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Abstract

We present a self-supervised learning approach to learn

audio-visual representations from video and audio. Our

method uses contrastive learning for cross-modal discrimi-

nation of video from audio and vice-versa. We show that op-

timizing for cross-modal discrimination, rather than within-

modal discrimination, is important to learn good represen-

tations from video and audio. With this simple but powerful

insight, our method achieves highly competitive performance

when finetuned on action recognition tasks. Furthermore,

while recent work in contrastive learning defines positive

and negative samples as individual instances, we general-

ize this definition by exploring cross-modal agreement. We

group together multiple instances as positives by measuring

their similarity in both the video and audio feature spaces.

Cross-modal agreement creates better positive and negative

sets, which allows us to calibrate visual similarities by seek-

ing within-modal discrimination of positive instances, and

achieve significant gains on downstream tasks.

1. Introduction

Imagine the sound of waves. This sound can evoke the

memory of many scenes - a beach, a pond, a river, etc. A

single sound serves as a bridge to connect multiple sceneries.

It can group visual scenes that ‘go together’, and set apart the

ones that do not. We leverage this property of freely occur-

ring audio to learn video representations in a self-supervised

manner.

A common technique [2, 41, 62, 63] is to setup a verifica-

tion task that requires predicting if an input pair of video and

audio is ‘correct’ or not. A correct pair is an ‘in-sync’ video

and audio and an incorrect pair can be constructed by using

‘out-of-sync’ audio [41] or audio from a different video [2].

However, a task that uses a single pair at a time misses a key

opportunity to reason about the data distribution at large.

In our work, we propose a contrastive learning framework

to learn cross-modal representations in a self-supervised

manner by contrasting video representations against mul-

∗Work done while interning at Facebook AI Research.

tiple audios at once (and vice versa). We leverage recent

advances [28, 61, 80, 86] in contrastive learning to setup

a Audio-Visual Instance Discrimination (AVID) task that

learns a cross-modal similarity metric by grouping video and

audio instances that co-occur. We show that the cross-modal

discrimination task, i.e., predicting which audio matches a

video, is more powerful than the within-modal discrimina-

tion task, predicting which video clips are from the same

video. With this insight, our technique learns powerful visual

representations that improve upon prior self-supervised meth-

ods on action recognition benchmarks like UCF-101 [76]

and HMDB-51 [42].

We further identify important limitations of the AVID

task and propose improvements that allow us to 1) reason

about multiple instances and 2) optimize for visual similarity

rather than just cross-modal similarity. We use Cross-Modal

Agreement (CMA) to group together videos with high simi-

larity in video and audio spaces. This grouping allows us to

directly relate multiple videos as being semantically similar,

and thus directly optimize for visual similarity in addition

to cross-modal similarity. We show that CMA can iden-

tify semantically related videos, and that optimizing visual

similarity among related videos significantly improves the

learned visual representations. Specifically, CMA is shown

to improve upon AVID on action recognition tasks such Ki-

netics [83], UCF-101 [76] and HMDB-51 [42] under both

linear probing and full fine-tuning evaluation protocols.

2. Related work

Self-supervised learning is a well studied problem [13,

47, 52, 55, 60, 72]. Self-supervised methods often try to

reconstruct the input data or impose constraints on the

representation, such as sparsity [48, 59, 60], noise [82]

or invariance [8, 10, 11, 17, 28, 35, 53, 69] to learn a

useful and transferable feature representation. An emerg-

ing area of research uses the structural or domain-specific

properties of visual data to algorithmically define ‘pretext

tasks’. Pretext tasks are generally not useful by them-

selves and are used as a proxy to learn semantic rep-

resentations. They can use the spatial structure in im-

ages [16, 25, 57, 89], color [14, 45, 46, 90], temporal infor-

mation in videos [18, 20, 29, 37, 49, 54, 58, 64, 85] among
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Figure 1: Popular audio-video self-supervised methods can be interpreted as ‘instance-based’ as they learn to align video and audio instances

by solving a binary verification problem. We propose AVID to learn cross-modal representations that align video and audio instances in a

contrastive learning framework. However, AVID does not optimize for visual similarity. We calibrate AVID by formulating CMA. CMA

finds groups of videos that are similar in both video and audio space which enables us to directly optimize representations for visual (within

modality) similarity by using these groups.

other sources of ‘self’ or naturally available supervision. We

propose an unsupervised learning technique that leverages

the naturally available signal in video and audio alignment.

Representation Learning using Audio. Self-supervised

learning can also make use of multiple modalities, rather

than the visual data alone. As pointed out in [13, 38], co-

occurring modalities such as audio can help learn powerful

representations. For example, audio self-supervision has

shown to be useful for sound source localization and separa-

tion [3, 21–23, 74, 92, 93], lip-speech synchronization [12]

and visual representation learning [2, 41, 62] and audio spa-

tialization [56].

Audio-Visual Correspondence (AVC) is a standard

task [2, 3, 41, 62] used in audio-video cross-modal learning.

This task tries to align the visual and audio inputs by solving

a binary classification problem. However, most methods use

only a single video and single audio at a time for learning.

Thus, the model must reason about the distribution over mul-

tiple samples implicitly. In our work, we use a contrastive

loss [28, 61, 80, 86] that opposes a large number of samples

simultaneously. We show in §5 that our method performs

better than recent methods that use AVC.

Contrastive Learning techniques use a contrastive

loss [28] to learn representations either by predicting parts

of the data [32, 33, 61], or discriminating between indi-

vidual training instances [17, 19, 31, 34, 53, 86, 88, 94].

Contrastive learning has also been used for learning repre-

sentations from video alone [29, 75]. Tian et al. [80] also

use a contrastive approach, but propose to learn with a cross-

modal objective applied to images and depth, video and flow.

In contrast, our method learns visual representations using

audio as cross-modal targets. Compared to [80], we present

a new insight for audio-visual learning that optimizing cross-

modal similarity is more beneficial than within-modal simi-

larity. We also identify important limitations of cross-modal

discrimination and present an approach that goes beyond in-

stance discrimination by modeling Cross-Modal Agreement.

This identifies groups of related videos and allows us to op-

timize for within-modal similarity between related videos.

The concurrently proposed [1] uses alternating optimization

to find clusters in visual and audio feature spaces, indepen-

dently and uses them to improve cross-modal features. While

our CMA method bears a resemblance to theirs, we do not

use alternating optimization and use agreements between the

visual and audio representations to directly improve visual

similarity rather than only cross-modal similarity. Finally,

similar to our work, the concurrently proposed [30] also uses

co-occurring modalities (optical flow and RGB) to expand

the positive set. However, instead of mining positives based

on an agreement between both modalities, [30] relies on the

opposite modality alone.

Multi-view Learning. Multi-view learning aims to find

common representations from multiple views of the same

phenomenon, and has been widely used to provide learn-

ing signals in unsupervised and semi-supervised applica-

tions. Classical approaches can be broadly categorized in

co-training procedures [6, 7, 30, 43, 50, 67, 84] that maxi-

mize the mutual agreement between views, multiple kernel

learning procedures [5, 40, 44] which use kernels to model

different views, and subspace learning procedures [15, 68]

which seek to find the latent space that generates all views

of the data.

Multi-view data is an effective source of supervision

for self-supervised representation learning. Examples in-

clude the motion and appearance of a video [30, 80],

depth and appearance [36, 91], luminance and chromi-

nance of an image [80, 91], or as in our work sound and

video [2, 4, 12, 63].
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Figure 2: Variants of the AVID task. Instance discrimination can be accomplished contrasting representations within the same modality

(Self-AVID), across modalities (Cross-AVID) or a mixture of the two (Joint-AVID).

3. Audio-Visual Instance Discrimination

We learn visual representations in a self-supervised man-

ner from unconstrained video and audio by building upon

recent advances in instance discrimination [17, 51, 80, 86]

and contrastive learning [27, 28, 61].

3.1. Goal and Intuition.

Consider a dataset of N samples (instances) S = {si}
N
i=1

where each instance si is a video svi with a corresponding

audio sai . The goal of Audio-Visual Instance Discrimination

(AVID) is to learn visual and audio representations (vi,ai)
from the training instances si. The learned representations

are optimized for ‘instance discrimination’ [17, 51, 86], i.e.,

must be discriminative of si itself as opposed to other in-

stances sj in the training set. Prior work [17, 86] shows

that such a discriminative objective among instances learns

semantic representations that capture similarities between

the instances.

To accomplish this, two neural networks extract unit norm

feature vectors vi = fv(s
v
i ) and ai = fa(s

a
i ) from the video

and audio independently. Slow moving (exponential moving

average) representations for both video and audio features

{(v̄i, āi)}
N
i=1 are maintained as ‘memory features’ and used

as targets for contrastive learning. The AVID task learns

representations (vi,ai) that are more similar to the mem-

ory features of the instance (v̄i, āi) as opposed to memory

features of other instances (v̄j , āj), j 6= i. However, unlike

previous approaches [17, 86] defined on a single modality

(but similar to [80]), AVID uses multiple modalities, and

thus can assume multiple forms as depicted in Figure 2.

1. Self-AVID requires instance discrimination within the

same modality - vi to v̄i and ai to āi. This is equivalent

to prior work [17, 86] independently applied to the two

modalities.

2. Cross-AVID optimizes for cross-modal discrimination,

i.e., the visual representation vi is required to discrimi-

nate the accompanying audio memory āi and vice-versa.

3. Joint-AVID combines the Self-AVID and Cross-AVID

objectives.

It is not immediately obvious what the relative advantages,

if any, of these variants are. In §3.3, we provide an in-depth

empirical study of the impact of these choices on the quality

of the learned representations. We now describe the training

procedure in detail.

3.2. AVID training procedure.

AVID is trained using a contrastive learning frame-

work [27, 28], where instance representations are contrasted

to those of other (negative) samples.

While various loss functions have been defined for con-

trastive learning [61, 73], we focus on noise contrastive

estimation (NCE) [27]. Let x̄i denote the (memory) target

representation for a sample si. The probability that a feature

x belongs to sample si is modeled by a generalized softmax

function

P (si|x) =
1

NZ̄
exp(xT

x̄i/τ) (1)

where Z̄ = 1
N

∑
x̄
[exp(xT

x̄/τ)] is the normalized partition

function and τ is a temperature hyper-parameter that controls

the softness of the distribution. In the case of AVID, x and

x̄ may or may not be from the same modality.

The network f is trained to learn representations by solv-

ing multiple binary classification problems where it must

choose its own target representation x̄i over representations

x̄j in a negative set. The negative set consists of K ‘other’

instances drawn uniformly from S, i.e., Ni = U(S)K . The

probability of a feature x being from instance si as opposed

to the instances from the uniformly sampled negative set Ni

is given as P (D = 1|x, x̄i) =
P (si|x)

P (si|x)+K/N . The NCE loss

is defined as the negative log-likelihood

LNCE(xi; x̄i,Ni) =− logP (D = 1|xi, x̄i)

−
∑

j∈Ni

logP (D = 0|xi, x̄j), (2)

where P (D = 0|·) = 1− P (D = 1|·).
The three variants of AVID depicted in Figure 2 are

trained to optimize variations of the NCE loss of Equation 2,
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Table 1: Variants of AVID. We observe that the Self-AVID and Joint-AVID variants that use within-modality instance discrimination

perform poorly compared to Cross-AVID that uses only cross-modal instance discrimination.

Method block1 block2 block3 block4 Best

Cross-AVID 19.80 26.98 34.81 39.95 39.95

Self-AVID 17.10 22.28 27.23 32.08 32.08

Joint-AVID 18.65 23.60 29.47 33.04 33.04

(a) Accuracy of linear probing on Kinetics.

block1 block2 block3 block4 Best

Cross-AVID 67.25 73.15 74.80 75.05 75.05

Self-AVID 66.92 72.64 71.45 71.61 72.64

Joint-AVID 65.45 68.65 71.77 68.41 71.77

(b) Accuracy of linear probing on ESC.

by varying the target representations x̄i.

LSelf-AVID = LNCE(vi; v̄i,Ni) + LNCE(ai; āi,Ni) (3)

LCross-AVID = LNCE(vi; āi,Ni) + LNCE(ai; v̄i,Ni) (4)

LJoint-AVID = LSelf-AVID(vi,ai) + LCross-AVID(vi,ai) (5)

We analyze these variants next and show that the seem-

ingly minor differences between them translate to significant

differences in performance.

3.3. Analyzing AVID

We present experiments to analyze various properties of

the AVID task and understand the key factors that enable the

different variants of AVID to learn good representations.

Experimental Setup We briefly describe the experimental

setup for analysis and provide the full details in the supple-

mental.

Pre-training Dataset. All models are trained using the Au-

dioset dataset [24] which contains 1.8M videos focusing on

audio events. We randomly subsample 100K videos from

this dataset to train our models. We use input video and

audio clips of 1 and 2-second duration, respectively. The

video model is trained on 16 frames of size 112×112 with

standard data augmentation [79]. We preprocess the audio

by randomly sampling the audio within 0.5 seconds of the

video and compute a log spectrogram of size 100×129 (100

time steps with 129 frequency bands).

Video and audio models. The video model is a smaller

version of the R(2+1)D models proposed in [81] with 9

layers. The audio network is a 9 layer 2D ConvNet with

batch normalization. In both cases, output activations are

max-pooled, projected into a 128-dimensional feature using

a multi-layer perceptron (MLP), and normalized into the

unit sphere. The MLP is composed of three fully connected

layers with 512 hidden units.

Pre-training details. AVID variants are trained to optimize

the loss in Equations 3-5 with 1024 random negatives. In

early experiments, we increased the number of negatives up

to 8192 without seeing noticeable differences in performance.

Following [86], we set the temperature hyper-parameter τ to

0.07, the EMA update constant to 0.5, and the normalized

partition function Z̄ is approximated during the first iteration

and kept constant thereafter (Z̄ = 2.2045). All models are

trained with the Adam optimizer [39] for 400 epochs with a

learning rate of 1e-4, weight decay of 1e-5, and batch size

of 256.

Downstream tasks. We evaluate both the visual and audio

features using transfer learning.

• Visual Features: We use the Kinetics dataset [83] for

action recognition. We evaluate the pre-trained features

by linear probing [26, 91] where we keep the pre-trained

network fixed and train linear classifiers. We report top-1

accuracy on held-out data by averaging predictions over

25 clips per video.

• Audio Features: We evaluate the audio features on the

ESC-50 [66] dataset by training linear classifiers on fixed

features from the pre-trained audio network. Similar to

the video case, we report top-1 accuracy by averaging

predictions over 25 clips per video.

Cross vs. within-modal instance discrimination

We study the three variants of AVID depicted in Fig-

ure 2 to understand the differences between cross-modal and

within-modal instance discrimination and its impact on the

learned representations. We evaluate the video and audio

feature representations from these variants and report results

in Table 1. We observe that Self-AVID is consistently outper-

formed by the Cross-AVID variant on both visual and audio

tasks.

We believe the reason is that Self-AVID uses within-

modality instance discrimination, which is an easier pretext

task and can be partially solved by matching low-level statis-

tics of the data [2, 16]. This hypothesis is supported by the

fact that Joint-AVID, which combines the objectives of both

Cross-AVID and Self-AVID, also gives worse performance

than Cross-AVID. These results highlight that one cannot

naively use within-modality instance discrimination when

learning audio-visual representations. In contrast, Cross-

AVID uses a “harder” cross-modal instance discrimination

task where the video features are required to match the cor-

responding audio and vice-versa. As a result, it generalizes

better to downstream tasks.

4. Beyond Instance Discrimination: Cross-

Modal Agreement

We will show in §5 that Cross-AVID achieves state-of-

the-art performance on action recognition downstream tasks.

However, we identify three important limitations in the in-
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stance discrimination framework of Equation 2 and the cross-

modal loss of Equation 4.

1. Limited to instances: Instance discrimination does not

account for interactions between instances. Thus, two

semantically related instances are never grouped together

and considered ‘positives’.

2. False negative sampling: The negative set Ni, which

consists of all other instances sj , may include instances

semantically related to si. To make matters worse, con-

trastive learning requires a large number K of negatives,

increasing the likelihood that semantically related sam-

ples are used as negatives. This contradicts the goal of

representation learning, which is to generate similar em-

beddings of semantically related inputs.

3. No within-modality calibration: The Cross-AVID loss

of Equation 4 does not directly optimize for visual similar-

ity v
T
i vj . In fact, as shown experimentally in §3.3, doing

so can significantly hurt performance. Nevertheless, the

lack of within-modality calibration is problematic, as

good visual representations should reflect visual feature

similarities.

4.1. Relating instances through agreements

We extend AVID with Cross-Modal Agreement (CMA) to

address these shortcomings. CMA builds upon insights from

prior work [70] in multi-view learning. We hypothesize

that, if two samples are similar in both visual and audio

feature space, then they are more likely to be semantically

related than samples that agree in only one feature space

(or do not agree at all). We thus consider instances that

agree in both feature spaces to be ‘positive’ samples for

learning representations. Similarly, examples with a poor

agreement in either (or both) spaces are used as negatives.

When compared to instance discrimination methods [17, 80,

86], CMA uses a larger positive set of semantically related

instances and a more reliable negative set.

4.2. CMA Learning Objective

We define an agreement score for two instances si and sj
as

ρij = min(vT
i vj ,a

T
i aj). (6)

This is large only when both the audio and video similarities

are large. A set of positives and negatives is then defined per

instance si. The positive set Pi contains the samples that are

most similar to si in both spaces, while the negative set Ni

is the complement of Pi.

Pi = TopK
j=1,...,N

(ρij) Ni = {j|sj ∈ (S \ Pi)} (7)

Furthermore, CMA enables self-supervision beyond sin-

gle instances. This is achieved with a generalization of the

AVID task, which accounts for the correspondences of Equa-

tion 7. At training time, Kn negative instances are drawn

per sample si from the associated negative set Ni to form

set N ′
i = U(Ni)

Kn . The networks fv, fa are learned to

optimize a combination of cross-modal instance discrimi-

nation and within-modal positive discrimination (wMPD).

The former is encouraged through the Cross-AVID loss of

Equation 4. The latter exploits the fact that CMA defines

multiple positive instances Pi, thus enabling the optimization

of within-modality positive discrimination

LwMPD =
1

Kp

∑

p∈Pi

LNCE(vi; v̄p,N
′
i )+LNCE(ai; āp,N

′
i ). (8)

Note that, unlike the Self-AVID objective of Equation 3,

this term calibrates within-modal similarities between pos-

itive samples. This avoids within-modal comparisons to

the instance itself, which was experimentally shown to pro-

duce weak representations in §3.3. We then minimize the

weighted sum of the two losses

LCMA = LCross-AVID(vi,ai) + λLwMPD(vi,ai), (9)

where λ > 0 is an hyper-parameter that controls the weight

of the two losses.

Implementation. After Cross-AVID pre-training, cross-

modal disagreements are corrected by finetuning the audio

and video networks to minimize the loss in Equation 9. Mod-

els are initialized with the Cross-AVID model at epoch 200,

and trained for 200 additional epochs. We compare these

models to a Cross-AVID model trained for 400 epochs, thus

controlling for the total number of parameter updates. For

each sample, we find 32 positive instances using the CMA

criterion of Equation 7 applied to video and audio memory

bank representations. For efficiency purposes, the positive

set is updated every 50 epochs. In each iteration, 1024 neg-

ative memories (not overlapping with positives) were sam-

pled. These positive and negative memories were then used

to minimize the CMA loss of Equations 8-9. For evaluation

purposes, we use the same protocol as in §3.3.

4.3. Analyzing CMA

The CMA objective consists of two terms that opti-

mize cross-modal (Equation 4) and within-modal (Equa-

tion 8) similarity. We observed in §3.3 that within-modal

comparisons for instance discrimination result in poor vi-

sual representations due to the relatively easy task of self-

discrimination. Intuitively, since CMA identifies groups

of instances (Pi) that are likely related, calibrating within-

modal similarity within these groups (instead of within the

instance itself) should result in a better visual representa-

tion. To study this, we use CMA to obtain a positive set Pi

and analyse the CMA objective of Equation 9 by evaluating

with different values of the hyper-parameter λ. The results

shown in Figure 3 validates the advantages of CMA over

Cross-AVID.
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CMA calibration. To understand the effect of the CMA

procedure on within-modal similarities, we analyzed the em-

bedding space defined by memory bank representations ob-

tained with AVID and CMA trained on the Kinetics dataset.

Since representations are restricted to the unit sphere (due

to normalization), the average inner-product between two

randomly chosen samples should be 0 (assuming a uniform

distribution of samples over the sphere). However, when

training with Cross-AVID, the average inner-product is 0.23.

This means that Cross-AVID learns collapsed representations

(i.e. features are on average closer to other random features

than the space permits). This is likely due to the lack of

within-modal negatives when training for cross-modal dis-

crimination. By seeking within modal-discrimination of

positive samples, CMA effectively addresses the feature

collapsing problem observed for Cross-AVID, and yields

an average dot-product between random memories of 0 as

expected.

CMA vs. within-modal expansion. CMA expands the

positive set Pi to include instances that agree in both video

and audio spaces. We inspected whether modeling this agree-

ment is necessary for relating instances by exploring alterna-

tives that do not model agreements in both spaces (see Fig-

ure 4a). We consider alternatives that expand the set Pi by

looking at instances that are similar in 1) only the audio

space; 2) only the video space; or 3) either video or audio

space. Each method in Figure 4a is trained to optimize the

objective of Equation 9 with the corresponding Pi. We also

compare against the Cross-AVID baseline that uses only the

instance itself as the positive set. Transfer performance is

reported in Figure 4b.

Compared to Cross-AVID, expanding the set of positives

using only audio similarity (third row) hurts performance

on Kinetics, and relying on video similarities alone (second

row) only provides marginal improvements. We believe that

expanding the set of positives only based on visual similarity

does not improve the performance of visual features since the

positives are already close in the feature space, and do not

add extra information. CMA provides consistent gains over

all methods on Kinetics, suggesting that modeling agreement

can provide better positive sets for representation learning

of visual features.

Qualitative Understanding. We show examples of posi-

tive and negative samples found by CMA in Figure 5 and

observe that CMA can group together semantically related

concepts. As it uses agreement between both spaces, visu-

ally similar concepts, like ‘ambulance‘ and ‘bus‘ (second

row), can be distinguished based on audio similarity. This

leads to more precise positive sets Pi, as can be verified by

inspecting the precision@K of Pi measured against ground

truth labels (Figure 4c). CMA consistently finds more pre-
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Figure 3: Ablation of CMA objective. Impact of within-modal

positive sample discrimination. A network is pre-trained for differ-

ent values of hyper-parameter λ in Equation 9, and then evaluated

by linear probing on the Kinetics and ESC datasets. Positive sample

discrimination can further improve the performance of Cross-AVID.

cise positives compared to within-modal expansion methods

showing the advantages of modeling agreement.

5. Cross-AVID and CMA at scale

Previous sections provide experimental validation for the

proposed Cross-AVID and CMA procedures when training

on a medium-sized dataset (100K videos from Audioset). We

now study the proposed methods on large-scale datasets. We

also compare Cross-AVID and CMA to prior work, including

video-based self-supervised learning methods [29, 49, 54,

87], and methods that leverage the natural correspondence

between audio and video [2, 41, 62].

Experimental setup. We briefly describe the experimen-

tal setup, and refer the reader to supplementary material for

full details. We use the 18-layer R(2+1)D network of [81]

as the video encoder and a 9-layer (2D) CNN with batch

normalization as the audio encoder. Models are trained on

Kinetics-400 [83] and the full Audioset [24] datasets, con-

taining 240K and 1.8M video instances, respectively. Video

clips composed of 8 frames of size 224×224 are extracted

at a frame rate of 16fps with standard data augmentation

procedures [79]. Two seconds of audio is randomly sam-

pled within 0.5 seconds of the video at a 24kHz sampling

rate, and spectrograms of size 200 × 257 (200 time steps

with 257 frequency bands) are used as the input to the audio

network. For Cross-AVID, the cross-modal discrimination

loss of Equation 4 is optimized with K = 1024 negative in-

stances. We then find 128 positive instances for each sample

using cross-modal agreements (Equation 7), and optimize

the CMA criterion of Equation 9 with Kp = 32 positives,

Kn = 1024 negatives and λ = 1.0. Video representations

are evaluated on action recognition (§5.1), and audio repre-

sentations on sound classification (§5.2).

5.1. Action recognition

We first evaluate the visual representations learned by

Cross-AVID and AVID+CMA by training a linear classifier

for the task of action recognition on the Kinetics dataset.

The top-1 accuracy is reported for clip and video-level pre-
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Method block1 block2 block3 block4 Best

Cross-AVID (Base) 19.80 26.98 34.81 39.95 39.95
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Figure 4: Cross-Modal Agreement vs. Within-modality Expansion We study the importance of modeling agreement between video and

audio similarities. We compare CMA to expansion methods that relate instances without modeling agreement (4a). CMA enables better

transfer for action recognition (4b). Expansion methods generate agreements of worse precision (4c).

Reference Positives Visual Negatives

Figure 5: Examples extracted by the CMA procedure. For

each reference image, we show three images in their positive sets

(Equation 7). We also show three negatives that were rejected from

the positive set due to low audio similarity. Each image is annotated

with the video/audio similarity to the reference.

Pretraining DB Kinetics Audioset

Method \ Metric Clip@1 Video@1 Clip@1 Video@1

Cross-AVID 33.3 43.1 35.2 46.6

AVID+CMA 35.1 44.5 37.4 48.9

Table 2: Top-1 accuracy of linear probing on Kinetics.

dictions. Clip-level predictions are obtained from a single

8-frame clip, while video-level predictions are computed

by averaging clip-level predictions from 10 clips uniformly

sampled from the whole video. The results shown in Table 2

clearly demonstrate the advantage of calibrating AVID rep-

resentations using the CMA procedure, yielding significant

gains across both metrics and pretraining datasets. These

results demonstrate the value of the CMA procedure in large-

scale datasets, thus showing that its effect goes beyond a

simple regularization procedure to prevent overfitting.

To compare to prior work, we follow [29, 41, 80] and

evaluate visual representations on the UCF-101 [76] and

HMDB-51 [42] datasets, by full network fine-tuning. Due

to the large variability of experimental setups used in the

literature, it is unrealistic to provide a direct comparison to

all methods, as these often use different network encoders

trained on different datasets with input clips of different

lengths. To increase the range of meaningful comparisons,

we fine-tuned our models using clips with both 8 and 32

frames. At inference time, video-level predictions are pro-

vided by averaging clip-level predictions for 10 uniformly

sampled clips [41]. We report top-1 accuracy averaged over

the three train/test splits provided with the original datasets.

Table 3 compares the transfer performance of Cross-

AVID and CMA with previous self-supervised approaches.

To enable well-grounded comparisons, we also list for each

method the pre-training dataset and clip dimensions used

while finetuning on UCF and HMDB. Despite its simplic-

ity, Cross-AVID achieves state-of-the-art performance for

equivalent data settings in most cases. In particular, when

pre-trained on Audioset, Cross-AVID outperformed other

audio-visual SSL methods such as L3 and AVTS by at least

1.0% on UCF and 2.5% on HMDB. Similar to Cross-AVID,

L3 and AVTS propose to learn audio-visual representations

by predicting whether audio/video pairs are in-sync. How-

ever, these methods optimize for the audiovisual correspon-

dence task, which fails to reason about the data distribution

at large. Cross-AVID also outperformed the concurrently

proposed XDC [1] under equivalent data settings. When pre-

trained on Audioset and finetuned on UCF with 32 frames,

XDC [1] does report higher accuracy, but the model was

pretrained and finetuned using 32 frames, while we pretrain

using only 8 frames. It should be noted that, when pre-

training and finetuning with clips of 8 frames, Cross-AVID

outperforms XDC by 3.4% (84.9% vs 88.3%). CMA further

improves the performance of Cross-AVID on all settings con-

sidered (i.e., using both Kinetics and Audioset pretraining

datasets, and evaluating on UCF and HMDB). We observed,

however, that the improvements of CMA over Cross-AVID

are smaller under the fine-tuning protocol than the linear

evaluation of Table 2. Prior work [26, 91] observes that full

fine-tuning significantly modifies the visual features and tests
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Method
Pretraining

DB

Finetune

Input Size
UCF HMDB

Shuffle&Learn [54] UCF 1×2272 50.2 18.1

OPN [49] UCF 1×2272 56.3 23.8

ST Order [9] UCF 1×2272 58.6 25.0

CMC [80] UCF 1×2272 59.1 26.7

3D-RotNet [37] Kinetics400 16×1122 62.9 33.7

ClipOrder [87] Kinetics400 16×1122 72.4 30.9

DPC [29] Kinetics400 25×1282 75.7 35.7

CBT [78] Kinetics400 16×1122 79.5 44.6

L3∗ [2] Kinetics400 16×2242 74.4 47.8

AVTS [41] Kinetics400 25×2242 85.8 56.9

Kinetics400 8×2242 74.2 39.0
XDC [1]

Kinetics400 32×2242 86.8† 52.6†

Kinetics400 8×2242 82.3 49.1
Cross-AVID (ours)

Kinetics400 32×2242 86.9 59.9

Kinetics400 8×2242 83.7 49.5
AVID+CMA (ours)

Kinetics400 32×2242 87.5 60.8

L3∗ [2] Audioset 16×2242 82.3 51.6

Multisensory [62] Audioset 64×2242 82.1 –

AVTS [41] Audioset 25×2242 89.0 61.6

Audioset 8×2242 84.9 48.8
XDC [1]

Audioset 32×2242 93.0† 63.7†

Audioset 8×2242 88.3 57.5
Cross-AVID (ours)

Audioset 32×2242 91.0 64.1

Audioset 8×2242 88.6 57.6
AVID+CMA (ours)

Audioset 32×2242 91.5 64.7

Table 3: Top-1 accuracy on UCF and HMDB by full network

finetuning with various pre-training datasets and clips of different

sizes. Methods were organized by pre-training dataset. The method

with the best performance is indicated in bold face, and second best

is underlined. ∗Re-implemented by us. †Obtained by pre-training

and finetuning with larger 32× 224
2 inputs (we only pre-train on

8× 224
2 inputs).

the network initialization aspect of pre-training rather than

the semantic quality of the representation. Thus, we believe

that the feature calibration benefits of CMA are diminished

under the full finetuning protocol.

5.2. Sound recognition

Audio representations are evaluated on the ESC-50 [66]

and DCASE [77] datasets by linear probing [26] for the

task of sound recognition. Following [41], both ESC and

DCASE results are obtained by training a linear one-vs-all

SVM classifier on the audio representations generated by

the pre-trained models at the final layer before pooling. For

training, we extract 10 clips per sample on the ESC dataset

and 60 clips per sample on DCASE [41]. At test time, sam-

ple level predictions are obtained by averaging 10 clip level

predictions, and the top-1 accuracy is reported in Table 4.

For the ESC dataset, performance is the average over the 5

original train/test splits. Similarly to video, audio represen-

tations learned by Cross-AVID and CMA outperform prior

work, outperforming ConvRBM on the ESC dataset by 2.7%

Method
Pretraining

DB
ESC DCASE

RandomForest [66] None 44.3 –

ConvNet [65] None 64.5 –

ConvRBM [71] None 86.5 –

SoundNet [4] Flickr-SoundNet 74.2 88

L3 [2] Flickr-SoundNet 79.3 93

AVTS [41] Kinetics 76.7 91

XDC [1] Kinetics 78.5 –

Cross-AVID (Ours) Kinetics 77.6 93

AVID+CMA (Ours) Kinetics 79.1 93

AVTS [41] Audioset 80.6 93

XDC [1] Audioset 85.8 –

Cross-AVID (Ours) Audioset 89.2 96

AVID+CMA (Ours) Audioset 89.1 96

Table 4: Top-1 accuracy of linear classification on ESC-50 and

DCASE datasets. Methods are organized by pre-training dataset.

The method with the best performance is indicated in bold face,

and second best is underlined.

and AVTS on DCASE by 3%.

6. Discussion

We proposed a self-supervised method to learn visual

and audio representations by contrasting visual representa-

tions against multiple audios, and vice versa. Our method,

Audio-Visual Instance Discrimination (AVID) builds upon

recent advances in contrastive learning [80, 86] to learn

state-of-the-art representations that outperform prior work

on action recognition and sound classification. We propose

and analyze multiple variants of the AVID task to show that

optimizing for cross-modal similarity and not within-modal

similarity matters for learning from video and audio.

We also identified key limitations of the instance discrim-

ination framework and proposed CMA to use agreement in

the video and audio feature spaces to group together related

videos. CMA helps us relate multiple instances by identi-

fying more related videos. CMA also helps us reject ‘false

positives’, i.e., videos that are similar visually but differ in

the audio space. We show that using these groups of related

videos allows us to optimize for within-modal similarity,

in addition to cross-modal similarity, and improve visual

and audio representations. The generalization of CMA sug-

gests that cross-modal agreements provide non-trivial corre-

spondences between samples and are a useful way to learn

improved representations in a multi-modal setting.
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