where multiple objects interact with each other, and test the

accuracy of video prediction with scenes. The synthetic

scenes contain interactions of different numbers of balls as

shown in the inset of Table 3. Table 3 presents the numerical

pixel error before and after the interaction among objects.

The result exhibits that the precision of interaction increases

as the number of objects increases and outperforms the orig-

inal fully-connected graphical model. With the sparse graph,

the network better captures the physical context between

multiple objects.

Table 3. Average pixel error for different connectivity of interaction

graph. FC denotes the fully-connected graph model of G-SWM and

KNN (k) denotes the k nearest neighbor graph model of GATSBI.

Method 3 Balls 6 Balls 9 Balls

FC 3.039 3.58 5.477

KNN (3) 3.483 3.374 5.975

KNN (5) - - 3.775

5. Conclusion

In this work, we proposed GATSBI, a spatio-temporal

scene representation model that decomposes a video ob-

servation into an agent, background, and objects. With an

appropriate representation of the action of the agent, our

model reliably predicts the long-term trajectory of the agent

as well as the physical interaction between the agent and

other objects in the scene. The experimental results prove

our agent-centric video prediction model can generate phys-

ically plausible future frames in various synthetic and real

environments. Our method excels concurrent state-of-the-art

methods both in the qualitative and quantitative results. In

the future, we will apply GATSBI to solving vision-based

robotics tasks, since our prediction model can be applied to

model-based reinforcement learning.
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