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Abstract

Image and video descriptors are an omnipresent tool

in computer vision and its application fields like mobile

robotics. Many hand-crafted and in particular learned im-

age descriptors are numerical vectors with a potentially

(very) large number of dimensions. Practical considera-

tions like memory consumption or time for comparisons call

for the creation of compact representations. In this paper,

we use hyperdimensional computing (HDC) as an approach

to systematically combine information from a set of vec-

tors in a single vector of the same dimensionality. HDC

is a known technique to perform symbolic processing with

distributed representations in numerical vectors with thou-

sands of dimensions. We present a HDC implementation

that is suitable for processing the output of existing and fu-

ture (deep learning based) image descriptors. We discuss

how this can be used as a framework to process descriptors

together with additional knowledge by simple and fast vec-

tor operations. A concrete outcome is a novel HDC-based

approach to aggregate a set of local image descriptors to-

gether with their image positions in a single holistic de-

scriptor. The comparison to available holistic descriptors

and aggregation methods on a series of standard mobile

robotics place recognition experiments shows a 20% im-

provement in average performance and > 2× better worst-

case performance compared to runner-up.

1. Introduction

Image descriptors are very useful tools for recognition

tasks in computer vision. Many hand-crafted and in par-

ticular deep learning based descriptors are numerical vec-

tors with a potentially large number of dimensions, e.g.

NetVLAD [1] uses 4,096-D vectors (after PCA), DELF [44]

uses 1,024-D vectors (before PCA). Approaches like BoW

[56], VLAD [23], or ASMK [60] aggregate the information

from multiple vectors in a single holistic vector represen-

tation to reduce memory consumption and computational

efforts during comparison. For example, deciding whether

two images show the same place based on a set of local

landmarks from each image can then be done by a single

distance measure between the two aggregated vectors. Al-

though these techniques are able to combine large numbers

of descriptors in a compact vector, for certain tasks like

place recognition, it is beneficial to encode additional infor-

mation in the final vector representation, e.g., information

about the image locations of aggregated vectors.

The central idea of this paper is to use binding and

bundling of vectors as a flexible framework to combine im-

age descriptors and additional information. The underly-

ing technique of binding and bundling vectors is taken from

a field known as hyperdimensional computing (HDC) or

vector symbolic architectures (VSA). This is an established

class of approaches to solve symbolic computational prob-

lems using mathematical operations on large numerical vec-

tors with thousands of dimensions [25, 42]. The bundling

operator ⊕ superposes information of a variable number of

vectors in a single vector; we can think of it as some form

of averaging. The binding operator ⊗ can, for example, ex-

press role-filler or variable-value pairs as required in sym-

bolic processing. An important property is that the output

of the operations are vectors from the same vector space.

This allows to chain HDC operations and enables versatile

encoding of structured data from a set of d-dimensional vec-

tors in a single d-dimensional vector.

We will present a HDC implementation that allows the

processing of existing and future (deep learning based) im-

age descriptors in Sec. 3. This section will also describe

how HDC can be used as a framework to aggregate holistic

or local image descriptors and to combine them with addi-

tional information. A concrete outcome is a novel approach

to create a holistic image descriptor from a set of local de-

scriptors with image position information in Sec. 3.2.2. For

example, we can create a holistic descriptor from three lo-

cal descriptors L1, L2, L3 with poses P1, P2, P2 as simple

as (L1 ⊗ P1) ⊕ (L2 ⊗ P2) ⊕ (L3 ⊗ P3). The poses serve

as “roles“ that are associated with landmarks as “fillers“.

When comparing two such holistic descriptors (e.g. based
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on a single cosine similarity computation), the similarity of

the roles decides to what extend the similarities of the asso-

ciated local descriptors are incorporated in the overall simi-

larity. Prerequisites are appropriate preprocessing of the de-

scriptors as well as a suitable encoding of image positions

in the same vector space as the descriptors, both will be pre-

sented in Sec. 3.1. The experiments in Sec. 4 will evaluate

properties in a series of mobile robotics place recognition

experiments. Code and additional material are available.1

2. Related Work

2.1. Descriptors for place recognition

Visual place recognition [35] is a basic problem in mo-

bile robotics, e.g., for loop closure detection in SLAM or

candidate selection for visual localization [51]. In con-

trast to 6-DoF pose estimation that often uses local features

(e.g. keypoints [34, 11, 44, 12]), place recognition typically

builds upon holistic image descriptors that compute a sin-

gle descriptor vector for a whole image [1, 62, 57, 38, 43].

Important reasons are the memory consumption and the re-

quired time for exhaustively comparing local features.

The existing and steadily increasing (e.g., [49, 55]) vari-

ety of local feature extractors can also be the basis for holis-

tic image descriptors. Existing approaches include BoW

[56, 9], Fisher vectors [46], and VLAD [23, 2]. Aggregated

selective match kernels [60] aim at unifying aggregation-

based techniques with matching-based approaches like

Hamming Embedding [21]. VLAD in combination with

soft-assignment is fully differentiable and seamlessly in-

tegrates in deep learning approaches, e.g. NetVLAD [1].

Other deep learning variants of local feature aggregation

for image matching include sum-pooling [61], max-pooling

[20], and mean-pooling [6]. The latter also outputs global

and local descriptors.

Besides their descriptors, the location of local features

can provide important information, e.g. for geometric ver-

ification [50]. Regarding holistic descriptors, BoW can in-

tegrate spatial information via voting [54]. Pyramid match

kernels [18] can evaluate matchings at multiple resolutions.

Based on this, spatial pyramid matching [32] can approxi-

mate global geometric correspondence between sets of lo-

cal features. Multi-VLAD [2] extends this idea to VLAD,

Pyramid-Enhanced NetVLAD [65] extends it to deep learn-

ing. The typical usage of flattened AlexNet-conv3 [31] de-

scriptors (or similar) as in [57][53] is an implicit encoding

of local landmarks (one landmark per feature map vector)

together with their image location (encoded by the position

in the concatenated output vector). Although similar encod-

ings can and have been applied to other local features, a ma-

jor drawback of such fixed grid arrangements is sensitivity

to even small viewpoint changes [58, 41].

1https://www.tu-chemnitz.de/etit/proaut/hdc_desc

To reduce memory consumption and runtime for com-

parisons, descriptors are often combined with dimension-

ality reduction approaches like PCA [44] or Gaussian ran-

dom projections [57], or compression techniques like prod-

uct quantization [22]. Approximate nearest neighbor and

inverted indexes play an important role for large-scale im-

age matching [39, 33, 56].

2.2. Hyperdimensional Computing

Hyperdimensional computing (HDC) is also known as

Vector Symbolic Architectures (VSA) or computing with

large random vectors. It is an established class of ap-

proaches to solve symbolic computational problems using

mathematical operations on large numerical vectors with

thousands of dimensions [25, 47, 16, 52]. Using embed-

dings in high-dimensional vector spaces to deal with am-

biguities is well established in natural language process-

ing [5]. HDC makes use of additional operations on high-

dimensional vectors. So far, HDC has been applied in var-

ious fields including addressing catastrophic forgetting in

deep neural networks [8], medical diagnosis [64], robotics

[42], fault detection [28], analogy mapping [48], reinforce-

ment learning [27], long-short term memory [10], text clas-

sification [29], and synthesis of finite state automata [45].

They have been used in combination with deep-learned de-

scriptors before, e.g. for sequence encoding [42]. Another

related HDC work are spatial semantic pointers [30], a vari-

ant of the Semantic Pointer Architecture [13], that processes

vector encodings of symbols with positions in images using

a complex vector space and fractional binding.

3. Algorithmic Approach

We will first describe the basic elements of the proposed

HDC framework in section 3.1 followed by examples, how

these elements can be used to approach image retrieval tasks

with different types of available information in Sec. 3.2.

3.1. HDC architecture

In simple words, we use elementwise addition and el-

ementwise multiplication of 4,096 dimensional real vec-

tors of small magnitude (typical vector entries are in range

[−1, 1]) to systematically encode information. The vec-

tors are either similarity preserving encodings of system-

atic information (e.g., images or distances) or random vec-

tors for discrete symbols (e.g., a descriptor type). The way

how we process vectors is borrowed from the HDC liter-

ature. We will use the HDC terminology of binding and

bundling operators for the multiplication and addition oper-

ators. The main reason is that there are other HDC imple-

mentations available that implement binding and bundling

differently [52], and which could be used to replace our par-

ticular HDC architecture for the later presented aggregation

approaches in Sec. 3.2. In this work, we adopt the Multiply-
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Figure 1. Distributions of distances for descriptors of the same

place (true matchings) or of different places (false matchings).

Add-Permute (MAP) architecture [15, 16] and adapt the

vector space where beneficial which has some ramifications

for the operators as well.

3.1.1 Vector space and random vectors for symbols

For the vector space V we use real-valued d-dimensional

vectors with d in the order of thousands (we use d = 4, 096
in the experiments). However, based on the mechanisms

how vectors are created and processed, most vector entries

will be in the range [−1, 1]. For measuring the similarity of

vectors, we use cosine similarity (normalized dot-product).

Vectors can be created by three mechanisms: (1) Systematic

encoding of a mathematical entity, a sensor measurement,

or similar. Image encodings are topic of Sec. 3.1.4, position

encodings of Sec. 3.1.5. (2) The VSA operations binding

or bundling combine multiple vectors of space V to a new

vector from the same space (3) Random vectors are used

to encode symbolic entities, e.g. to represent elements of a

finite (enumerable) set of classes. We create random vectors

by sampling each dimension independently from the two-

elemental set {−1, 1} with equal probability for each of the

two values. The reason for this special initialization are the

properties of the binding operator.

3.1.2 Binding ⊗
Binding ⊗ : V × V → V is the first of two implemented

HDC operations. In the general context of HDC [25], this

operation is used to bind fillers to roles, e.g. to assign a

particular value to a variable. More specifically, a vector

∈ V that represents the value is bound to another vector

∈ V that represents the variable.2 The result of binding is a

new vector ∈ V with two important properties:

(1) It is not similar to the two input vectors but allows

to (approximately) recover any of the input vectors given

the output vector and the other input vector. In the gen-

eral HDC context, recovering is done by an unbinding op-

erator. For those HDC implementations where vectors are

also (approximately) self inverse, unbinding and binding

are the same operation (e.g. [24, 15]). Self-inverse means:

∀x ∈ V : x ⊗ x = 1 where 1 is the neutral element of

binding in the space V (that is ∀x ∈ V : x⊗ 1 = x).

2Vector representations for variables are also an example for the above

mentioned symbolic entities that are encoded with random vectors.

(2) Binding is similarity preserving. The dis-

tance of the output of binding a vector to two differ-

ent vectors depends on the similarity of these vectors:

∀x, a, b ∈ V : dist(x⊗ a, x⊗ b) ≈ dist(a, b)

We use elementwise multiplication for binding two vec-

tors. In a vector space V = {−1, 1}d, binding by element-

wise multiplication is exactly self-inverse (−1·−1 = 1·1 =
1) and the resulting vector has a large distance to each of

the input vectors (since the sign is switched for each −1
entry in the other vector, which is expected to happen for

about 50% of the dimensions). When using the vector space

[−1, 1]d instead of {−1, 1}d, both properties only hold ap-

proximately [52]. However, this modification is required to

implement the bundling operator.

3.1.3 Bundling ⊕
The purpose of the bundling operation ⊕ : V × V → V

is to combine (“superpose”) two input vectors such that the

output vector is similar to both inputs. In almost all HDC

implementations, the bundling operator is some kind of el-

ementwise sum or averaging of the vector elements.

We use the elementwise sum. When adding two vec-

tors z = x + y, the vector y can be seen as noise that dis-

turbs the similarity of x and z. In high-dimensional vector

spaces, random vectors are very likely almost orthogonal

(a property called quasi-orthogonality) [42]. This has two

important effects: (1) If x and y are quasi-orthogonal and

of similar magnitude, the influence of adding the noise y to

x on the direction of x is limited, in particular, y does not

point anywhere close to the opposite direction of x. This

limits the influence of y on the angular similarity between

z and x. (2) If the expected angle between random (unre-

lated) vectors is close to 90o, then any considerably smaller

angular distance indicates a relation between the compared

vectors. Thus the noise y can reduce the similarity but the

remaining similarity will remain considerably about chance

and z and x can be considered similar.

Bundling several image descriptors is the simplest way

to use HDC for feature aggregation (cf. Sec. 3.2.1). How-

ever, for more sophisticated encoding of information, we

will combine the bundling and binding operators. Accord-

ing to Kanerva [26] bundling and binding should “form an

algebraic field or approximate a field”. In particular, our

bundling and binding are associative and commutative and

binding distributes over bundling.

3.1.4 Preprocessing of image descriptors

We will use different image descriptors (e.g. NetVLAD [1]

and DELF [44]) in our experiments. Each outputs a high-

dimensional vector. We use Gaussian random projection to

control the number of dimensions and to distribute infor-

mation across dimensions. We use ℓ2 normalization to stan-
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Figure 2. Illustration of the pose encoding from Sec. 3.1.5. (left)

Layout of basis vectors B and combination of two basis vectors

Bleft and Bright to create encoding X of the horizontal image

position of the white marked location. (right) The Hamming dis-

tance of this {−1, 1}d vector to all other image location encodings

(however, in the HDC framework, angular distance will be used).

dardize the descriptor magnitudes, followed by dimension-

wise standardization to standard normal distributions.

Very much in line with our requirements, typical im-

age descriptors aim to encode multiple images of the same

scene with similar vectors and those of different scenes with

different vectors. A typical distribution for the Nordland

spring-winter dataset [58] can be seen in the left part of

Fig. 1. The middle part of this figure also illustrates the ef-

fect of dimension-wise standardization to standard normal

distributions (independently for database and query sets).

This is known to considerably improve place recognition

results (i.e. it improves the separation of the blue and the

red distributions) [53]. However, it also improves the quasi-

orthogonality property for descriptors of different places.

We include standardization for both reasons.

3.1.5 Encoding of positions

The goal is to reflect the spatial distance of different land-

marks with positions (x, y) in the image by the angular dis-

tance of the pose vector encodings ∈ V. There are several

alternatives for the creation of such encodings, this section

will propose a simple yet flexible approach.

We create vectors X and Y to encode x and y indepen-

dently and compute the final pose encoding by P = X⊗Y .

This paragraph and Fig. 2 explain the creation of X . Y is

computed accordingly. To encode x from range [1, w] for an

image of width w, we equally divide this range in nx subin-

tervals and associate each border of subintervals with one of

nx+1 random basis vectors BX ∈ {−1, 1}d (including the

beginning of the first and the end of the last subinterval).

The encoding X of x is then computed by concatenating

parts of the basis vectors BX
left and BX

right of the subinter-

val in which x is located. With Matlab-style syntax this is:

X = [BX
left(1 : α), BX

right(α+ 1 : end)] (1)

α is the splitting index based on the distances δleft, δright
from x to the two subinterval borders and the dimensional-

ity d:

α =

⌊

d · δright
δleft + δright

⌉

(2)

This approach is flexible since parameters nx and ny can

be used to weight the spatial distances in each direction as

requried. In our place recognition experiments, we will use

nx = 4 and ny = 6 which allows larger horizontal displace-

ments of landmarks than vertical displacements. An exam-

ple resulting distance map can be seen in Fig. 2. The nor-

malized dot product of this encoding approximates the rec-

tilinear distance (1-norm) of the encoded image locations.

The distortions in Fig. 2 result from interference between X

and Y encodings. It is important to note that although we

divide the image in a grid, this approach is able to evaluate

similarities across the grid borders.

3.2. HDC for feature aggregation

3.2.1 Unordered aggregation of multiple descriptors

Based on the effect of bundling on similarities explained in

Sec. 3.1.3, this operator can be used to combine the infor-

mation of multiple image descriptors in a single vector H .

This can, e.g., be used to aggregate multiple holistic image

descriptors Hi, i = 1...k (e.g., NetVLAD, AlexNet-conv3,

and DenseVLAD) for a single image. Fig. 1 shows a typi-

cal distribution of similarities when comparing different de-

scriptors. Not surprisingly, computing the distance between

a NetVLAD descriptor and an AlexNet-conv3 descriptor is

not useful since they behave to each other very much like

random vectors. However, as described in Sec. 3.1.3, this

allows to safely bundle these different descriptors in a sin-

gle vector (after the preprocessing from Sec. 3.1.4):

H =

k
⊕

i=1

Hi =

k
∑

i=1

Hi (3)

Basically, this is similar to simple averaging of descrip-

tors. However, due to the quasi-orthogonality of different

descriptor classes, evaluating the angular distance of such

bundled vectors of two images by normalized dot product

will approximate the average distance of the bundled de-

scriptor classes if they were evaluated individually.

We want to emphasize that we do not claim a perfor-

mance benefit of this approach compared to, e.g., concate-

nating dimensionality-reduced input descriptors (the exper-

iments will show roughly equal performance). It is rather

intended to illustrate the type of computation in the pro-

posed HDC framework and its flexibility. For example, if

we want to be able to (approximately) recover each input

descriptor Hi from the resulting combined descriptor, we

can bind each input descriptor (before bundling) to a fixed

random vector Ti that represents the descriptor type: H ′ =
⊕k

i=1
Ti ⊗Hi. A particular descriptor of type Ti can then

be approximately recovered by unbinding: Hi = Ti ⊗H ′.
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3.2.2 Systematic encoding of local feature descriptors

and positions

This section describes an approach to compute a holistic

descriptor L ∈ R
d that encodes a variably sized set of lo-

cal descriptors Li ∈ R
d together with their poses (xi, yi),

i = 1...k. L and Li are from the same vector space (i.e.

they have the same number of dimensions) and the angu-

lar distance of two holistic vectors LA and LB of images

A and B will approximate the distance from an exhaustive

pairwise comparison of the local features and their poses.

To generate a holistic descriptor L, all local feature de-

scriptors are first preprocessed according to Sec. 3.1.4. The

standardization is done using all descriptors from the cur-

rent image. Each pose (xi, yi) is encoded in a vector

Pi ∈ {−1, 1}d as described in Sec. 3.1.5. The holistic de-

scriptor of local features with poses is then computed by:

L =

k
⊕

i=1

Li ⊗ Pi (4)

To use this for image matching applications like place

recognition, we compute a holistic descriptor for each im-

age from all local features. The number and spatial arrange-

ment of local features can vary between images. Holistic

descriptors are then compared by normalized dot product.

The result is an approximation of the exhaustive pair-

wise comparison of all feature pairs using their descriptor

and spatial distances. We want to give an intuition to this

approximation using the example of comparing an image

A with descriptor LA =
⊕kA

i=1
LA
i ⊗ PA

i and an image B

with descriptor LB =
⊕kB

i=1
LB
i ⊗ PB

i . From an HDC per-

spective, comparing LA and LB multiplies out and creates

individual comparisons of the form LA
i ⊗PA

i vs. LB
j ⊗PB

j

and the overall similarity is the accumulated similarity of

all such comparisons. We can assume that each pose vec-

tor is quasi-orthogonal to each descriptor vector. Based

on this and the two properties of binding from Sec. 3.1.2,

the two vectors in each term can only be similar if the de-

scriptors are similar (LA
i ≈ LB

j ) and the poses are simi-

lar (PA
i ≈ PB

j ). The normalized dot product of the holis-

tic descriptors from Eq. 4 is only an approximation of the

exhaustive comparison since, in reality, multiplying-out is

prevented by the required normalization of the vectors. The

later experiments in Fig. 5 will show the effect on local fea-

ture similarity. For more information, please refer to the

HDC literature, e.g. [25, 42, 14, 52].

3.2.3 Extensions and framework character

The concept of bundling and binding to aggregate informa-

tion can be easily extended to other information than po-

sition of local features. For example, we can integrate in-

formation about local feature scale or orientation by bind-

ing to appropriate encodings (e.g., similarly created as X in

eq. 1). This also applies to sequences of images. Exploiting

the similarity of temporally neighbored images can signif-

icantly improve place recognition performance in robotics

[38, 19, 43]. SeqSLAM [38] is a simple yet powerful ap-

proach that accumulates similarities of short sequences of

image comparisons. This requires the computation of all

similarities individually. An appropriate bundling of image

descriptors (each bound to its position within the sequence)

can achieve very similar results with a single vector com-

parison [42, 52]. We want to emphasize that our choices of

V, bundling, and binding are only one possible HDC imple-

mentation, there are several others available [52] that can

potentially also be used in the presented approaches.

4. Experimental Results

4.1. Experimental setup

We will evaluate the HDC approach on standard place

recognition datasets from mobile robotics. We use 23 se-

quence comparisons from six datasets with different char-

acteristics regarding environment, appearance changes, sin-

gle or multiple visits of places, possible stops, or viewpoint

changes: Nordland1k [58], StLucia (Various Times of the

Day) [17], CMU Visual Localization [3], GardensPoint-

Walking3, OxfordRobotCar [37], and SFUMountain [4].

For OxfordRobotCar, we sampled sequences at 1Hz with

the recently published accurate ground truth data [36]. For

Nordland1k, we sampled 1k images of unique places from

each season (without tunnels).

We decided to use DELF [44] for local features since

it provides good results using standard exhaustive pairwise

comparison (see Table 1, in our (not shown) experiments it

performed better than, e.g., [12] and [59]). Moreover, with

DELG [6], there is already a deep-learned holistic descrip-

tor available for comparison that builds upon DELF.

We compare against the following descriptors.

NetVLAD NV [1]: We use the authors’ VGG-16 ver-

sion4 with whitening trained on the Pitts30k dataset

(4,096-D). AlexNet AN [31]: We use the full 65k-D conv3

output of Matlabs ImageNet model. DenseVLAD DV [62]:

We use the authors’ version5 with 128-D RootSIFT de-

scriptors and 128 words trained on 24/7 Tokyo dataset, as

well as PCA projection to 4,096-D. HybridNet HN [7]: We

use the authors’ version6 (43k-D descriptors). DELG [6]:

We use the implementation from TensorFlow models with

ResNet101 trained on a subset of the Google Landmarks

Dataset v2 (GLDv2-clean) which was amongst best in [6].

Besides these holistic descriptors from the literature, we

use two ways to exhaustively compute image similarities

from local features: DELF [44]: We use the implemen-

3goo.gl/tqmWyq
4github.com/Relja/netvlad
5www.ok.ctrl.titech.ac.jp/˜torii/project/247/
6github.com/scutzetao/DLfeature_PlaceRecog_icra2017
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tation from TensorFlow Hub7. For each image we extract

the 200 1024-D descriptors with highest score at scale 1.

The descriptors are standardized per image [53]. Following

[59] image similarity s is computed from mutual matchings

M for exhaustive pairwise comparison of nDB , nQ features

with uniform position weighting pij = 1:

s =
1√

nDB · nQ

∑

i,j∈M

pij ·
LDB
i · LQ

j

||LDB
i || · ||LQ

j ||
(5)

DELF-pos: Same as before but we incorporate spatial dis-

tance of local features with weighting pij as follows

pij = min(max(0, 1− |xi − xj |
w/nx

),max(0, 1− |yi − yj |
h/ny

))

(6)

w, h are image dimensions, ny, nx are the same as for HDC.

Further, we compare against four existing methods that

create a holistic descriptor from local features. We com-

bine all with DELF: DELF-V is DELF with VLAD [23]:

We use the same 200 1024-D DELF descriptors as before

in a VLAD representation trained from all datasets that are

solely used as database as well as additional night and win-

ter images from Oxford and Örebro Seasons [63]. We use

VLFeat8 for kmeans and VLAD implementations, vocabu-

lary size 64, VLAD with hard assignment, ℓ2-normalized

components, as well as ℓ2-normalization of the 64 · 1024 =
65536-D descriptors. DELF-V-PCA: Same as above but

with PCA projection to 4096-D, PCA is trained on the

vocabulary training data. DELF-MV: Following [2], we

compute a MultiVLAD representation by concatenating 14

VLAD-PCA descriptors over different regions of the im-

ages as described in [2]. DELF-Grid: Computes a regu-

lar grid of 102 DELF descriptors at scale 1. The descrip-

tors are dimensionality reduced with PCA to 40-D (pro-

vided by DELF implementation) and concatenated to get

a 102 · 40 = 4080-D holistic descriptor.

For evaluation, we compute similarity matrices from all

pairs of database and query images and compare them to

ground-truth knowledge about place matchings using a se-

ries of thresholds [40]. We mean-center all holistic descrip-

tors with the database mean. We report average precision

(AP) computed as area under the resulting precision-recall

curve, as well as achieved recall using the best k-matchings.

4.2. Evaluation of unordered aggregation of
multiple holistic descriptors

For a first impression of the potential of the simple HDC

operators, the boxplots in Fig. 3 show a considerable im-

provement in median average precision as well as outlier

7tfhub.dev/google/delf/1
8http://www.vlfeat.org/
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siderably improve the performance. However, this is also possible

by concatenating descriptors.
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Figure 4. Achieved recall using the best k matchings. Averaged

over all datasets from Table 1. DELF and DELF-Pos are exhaus-

tive local comparisons, all others are fast holistic descriptor.

statistics, when combining multiple different holistic de-

scriptors as described in Sec. 3.2.1. Before bundling, all

descriptors are projected to 4,096-D using Gaussian random

projection. The boxplots include all datasets from Table 1

(details not shown). However, very similar results can be

achieved by concatenating the descriptors (right part).

4.3. Evaluation of systematic aggregation of local
descriptors and positions

We implement the HDC approach to local feature ag-

gregation from Sec. 3.2 using the same 200 highest-scored

DELF descriptors as for the compared methods. We refer to

our approach as HDC-DELF. We use 4, 096 dimensional

vectors and set spatial weighting parameters nx = 4 and

ny = 6 to allow more horizontal than vertical viewpoint de-

viation (in accordance with the mobile robot place recogni-

tion task). These parameters will be evaluated in Sec. 4.3.3.

4.3.1 Place recognition performance

Table 1 shows the average precision for each of the com-

pared methods on each dataset. The proposed HDC-DELF

approach is the best holistic descriptor for 11 of 23 compar-

isons and provides the best average case (+20% to runner-

up) and worst case performance (two times of runner-up)

(this excludes DELF and DELF-Pos which are exhaus-

tive local comparisons and much more time consuming, cf.
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Table 1. Average precision of the proposed HDC-DELF and other methods at standard place recognition datasets from mobile robotics.

The best result of all holistic descriptors per dataset is highlighted, DELF and DELF-Pos are exhaustive local comparisons.
Dataset DB Query NV AN DV HN DELG DELF-V DELF-V-PCA DELF-MV DELF-Grid HDC-DELF DELF DELF-Pos

[1] [31] [62] [7] [6] [44]+[23] [44]+[23] [44]+[2] [44]+grid (ours) (exhaustive) (exhaustive)

GardensPointWalking day right day left 0.99 0.46 0.98 0.56 0.95 0.93 0.95 0.94 0.56 0.82 0.94 0.95

GardensPointWalking day right night right 0.59 0.62 0.52 0.62 0.44 0.41 0.41 0.62 0.70 0.79 0.52 0.80

GardensPointWalking day left night right 0.48 0.12 0.22 0.22 0.32 0.24 0.26 0.38 0.23 0.47 0.29 0.73

OxfordRobotCar 2014-12-09-13-21-02 2015-05-19-14-06-38 0.89 0.77 0.85 0.62 0.70 0.75 0.76 0.87 0.87 0.91 0.94 0.97

OxfordRobotCar 2014-12-09-13-21-02 2015-08-28-09-50-22 0.66 0.41 0.62 0.33 0.23 0.33 0.33 0.36 0.56 0.71 0.37 0.60

OxfordRobotCar 2014-12-09-13-21-02 2014-11-25-09-18-32 0.91 0.67 0.90 0.69 0.68 0.77 0.78 0.81 0.88 0.82 0.79 0.88

OxfordRobotCar 2014-12-09-13-21-02 2014-12-16-18-44-24 0.11 0.27 0.11 0.40 0.12 0.05 0.06 0.09 0.66 0.80 0.17 0.64

OxfordRobotCar 2015-05-19-14-06-38 2015-02-03-08-45-10 0.93 0.84 0.33 0.72 0.72 0.44 0.38 0.71 0.66 0.78 0.81 0.92

OxfordRobotCar 2015-08-28-09-50-22 2014-11-25-09-18-32 0.59 0.34 0.46 0.35 0.38 0.43 0.38 0.52 0.57 0.71 0.53 0.72

SFUMountain dry dusk 0.48 0.54 0.79 0.62 0.34 0.30 0.29 0.45 0.76 0.81 0.74 0.81

SFUMountain dry jan 0.22 0.40 0.63 0.51 0.10 0.11 0.10 0.24 0.64 0.57 0.61 0.82

SFUMountain dry wet 0.40 0.42 0.75 0.57 0.25 0.22 0.21 0.29 0.66 0.75 0.71 0.82

CMU 20110421 20100901 0.71 0.52 0.69 0.60 0.80 0.56 0.61 0.69 0.59 0.75 0.80 0.82

CMU 20110421 20100915 0.77 0.65 0.76 0.70 0.78 0.59 0.62 0.73 0.70 0.73 0.75 0.77

CMU 20110421 20101221 0.54 0.36 0.49 0.47 0.59 0.54 0.57 0.55 0.49 0.64 0.62 0.67

CMU 20110421 20110202 0.62 0.39 0.49 0.46 0.64 0.42 0.44 0.51 0.45 0.72 0.72 0.82

Nordland1000 spring winter 0.02 0.25 0.06 0.77 0.07 0.03 0.03 0.05 0.08 0.77 0.54 0.86

Nordland1000 spring summer 0.20 0.66 0.43 0.80 0.45 0.29 0.27 0.28 0.67 0.74 0.45 0.71

Nordland1000 summer winter 0.05 0.57 0.05 0.70 0.16 0.06 0.05 0.04 0.21 0.45 0.17 0.44

Nordland1000 summer fall 0.53 0.92 0.82 0.94 0.79 0.54 0.49 0.51 0.87 0.90 0.83 0.91

StLucia 100909 0845 180809 1545 0.08 0.46 0.28 0.49 0.15 0.10 0.10 0.25 0.43 0.46 0.29 0.45

StLucia 100909 1000 190809 1410 0.19 0.57 0.46 0.61 0.22 0.37 0.39 0.61 0.55 0.64 0.48 0.64

StLucia 100909 1210 210809 1210 0.61 0.66 0.84 0.66 0.63 0.76 0.77 0.81 0.62 0.70 0.65 0.68

worst case 0.02 0.12 0.05 0.22 0.07 0.03 0.03 0.04 0.08 0.45 0.17 0.44

best case 0.99 0.92 0.98 0.94 0.95 0.93 0.95 0.94 0.88 0.91 0.94 0.97

average case (mAP) 0.50 0.52 0.55 0.58 0.46 0.40 0.40 0.49 0.58 0.71 0.60 0.76

Sec. 4.4). Fig. 4 evaluates the application for candidate se-

lection for visual pose estimation [51]. Again, HDC-DELF

is only outperformed by the (computationally expensive)

exhaustive pairwise comparison of DELF-Pos features.

4.3.2 The importance of binding

Why does this simple HDC approach work? To provide

some intuition, Fig. 5 shows the outcome of a simplified

image matching experiment: We take the encoding of a sin-

gle local feature fDB in a database image and find the most

similar feature f ′

Q in a truly matching query image. The

similarity of their HDC encodings is shown at x-axis=1,

for all other points on the curve, we bundle f ′

Q with an in-

creasing number of other feature encodings from the query

image, that act as noise on the similarity of the only true

matching fDB and f ′

Q. Fig. 5 shows average results on

Nordland spring-summer for this experiment. As illustrated

by the yellow line, after preprocessing of descriptors, the

expected or average similarity (normalized dot-product) of

random pairs of descriptors from an image pair is close to

0, they are quasi-orthogonal. A simple bundling of prepro-

cessed descriptors (similar to the experiments in Sec. 4.2)

is able to maintain a similarity considerably above chance

for a few vectors (red). When we additionally use bind-

ing to control similarities (according to the properties from

Sec. 3.1.3) by incorporating additional position informa-

tion, we can bundle significantly more “noise” vectors and

still maintain a considerable similarity (compared to ran-

dom pairs) of fDB and f ′

Q (blue). Similar effects can be ex-

pected when binding with scale or sequential information.

4.3.3 Properties and parameter evaluation

A basic assumption in HDC is a high-dimensional vector

space. The left part of Fig. 6 evaluates the performance for

0 50 100 150 200

number of bundled descriptors for query

0

0.2

0.4

0.6

0.8

a
n

g
u

la
r 

s
im

ila
ri
ty

Bundling DELF descriptors

Bundling DELF descriptors bound to positions

Average similarity of random preprocessed descriptors

Figure 5. The similarity to an included single true matching in a

bundle with an increasing number of distracting descriptors stays

considerably above the average similarity of descriptors.

a varying number of used dimensions. With ≥512 dimen-

sions, the mean performance is equal or above the compared

holistic algorithms. However, the lower the number of di-

mensions, the larger the variation on the individual datasets.

The right part of Fig. 6 evaluates the dependency on the

number of features on the GardensPointWalking dataset. As

expected, the performance of HDC-DELF increases with

increasing number of features. The fact that the distance

to the exhaustive comparison (DELF-Pos) is not increasing

indicates that the capacity of the HDC representation is not

exceeded.

In the presented HDC-DELF approach, parameters nx

and ny can be used to control the sensitivity to viewpoint

changes. Fig. 7 shows the results for all combinations of

values from range {1, 2, ...9} for the three sequence com-

parisons of the GardensPointWalking dataset. This dataset

is particularly interesting for this evaluation since it pro-

vides several sequences from day and night of a hand-held

camera on the same pathway, but either on the left side or

the right side of the pathway which results in a consider-

able horizontal viewpoint change. For place recognition

where only small viewpoint changes are expected, higher

values (e.g. 7) of these parameters are preferable since they
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Figure 6. (left) Average precision statistics over a varying number

of dimensions in the HDC representations. Blue is the mean of all

individual (gray) dataset evaluations (all datasets). (right) Influ-

ence of a varying number of used features for the exhaustive and

the HDC approach on GardensPointWalking, thin curves are indi-

vidual comparisons (marked by line style), thick curves are means.

assign more different encodings to features at large spatial

distance (cf. Fig. 2). To account for larger horizontal view-

point changes, smaller values for nx can be use. We use

the same parameters {ny = 6, nx = 4} for all datasets

in Table 1. However, tuning these parameters to a particu-

lar dataset is intuitive and can considerably improve results,

e.g. with nx = 2 we can achieve AP=0.60 (+0.13) on the

GardensPointWalking Day Left - Nigh Right comparison.

Nevertheless, the proposed HDC-DELF approach is de-

signed for image retrieval tasks with a potentially consider-

able but limited amount of viewpoint change (e.g. a middle

ground between VLAD and flattened feature maps in a fixed

grid layout). We see the HDC approach as a framework to

integrate additional information or model knowledge and,

as often, this increases the bias in the system. We use HDC-

DELF as a showcase to demonstrate that if we assume spa-

tial proximity of corresponding features, then we can use

HDC to exploit this constraint very time-efficient without

the need for exhaustive feature comparison.

4.4. Computational effort

Using holistic descriptors allows to compare two images

by a single vector comparison with normalized dot-product.

This is significantly more efficient than exhaustive pairwise

comparison of local features, e.g. in our setup with 200 lo-

cal features, we would have to compute 200 ·200 = 40, 000
vector distances per image comparison. Even if the local

vectors are smaller and we can use approximate nearest

neighbor [33] techniques, there remains a discrepancy.

With the presented HDC approach, computing a holis-

tic HDC descriptor from n landmarks requires n − 1 vec-

tor sums and 2n elementwise multiplications, one within

the pose encoding and one for binding to the pose. The

pose encoding also requires two times a concatenation of

vectors. Additionally, the descriptor preprocessing requires

ℓ2 normalization and standardization as well as potentially

a projection to the used vector space. The latter might be

the most time-consuming step in the overall computation.
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Figure 7. The heatmaps show average precision for different com-

binations of parameters nx and ny on GardensPointWalking. The

graphs below show the mean column (for nx) and row (for ny)

values of the heatmaps. To address viewpoint changes in the left-

right combinations, a lower nx should be used.

In the HDC approach, binding and bundling operations can

be computed by a single run over the vector. They oper-

ate locally on the vectors, i.e. only corresponding vector

dimensions influence each other. This allows for massive

parallelization. Since we work with distributed representa-

tions, an approximate similarity of holistic vectors can be

easily computed by evaluating only a reduced number of

dimensions (cf. Fig. 6). We did not yet evaluate the com-

bination with techniques like product quantization [22] for

very large scale image retrieval (the largest used sequences

have a few thousand images).

5. Conclusions

We presented HDC as a simple to implement and flexi-

ble approach to combine descriptors and other information.

The presented HDC architecture was used to implement the

HDC-DELF approach that combines local descriptors with

their poses in a single holistic descriptor. It benefits from the

advantages of local features like viewpoint and occlusion

robustness, as well as feature selection (attention), without

the drawbacks of exhaustive pairwise comparisons or fixed

grid layouts. Parameters nx, ny can be used to adjust the

weighting of the pose similarity computation (which works

across grid borders). The HDC-DELF approach shows im-

proved performance on a series of standard place recogni-

tion datasets from mobile robotics on average and in worst

case.

We consider HDC as a flexible framework since it allows

to integrate further information like scale, orientation or se-

mantics of local features, or to aggregate information across

multiple images. It can be combined with different existing

and future image descriptors. Further, the notation in HDC

operations like bundling and binding allows to potentially

improve our simple implementation using other HDC ar-

chitectures (e.g., from [52]).
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