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Figure 1: From an incomplete point cloud (N×3) of a 3D scene (left), our method learns to jointly understand the 3D objects

with semantic labels, poses (middle) and complete object meshes (right).

Abstract

Semantic scene understanding from point clouds is par-

ticularly challenging as the points reflect only a sparse set

of the underlying 3D geometry. Previous works often con-

vert point cloud into regular grids (e.g. voxels or bird-

eye view images), and resort to grid-based convolutions for

scene understanding. In this work, we introduce RfD-Net

that jointly detects and reconstructs dense object surfaces

directly from raw point clouds. Instead of representing

scenes with regular grids, our method leverages the spar-

sity of point cloud data and focuses on predicting shapes

that are recognized with high objectness. With this de-

sign, we decouple the instance reconstruction into global

object localization and local shape prediction. It not only

eases the difficulty of learning 2-D manifold surfaces from

sparse 3D space, the point clouds in each object proposal

convey shape details that support implicit function learn-

ing to reconstruct any high-resolution surfaces. Our exper-

iments indicate that instance detection and reconstruction

present complementary effects, where the shape prediction

head shows consistent effects on improving object detection

with modern 3D proposal network backbones. The quali-

tative and quantitative evaluations further demonstrate that

our approach consistently outperforms the state-of-the-arts

and improves over 11 of mesh IoU in object reconstruction.

1. Introduction

Semantic scene reconstruction has received increasing

attention in applications such as robot navigation and inte-
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rior design. It focuses on recovering the object labels, poses

and geometries of objects in a 3D scene from partial ob-

servations (e.g. images or 3D scans). With the advance

of 2D CNNs, instance reconstruction from images achieves

appealing results [20, 45, 36, 59, 33] but still bottlenecked

by the depth ambiguity thus resulting in defective object lo-

cations. Compared to images, point clouds provide surface

geometry that largely alleviates the object locating issues

[49, 2, 65, 7, 31]. However, its inherent sparseness and ir-

regularity challenge the direct usage of grid-based CNNs on

point clouds for semantic instance reconstruction.

Scanning 3D scenes usually results in missing geome-

tries due to occlusions, view constraints and weak illumina-

tion where individual objects cannot be covered in all views.

Prior works have explored various strategies to recover the

missing shapes, e.g. depth inpainting, voxel/TSDF predic-

tion, and shape retrieval. Depth inpainting [23, 47, 28, 55]

aims to complete the depth maps in single views. With 2D

CNNs, these methods achieve pleasing results in surface

points recovery. To complete a scene with occluded con-

tents, many methods extend the 2D CNNs to 3D and nat-

urally represent 3D scenes with voxel/TSDF grids [57, 63,

37, 16, 13, 26, 43, 14]. This strategy also enables decoding

voxel labels to complete scenes at the semantic or instance

level. However, the expensive 3D convolutions in the scene

level make them suffer from the resolution problem. Shape

retrieval [3, 4, 5, 30] provides an alternative method to pre-

dict shapes by searching for a CAD model as similar to the

incomplete object as possible. However, the accuracy and

the computation efficiency depends on the model dataset

scale. Compared to voxels/TSDFs, point clouds present

sparsity and are more scalable for efficient learning. To
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our knowledge, few works have attempted to learn object

meshes at the semantic-instance level directly from points.

In this work, we provide a reconstruction-from-detection

framework, RfD-Net, for end-to-end semantic instance re-

construction directly from raw point clouds (see Figure 1).

Our design is based on the insight that object detections pro-

vide spatial alignment that enables better local shape recon-

struction. On the other hand, object shapes in sparse point

clouds indicate local geometry that should back improve 3D

detection. It decouples the problem of scene reconstruc-

tion into global localization and local shape prediction. Our

method embeds the shape reconstruction head with a 3D

detector backbone. It leverages the sparsity of point clouds

and focuses on predicting shapes that are detected with high

objectness and ignores the free scene space. With this de-

sign, our method allows implicit function learning to recon-

struct surfaces with much higher resolution. In our exper-

iments, we observe that joint shape reconstruction and 3D

detection presents complementary effects. Deploying the

shape prediction head is shown consistently effective on im-

proving the modern point-based detectors, and vice versa,

which makes our method consistently outperforms the prior

arts in 3D detection and instance reconstruction. In sum-

mary, we list our contributions as follows:

• We provide a novel learning modality for semantic in-

stance reconstruction. To our knowledge, it is the first

learning method to predict instance semantics with ge-

ometry directly from point clouds. While prior methods

heavily rely on 3D CNNs to learn from voxelized scenes.

• We propose a new end-to-end architecture, namely RfD-

Net, to learn object semantics and shapes from sparse

point clouds. It disentangles semantic instance recon-

struction into global object localization and local shape

prediction, which are bridged with a skip propagation

module to facilitate joint learning. With this manner, our

shape generator supports implicit learning, which directly

overcomes the resolution bottleneck in the prior art [26].

• Joint learning object poses and shapes presents comple-

mentary benefits. It also shows consistent effects on mod-

ern detection backbones, and makes our method achieve

the state-of-the-art in instance detection&completion and

improve over 11 of mesh IoU in object reconstruction.

2. Related Work

In this section, we mainly summarize the recent works

of 3D deep learning in shape completion, scene completion

and instance-level scene reconstruction from point clouds.

Shape Completion. Shape completion aims to recover the

missing geometries of an object from a partial scan. From

point cloud inputs, many methods complete shapes repre-

sented by points [66, 58, 39, 46, 29, 61], voxels [15, 22],

SDFs, [38, 48, 10, 42, 11] and meshes [21, 24]. Most of

them share the similar modality, i.e., to encode the incom-

plete scan with point-wise convolutions (e.g., PointNet or

PointNet++ [51, 52]) and predict the invisible parts, holes

or defective surfaces, while preserving the shape topology.

They more focus on the completeness of single targets. In

this work, we take advantage of the recent advance in shape

completion for scene reconstruction. It supports our method

to reconstruct high-resolution objects in a 3D scene.

Scene Completion. Scene completion focuses on predict-

ing all objects including visible and invisible geometries

from an incomplete scan. Different from shape completion,

occlusions between objects manifest the major challenge.

To this end, some works attempt to inpaint depth frames in

scanning to recover object surfaces [23, 47, 28, 55]. Ben-

efited from 2D CNNs, these methods achieve impressive

results in surface points recovery. Similarly, more works

extend the advantage of CNNs to 3D [19, 16, 13]. They

discretize incomplete scans into voxel or TSDF grids and

predict per-voxel occupancy with 3D CNNs for scene com-

pletion. With the fully convolution design, it also supports

scene understanding tasks joint with completion, such as

semantic completion or segmentation [57, 67, 35, 40, 63,

60, 34, 37, 9, 26, 14]. However, the expensive 3D CNNs

consume much computation that hinders them with limited

resolution, which appears more obvious on instance objects.

In our work, we directly learn from point clouds. Objects

detected with high objectness are only considered, which

enables us to predict meshes with much higher resolution.

Instance Reconstruction. Beyond recovering scene ge-

ometries. Instance reconstruction refers to both object lo-

calization and reconstruction. With the advent of 3D scan-

ners, early works [44, 56, 32, 8] focus on an approximate

solution, i.e. semantic modeling. Object shapes are re-

trieved with CAD models or primitives with non-linear opti-

mization. After that, 3D deep learning reforms this process

into a learnable manner that model retrieval can be replaced

with deep feature matching [3, 4, 5, 30]. Semantic mod-

eling presents delicate shape models though, the matching

similarity and inference efficiency directly rely on the CAD

dataset scale. The closest topic to us is semantic instance

reconstruction (or completion). [43] explores the possibil-

ity of predicting shapes along with object detection from

voxelized point clouds. The previous state-of-the-art [26]

discretizes the 3D scan into TSDF grids and predicts the oc-

cupancy of semantic instances with 3D CNNs. As we men-

tioned, their scene resolution (≈96×48×96) is limited by

the heavy 3D CNN computation. Differently, we leverage

the sparsity of point clouds where objects detected with high

objectness will be reconstructed. It supports single object

reconstruction to recover high-resolution shapes and jointly

improves 3D object detection performance.
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Figure 2: Overview of the network architecture. From an input point cloud with N points, a 3D proposal network backbone

proposes Np object proposals (Dp-dim features) that are decoded into Db-dim box parameters. With a Top-N rank dropout

layer, we reserve Nd proposals with higher objectness in the sparse point cloud. This subset of proposals are considered

to independently group & align the neighboring Mp point cloud into clusters. Each point cluster is encoded into a Ds-dim

vector through our point encoder to regress the binary occupancies of spatial query points (x-y-z) for mesh generation.

3. Method

We illustrate the architecture of RfD-Net in Figure 2.

Our method follows the basic principle of understanding 3D

scenes with ‘reconstruction from detection’. On this top,

we devise the network consisting of a 3D detector, a spatial

transformer and a shape generator. We build this architec-

ture as generic as possible for learning instance shapes from

point clouds, which should be flexibly compatible to mod-

ern point-based 3D proposal network backbones [49, 65].

Specifically, from an input point cloud, the 3D detector gen-

erates box proposals to locate object candidates from the

sparse 3D scene. Then, we design a spatial transformer

to select positive box proposals and group & align the lo-

cal point cloud within for the next object shape generation.

Shape generator independently learns an occupancy func-

tion in a canonical system to represent the shape of propos-

als. We elaborate on the details of each module as follows.

3.1. Learning Object Proposals in Point Clouds

From the input point cloud P ∈ R
N×3, we adopt the

VoteNet [49] as the backbone to propose Np box proposals

with Dp-dim features Fp ∈ R
Np×Dp . We use Fp to predict

Db-dim box parameters, including center c ∈ R
3, scale s ∈

R
3, heading angle θ ∈ R, semantic label l and objectness

score sobj (as parameterized in [49]). The objectness score

is to classify if a proposal is close to (<0.3 m, positive) or

far from (>0.6 m, negative) any ground-truth object center.

We regress the box parameters with a 2-layer MLP.

In this part, each proposal feature fp in Fp summarizes

the semantics and box geometry information of a local re-

gion, which is of higher-level compared to the raw input

points. In our method, Fp are also used to extend the lo-

cal points for shape generation with our skip propagation

module (see Section 3.3). It enhances the gradient back-

propagation from shape generation to object detection, and

is shown consistently effective on improving the object de-

tection performance with different 3D detection backbones

(see analysis experiments in section 5.3).

3.2. Transforming Points to Local

Objectness Dropout. To obtain the object points for shape

generation, we develop a spatial transformer to group the

input point cloud in box proposals, where object points

in each proposal are transformed and aligned into a local

canonical system (see Figure 2). Before the group & align

process, we only reserve Nd positive boxes out of all the

proposals during training. We adopt Top-N rank dropout

to reserve Nd proposals with higher objectness (Nd = 10).

Different from images, 3D point cloud presents severe spar-

sity that free space occupies the major area. Too many nega-

tive samples (e.g., boxes with no/few points or far from any

object) will be involved if considering all box proposals,

which prevents the shape generator from learning correct

shapes. Besides, the large computation also undermines the

method efficiency. The effects with different numbers of

positive proposals are discussed in our experiments. Dur-

ing inference, we replace the objectness dropout layer with

a 3D NMS module [49] to produce the output boxes.

Group & Align. Within the Nd positive box proposals, we

sample points from the input point cloud. We group points

that are located within a radius r to these box centers {ci}
using a group layer [52]. It produces Nd clusters and Mp

in-cluster points for each, where we denote the point clus-

ters by {Pc
i} (i = 1, 2, ..., Nd,P

c
i ∈ R

Mp×3). Afterwards,

we align the points in different clusters into a canonical co-

ordinate system. It is to normalize the input points, which

4610



Figure 3: Shape generation from object proposals. From the 3D points in the positive Nd object proposals, our method first

learns a denoiser (with PointNet [51] layers) to remove the background points. These cleaned points are afterwards extended

by the former proposal box features with a skip connection, before being encoded into new proposal features to decode spatial

occupancy values. The object meshes are obtained by Marching Cubes [41] on the predicted occupancy grids.

removes the variance in spatial translation and rotation for

shape prediction. We formulate this process by:

P̃
c
i =

[

R−1 (θi) + ∆R
]

· [Pc
i − (ci +∆c)] , (1)

where P̃c
i denotes the aligned point cluster. ci and θi repre-

sents the corresponding box center and heading angle pre-

dicted from the 3D detector. R (·) ∈ R
3×3 is the rota-

tion matrix. Since there would be deviations between the

predicted centers & heading angles and the corresponding

ground-truths, we learn an adjustment (∆R,∆c) from the

input point cluster Pc
i by:

[∆R,∆c] = MLP2

{

max
p∈P

c
i

{MLP1 (p)}

}

. (2)

In Equation 2, 3D points in each cluster P
c
i are indepen-

dently processed with MLP1, and max-pooled point-wisely

into a global feature vector before being regressed into

(∆R,∆c) by MLP2. So far, we have obtained the aligned

3D points {P̃c
i} with the corresponding proposal features

{fp} ⊂ Fp of the positive box proposals.

3.3. Shape Generation from Proposals

We illustrate the shape generation module in Figure 3.

Our shape generator consists of two parts: a skip propaga-

tion encoder to extend proposal features {fp} with cluster

points {P̃c
i}; a shape decoder to learn the occupancy of spa-

tial points conditioned on the extended proposal features.

Skip Propagation. From the 3D points in proposals {P̃c
i},

we first deploy a denoiser to reserve the foreground points

for shape generation. It is implemented with PointNet [51]

layers to classify if a point belongs to the foreground. We

remove these background points with a point-wise ReLU

layer. Foreground points in each proposal are afterward

concatenated with the corresponding proposal feature fp

from the 3D detector by a skip connection. We propagate

the upstream proposal feature to each 3D point, since it has

summarized the information of object category and 3D size.

We use it as shape priors to inform the decoder for efficient

shape approximation. The skip propagation module bridges

Figure 4: Probabilistic shape generation in training.

the gradient back-propagation from the shape generator to

3D detector and jointly improves shape prediction with ob-

ject detection (see ablations in section 5.2). From the ex-

tended point clusters, we further deploy a PointNet [51] de-

signed with residual connections to encode them into a set

of new proposal features
{

f∗

p ∈ R
Ds

}

.

Shape Decoder. We implicitly represent a 3D shape as

an occupancy function [42, 11, 54]. That is, from spatial

points
{

p ∈ R
3
}

sampled in the shape bounding cube, we

learn to predict their binary occupancy value o ∈ {0, 1}
(inside/ouside the shape) conditioned on the input observa-

tion (f∗

p ). As in [42], we adopt the Conditional Batch Nor-

malization [17, 18] layers to make the decoder conditioned

on the proposal features to regress occupancy values. Fur-

thermore, since the object point clouds are usually partially

scanned, they could have multiple shape explanations. To

this end, we build this decoder as a probabilistic generative

model [64, 1] (see Figure 4). Specifically, from the input

points {p}, occupancies {o} and the proposal feature f∗

p ,

we adopt the latent encoder in [42] and predict the mean and

standard deviation (µ,σ) to approximate the standard nor-

mal distribution. We sample on our distribution to produce

a latent code z ∈ R
L. {p} and z are then processed into

equal dimension with a single layer of MLP before summed

point-wisely, and fed to five conditional blocks to regress

the occupancies {o}. During inference, the latent code z is

set to zeros, and we use the Marching Cubes algorithm [41]

to extract the mesh surface from spatial occupancy grids.

4. End-to-end Learning

In this section, we summarize the learning targets with

corresponding losses for end-to-end training.
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Box Loss. The 3D detector predicts the proposal objectness

score sobj , box center c, scale s, heading angle θ with the

semantic label l. As in [49], we supervise the objectness

loss (Lobj) of box proposals with cross entropy, to classify

if they are located within 0.3 meters (positive) or more than

0.6 meters (negative) to any object center. Proposals with

positive objectness are supervised with the following box

loss. We supervise the box center loss Lc using Smooth-

L1 loss, and follow [50, 27] to disentangle the scale loss

Ls and the heading angle loss Lθ into a hybrid of classifi-

cation (cross entropy) and regression (Smooth-L1) losses,

i.e., λclsLcls + Lreg . We use the cross-entropy as the se-

mantic classification loss (Ll). Each proposal is paired with

the nearest ground-truth box for training. For using VoteNet

as the backbone, we involve an extra vote loss Lv as in [49].

So far the above losses can be concluded into the box loss

Lbox with weighted sum.

Shape Loss. For points in each proposal, we supervise the

foreground segmentation loss Lseg with cross entropy. The

shape generator learns (µ,σ) to approximate the standard

normal distribution in training, from which we sample a la-

tent code z to predict the occupancy values {o} of spatial

query points {p} with a condition of the proposal feature

f∗

p . Then the Lshape can be formulated by

Lshape =
1

Nd

Nd
∑

i=1

[

K
∑

j=1

Lce (ôi,j , oi,j)

+ KL (p̂ (zi) ‖p (zi))
]

+ λsegLseg,

(3)

where Lce and KL denotes the cross entropy loss and KL-

divergence respectively. ôi,j and oi,j correspond to the pre-

dicted and ground-truth occupancy of the j-th spatial point

in the i-th positive proposal. p̂ (zi) is the predicted distri-

bution of the latent code zi. p (zi) is the target distribution,

which is set to the standard normal distribution as [42].

Overall, we train our network end-to-end with the loss

of L = Lbox + λLshape. The weights to balance different

losses are detailed in the supplementary material.

5. Results and Evaluation

5.1. Experiment Setup

Data. Two datasets are used in our experiments. 1) ScanNet

v2 [12] consists of 1,513 real world scans with point clouds

labeled at the instance level. 2) Scan2CAD [3] aligns the

ShapeNet [6] models with the object instances in ScanNet.

It provides the object meshes. We preprocess these object

meshes following [42] to prepare the spatial points and oc-

cupancy values for shape learning. We only use the point

clouds from ScanNet as the input (randomly sampled with

80K points in train and test), and predict object bounding

boxes and meshes supervised by Scan2CAD. Inline with

[26], we use the official train/test split in all the experiments

and consider eight object categories.

Metrics. We evaluate our method on both scene under-

standing and object reconstruction, including 3D detection,

single object reconstruction, and semantic instance comple-

tion. As [26], the mean average precision at the 3D IoU

threshold of 0.5 (mAP@0.5) is used in the evaluation of 3D

detection and semantic instance completion, and we adopt

3D IoU for mesh evaluation in single object reconstruction.

Implementation. Our network is end-to-end trained before

pretraining the 3D proposal network. We set the batch size

at 8, and adopt the initial learning rate at 1e-3 in pretraining

and 1e-4 in end-to-end training, which drops by the scale of

0.5 for every 80 epochs. 240 epochs are used in total. Dur-

ing inference, we replace the objectness dropout (see Sec-

tion 3.1) with 3D NMS [49] to output the 3D boxes, where

object meshes in these boxes are extracted from 1283 occu-

pancy grids and reconstructed with Marching Cubes [41].

All object meshes are predicted in a canonical system and

transformed to 3D scenes with the predicted box poses. We

provide the full list of parameters, layer specifications, and

efficiency&memory comparisons in the supplementary file.

Benchmark. We compare our method on the metrics above

with the previous state-of-the-art works in scene reconstruc-

tion, including RevealNet [26], 3D-SIS [25] and ScanCom-

plete [14]. We also investigate the compatibility of our

method by embedding with different 3D proposal network

backbones, including BoxNet [49], MLCVNet [65], and

VoteNet with Graph Voting [62]. All results in our experi-

ments are trained and tested with the same dataset and split.

We keep the geometric data of 3D scans as the input in

comparisons. For some methods requiring color images,

we keep inline with their original configuration.

5.2. Comparisons to the StateoftheArts

Qualitative Comparisons. We compare our method on se-

mantic instance completion with the first and currently the

state-of-the-art work, RevealNet [26]. Figure 5 illustrates

some qualitative results with different scene complexities

on the test set of ScanNet (see more comparisons in the sup-

plementary file). RevealNet discretizes the input scans into

a volumetric grid that is preprocessed as a truncated signed

distance field (TSDF). Their network is backboned with 3D

CNN blocks to encode and decode the voxel occupancy of

each object with a fully convolutional fashion. It can also

back-project the 2D image features to TSDF grids to extend

the representation of the input scans. In our method, only

the geometry input is needed. The results in Figure 5 show

that our method presents better quality of object boxes and

shape details. The reasons could be three-fold: 1. different

with RevealNet which processes the whole scene with 3D

CNNs, our method leverages the sparsity of point cloud and

focuses on the object proposals with higher objectness. It
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(a) RevealNet [26] (Geo+Image) (b) RevealNet [26] (Geo Only) (c) Ours (Geo Only) (d) GT

Figure 5: Qualitative results of semantic instance reconstruction on ScanNet v2 [12]. Note that RevealNet [26] preprocesses

the scanned scenes into TSDF grids, while our method only uses the raw point clouds.

enables us to ignore those empty spaces and saves compu-

tation load to reconstruct the objects of interest with high

resolution (128-d); 2. voxelizing scenes into grids shows

inadequacy in representing accurate object boxes (i.e., dis-

crete box coordinates with axis-aligned orientations); 3. our

shape generator presents joint effect that further improves

the 3D detector and achieves better object localization.

We further quantitatively evaluate our method on single

tasks as follows. Two configurations are considered to ex-

plore the complementary effects between the 3D detection

and shape generation modules, i.e., training our network

end-to-end (w/ joint) or training the 3D detector and shape

generator individually with the other one fixed (w/o joint).

3D Object Detection. We evaluate our 3D detection by

comparing with the prior art works, 3D-SIS [25], ML-

CVNet [65] and RevealNet [26] (see Table 2). 3D-SIS fuses

the multi-view RGB images into the TSDF grids (by back-

projecting 2D CNN features to 3D voxels) as inputs. It

adapts the detection modality of Faster RCNN [53] from

2D image plane to 3D voxel grids. MLCVNet [65] ex-

tends VoteNet [49] by considering contextual information

between objects. From the results, we observe that, with

joint training, our shape generation module improves the

3D proposal network backbone (i.e., w/o joint training) on

all categories (see per category scores in the supplemen-

tary file), and helps our method outperforms the state-of-

the-arts, which is also shown consistently effective on other

backbones (see analysis experiments).
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display bathtub trashbin sofa chair table cabinet bookshelf mAP

Inst Seg [25] + Shape Comp [15] 2.27 1.14 1.68 14.86 9.93 3.90 7.11 3.03 5.49

Scan Comp [14] + Inst Seg [25] 1.65 4.55 11.25 9.09 9.09 0.64 0.18 5.45 5.24

RevealNet [26] 13.16 13.64 18.19 24.79 15.87 11.28 8.60 10.60 14.52

Ours (w/o joint) 23.96 19.00 18.49 13.67 10.84 2.81 10.14 12.65 13.94

Ours (w/ joint) 26.67 27.57 23.34 15.71 12.23 1.92 14.48 13.39 16.90

Table 1: Comparisons on semantic instance completion. The results of (Inst Seg [25] + Shape Comp [15]) and (Scan Comp

[14] + Inst Seg [25]) are provided by [26]. The mAP scores are measured with the mesh IoU threshold at 0.5.

Input mAP

3D-SIS [25] Geo+Image 25.70

MLCVNet [65] Geo Only 33.40

RevealNet [26] Geo Only 29.29

Ours (w/o joint) Geo Only 32.63

Ours (w/ joint) Geo Only 35.10

Table 2: 3D object detection on ScanNet v2. 3D-SIS [25]

and RevealNet [26] results are provided by the authors.

MLCVNet results are retrained with the original network

[65]. See per category scores in the supplementary file.

Object Reconstruction. We evaluate the single object re-

construction quality with 3D mesh IoU, where the predicted

shapes are compared in a canonical system with the ground-

truth (disentangled with 3D detection). Note that all the

predictions and ground-truths in RevealNet [26] share the

same coordinate system, i.e. the TSDF grid. RevealNet

voxelizes 3D scenes with a uniform voxel size of ≈ 4.7 cm,

which results in around 96 × 48 × 96 voxels for a scene

at the scale of 4.5 × 2.25 × 4.5 meters. However, objects

are independently reconstructed with the same resolution in

our method. For a fair comparison, we present our results

on different resolutions (16-d, 32-d, 64-d) and benchmark

all methods with only geometric input (see the comparisons

in Table 3). The results indicate that joint training the 3D

detector with shape generator can even improve the perfor-

mance on single object reconstruction. It implies that bet-

ter box proposals will produce better spatial alignment and

meaningful descriptions about the object property (e.g., size

and category), which informs the shape generator to better

approximate the target shapes. The results also demonstrate

our mesh quality outperforms RevealNet with a large mar-

gin (over 11 points). Note that the resolution of 64-d even

exceeds their scene resolution in vertical axis [26].

resolution 3D IoU

RevealNet [26] avg. 27-d 20.48

Ours (w/ & w/o joint) 16-d 37.02 & 35.75

Ours (w/ & w/o joint) 32-d 31.81 & 30.21

Ours (w/ & w/o joint) 64-d 26.65 & 24.97

Table 3: Comparisons on object reconstruction. Per cate-

gory scores are detailed in the supplementary file.

Semantic Instance Completion. We evaluate our method

on scene completion at semantic-instance level. It measures

how much the predicted object meshes overlay the ground-

truths in a 3D scene. We compare our method with the

state-of-the-art work, RevealNet [26]. We also follow their

experiments by sequentially combing prior arts of instance

segmentation [25] with shape completion [15], or combin-

ing scan completion ([14]) with instance segmentation [25],

for instance-level scene completion. As mentioned above,

object meshes in our method are predicted with a higher

resolution (128-d). For a fair comparison, we voxelize our

scenes to the same resolution with them. The results are

listed in Table 1. It shows that our joint method largely

outperforms the decoupled methods and exceeds the state-

of-the-art [26]. The comparison between w/ & w/o joint

training further explains the complementary effects between

shape generation and 3D detection, which is inline with the

former results that improving on each module will benefit

the other one. For objects with very thin structure (e.g. ta-

bles), our method does not show advantage because a slight

misalignment in 3D detection is more likely to affect their

mesh overlay to the ground-truth in 3D scenes, although the

object meshes are well reconstructed.

5.3. Analysis Experiments

Different Backbones. In our network, we deploy the back-

bone of our 3D proposal network using VoteNet [49]. We

change our backbone to explore if the joint training still

benefits other 3D detection networks. We consider in our

experiments with the BoxNet [49], MLCVNet [65] and

VoteNet+Dynamic Graph CNN (DGCNN) [62]. BoxNet

directly predicts 3D boxes from the grouped points in point

clouds. MLCVNet is a variant version of VoteNet that con-

siders contextual information between objects. To this end,

we also configure dynamic graph connections [62] between

votes to learn the relational features for object detection.

The results in Table 4 manifest that combing shape predic-

tion in joint training consistently improves the 3D detection

performance with different backbones.

Different Point Sparsity. Learning from point clouds

makes our network adaptive to different scales of input

points. We test the robustness of our method on different

point sparsity, where our network is trained with 20K, 40K
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(a) 20K input points (b) 40K input points (c) 80K input points (d) GT

Figure 6: Scene reconstruction with different point sparsity.

w/o joint w/ joint

BoxNet [49] 20.31 22.79

MLCVNet [65] 33.40 34.77

VoteNet+DGCNN [62] 29.88 32.30

Ours 32.63 35.10

Table 4: 3D detection with different backbones.

and 80K input points. The results in Figure 6 and Table 5

show that our method still scan produce reasonable scenes

with very sparse inputs (20K).

3D Detection Instance Completion

20K 33.89 14.39

40K 34.75 15.23

80K 35.10 16.90

Table 5: Comparisons with different scales of input points.

Different Objectness Thresholds. In section 3.2, we adopt

Objectness Dropout to keep proposal boxes with higher

objectness (Top-Nd). It ensures meaningful object points

as the input to learn shapes from those positive proposals.

Thus, a high Nd will involve in negative proposals (e.g. far

away from any object) and undermines the shape learning,

while a low Nd will reduce the learning efficiency. We list

the effects of using different Nd in Table 6.

Nd 3D Detection Instance Completion

5 34.33 14.48

10 35.10 16.90

30 33.37 14.34

Table 6: Results on different thresholds for objectness

dropout. Nd=10 is used in our network.

Different Skip Propagation. In section 3.3, we propagate

the proposal features {fp} to point clusters {P̃c
i} for shape

generation. To investigate its effects, we configure extra

three approaches of feature propagation for shape genera-

tion: 1. to decode shapes from proposal features without

point clusters (c1); 2. to learn shapes from the point clusters

without proposal features (c2); 3. to propagate the proposal

features to point clusters but without the point denoizer (c3).

All these configurations are jointly trained. We list the com-

parisons in Table 7. The results indicate that the feature ex-

traction for shape generation mainly affects the downstream

shape generator thus further influence the instance comple-

tion, where combing the proposal features and point clusters

with our skip propagation outcomes the best configuration.

3D Detection Instance Completion

c1 34.83 13.97

c2 34.85 14.33

c3 35.03 15.42

Full 35.10 16.90

Table 7: Ablation on skip propagation.

6. Conclusion

We propose a novel learning modality, namely RfD-Net,

for semantic instance reconstruction directly point clouds.

It disentangles the problem with a reconstruction-from-

detection manner. Instance shapes are predicted with global

object localization and local shape prediction, which are

connected with a spatial transformer and a skip propagation

module to bridge the information flow from shapes to de-

tections. It facilitates the complementary effects and jointly

improves the performance of 3D detection and shape gener-

ation. The experiments further demonstrate that our method

achieves much better mesh quality in scene reconstruction

and outperforms the state-of-the-art in object reconstruc-

tion, 3D detection and semantic instance completion.
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