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Abstract

Deep neural networks trained with standard cross-

entropy loss memorize noisy labels, which degrades their

performance. Most research to mitigate this memorization

proposes new robust classification loss functions. Conversely,

we propose a Multi-Objective Interpolation Training (MOIT)

approach that jointly exploits contrastive learning and clas-

sification to mutually help each other and boost performance

against label noise. We show that standard supervised con-

trastive learning degrades in the presence of label noise

and propose an interpolation training strategy to mitigate

this behavior. We further propose a novel label noise de-

tection method that exploits the robust feature representa-

tions learned via contrastive learning to estimate per-sample

soft-labels whose disagreements with the original labels

accurately identify noisy samples. This detection allows

treating noisy samples as unlabeled and training a classi-

fier in a semi-supervised manner to prevent noise memo-

rization and improve representation learning. We further

propose MOIT+, a refinement of MOIT by fine-tuning on

detected clean samples. Hyperparameter and ablation stud-

ies verify the key components of our method. Experiments

on synthetic and real-world noise benchmarks demonstrate

that MOIT/MOIT+ achieves state-of-the-art results. Code is

available at https://git.io/JI40X .

1. Introduction

Building a new dataset usually involves manually la-

beling every sample for the particular task at hand. This

process is cumbersome and limits the creation of large

datasets, which are usually necessary for training deep neu-

ral networks (DNNs) in order to achieve the required per-

formance. Conversely, automatic data annotation based

on web search and user tags [29, 22] leverages the use of

larger data collections at the expense of introducing some

incorrect labels. This label noise degrades DNN perfor-

mance [3, 52] and this poses an interesting challenge that

has recently gained a lot of interest in the research commu-

nity [45, 41, 23, 50, 12, 1, 28, 55, 13, 31].

In image classification problems, label noise usually in-

volves different noise distributions [22, 55]. In-distribution

noise types consist of samples with incorrect labels, but

whose image content belongs to the dataset classes. When

in-distribution noise is synthetically introduced, it usually

follows either an asymmetric or symmetric random distribu-

tion. The former involves label flips to classes with some

semantic meaning, e.g., a cat is flipped to a tiger, while

the latter does not. Furthermore, web label noise types are

usually dominated by out-of-distribution samples where the

image content does not belong to the dataset classes. Recent

studies show that all label noise types impact DNN perfor-

mance, although performance degrades less with web noise

[22, 34].

Robustness to label noise is usually pursued by identify-

ing noisy samples to: reduce their contribution in the loss

[23, 11], correct their label [1, 28], or abstain their classifica-

tion [42]. Other methods exploit interpolation training [53],

regularizing label noise information in DNN weights [13], or

small sets of correctly labeled data [18, 55]. However, most

previous methods rely exclusively on classification losses

and little effort has being directed towards incorporating sim-

ilarity learning frameworks [32], i.e. directly learning image

representations rather than a class mapping [45].

Similarity learning frameworks are very popular in com-

puter vision for a variety of applications including face recog-

nition [44], fine-grained retrieval [37], or visual search [35].

These methods learn representations for samples of the same

class (positive samples) that lie closer in the feature space

than those of samples from different classes (negative sam-

ples). Many traditional methods are based on sampling pairs

or triplets to measure similarities [7, 19]. However, super-

vised and unsupervised contrastive learning approaches that

consider a high number of negatives have recently received

significant attention due to their success in unsupervised

learning [5, 14, 27]. In the context of label noise, there are

some attempts at training with simple similarity learning

losses [45], but there are, to the best of our knowledge, no

works exploring more recent contrastive learning losses [24].

This paper proposes Multi-Objective Interpolation Train-

ing (MOIT), a framework to robustly learn in the presence
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of label noise by jointly exploiting synergies between con-

trastive and semi-supervised learning. The former intro-

duces a regularization of the contrastive loss in [24] to learn

noise-robust representations that are key for accurately de-

tecting noisy samples and, ultimately, for semi-supervised

learning. The latter performs robust image classification

and boosts performance. Our MOIT+ refinement further

demonstrates that fine-tuning on the detected clean data can

boost performance. MOIT/MOIT+ achieves state-of-the-

art results across a variety of datasets (CIFAR-10/100 [26],

mini-ImageNet [22], and mini-WebVision [29]) with both

synthetic and real-world web label noise. Our main contri-

butions are as follows:

1. A multi-objective interpolation training (MOIT) frame-

work where supervised contrastive learning and semi-

supervised learning help each other to robustly learn

in the presence of both synthetic and web label noise

under a single hyperparameter configuration.

2. An interpolated contrastive learning (ICL) loss that

imposes linear relations both on the input and the con-

trastive loss to mitigate the performance degradation

observed for the supervised contrastive learning loss in

[24] when training with label noise.

3. A novel label noise detection strategy that exploits the

noise-robust feature representations provided by ICL to

enable semi-supervised learning. This detection strat-

egy performs a k-nearest neighbor search to infer per-

sample label distributions whose agreements with the

original labels identify correctly labeled samples.

4. A fine-tuning strategy over detected clean data

(MOIT+) that further boosts performance based on sim-

ple noise robust losses from the literature.

2. Related work

We briefly review recent image classification methods

aiming at mitigating the effect of label noise on DNNs and

recent contrastive learning methods.

Noise rate estimation Using a label noise transition ma-

trix can mitigate label noise [36, 18, 48]. Patrini et al. [36]

proposed to correct the softmax classification using a tran-

sition matrix. The estimation of this matrix is, however,

challenging. The authors in [48] estimate the matrix by ex-

ploiting detected noisy samples that are similar to anchor

points (i.e. highly reliable detected clean samples), while

Hendrycks et al. [18] directly use a set of clean samples.

Noisy sample rejection Rejecting or reducing the contri-

bution to the optimization objective of noisy samples can

increase model robustness [23, 10, 45, 22]. Jiang et al. [23]

propose a teacher-student framework where the teacher es-

timates per-sample weights to guide the student training.

Defining per-sample weights is also exploited in [10] via

an unsupervised estimation of data complexity. Nguyen et

al. [33] iteratively refine a clean set to train on by measur-

ing label agreements with ensembled network predictions.

Cross-network disagreements and updates [11] lead to ro-

bust learning by training on selected clean data [51]. Also,

[46] propose a loss for standard training together with cross-

network consistency to select the clean samples to train on.

Noisy label correction Correcting noisy labels to replace

or balance their influence is widely used in previous works

[38, 12, 1, 30]. Bootstrapping loss [38] correction ap-

proaches exploit a perceptual term that introduces reliance

on a new label given by either the model prediction with

fixed [38] or dynamic [1] importance, or class prototypes

[12]. More recently, Liu et al. [30] introduced a perceptual

term that maximizes the inner product between the model

output and the targets without need for per-sample weights.

Noisy label rejection Rejecting the original labels by re-

labeling all samples with the network predictions [41] or

learned label distributions [50] mitigates the effect of label

noise. Recently, several approaches perform semi-supervised

learning [9, 25, 34] by treating detected noisy samples as un-

labeled, thus rejecting their labels while exploiting the image

content. Their main differences are in the noise detection

mechanism: Ding et al. [9] exploit high certainty agree-

ments between the network predictions and labels, Kim et

al. [25] use high softmax probabilities after performing neg-

ative learning, and Ortego et al. [34] look at the agreements

between the original and relabeled labels using [41].

Other label noise methods Zhang et al. [53] proposed an

interpolation training strategy, mixup, that greatly prevents

label noise memorization and has been adopted by many

other methods [1, 28, 22, 34, 30]. Harutyunyan et al. [13]

quantify the amount of memorized information via the Shan-

non mutual information between neural network weights

and the vector of all training labels, and encourage this to

be small. Thulasidasan et al. [42] add an abstention class to

be predicted by noisy samples due to an abstention penalty

introduced in the loss. Robust loss functions are studied

in several works by jointly exploiting the benefits of mean

absolute error and cross-entropy losses [54], a generalized

version of mutual information insensitive to noise [49], or

[31] combinations of robust loss functions that mutually

boost each other. Furthermore, several strategies to prevent

memorization can be exploited together and DivideMix [28]

is a good example as it uses interpolation training, cross-

network agreements, semi-supervised learning, and label

correction.

6607



Encoder

Encoder Projection 
head

Projection 
headMinibatch

Encoder  Classifier
1st view 
2nd view 

1st mixed view
2nd mixed view

1st view path 2nd view path No grad. path

Noise 
detection𝓛SSL 𝓛ICL

Figure 1. Multi-Objective Interpolation Training (MOIT) for improved robustness to label noise. We interpolate samples and impose the

same interpolation in the supervised contrastive learning loss LICL and the semi-supervised classification loss LSSL that we jointly use

during training. Label noise detection is performed at every epoch to enable semi-supervised learning and its result is used after training to

fine-tune the encoder and classifier to further boost performance.

Contrastive representation learning Recent works in

self-supervised learning [27, 5, 24] have demonstrated the

potential of contrastive based similarity learning frameworks

for representation learning. These methods maximize (mini-

mize) similarities of positive (negative) pairs. Adequate data

augmentation [43], large amounts of negative samples via

large batch size [5] or memory banks [14, 47], and careful

network architecture designs [6] are usually important for

better performance. Regarding the label noise scenario for

image classification, no works explore the impact of incor-

rect labels on contrastive learning and only Wang et al. [45]

incorporate a simple similarity learning objective.

3. Method

We target learning robust feature representations in the

presence of label noise. In particular, we adopt the con-

trastive learning approach from [24] and randomly sample

N images to apply two random data augmentation opera-

tions to each, thus generating two data views. The resulting

training minibatch {(xi, yi)}
2N
i=1

of image-label pairs xi and

yi consists of 2N images. Every image is mapped to a

low-dimensional representation zi by learning an encoder

network fθ and a projection network gφ with parameters θ
and φ. In particular, an intermediate embedding vi = fθ (xi)
is generated and subsequently transformed into the repre-

sentation wi = gφ (vi). Finally, zi = wi/ ‖wi‖2 is the

L2-normalized low-dimensional representation used to learn

based on the per-sample loss:

Li (zi, yi) =
1

2Nyi
− 1

2N
∑

j=1

1i 6=j 1yi=yj
Pi,j , (1)

Pi,j = − log
exp (zi · zj/τ)

∑2N
r=1

1r 6=i exp (zi · zr/τ)
, (2)

where Pi,j denotes the j-th component of the temperature

τ scaled softmax distribution of inner products zi · zj of

representations from the positive pair of samples xi and xj ,

which can be interpreted as a probability. Pi,j is aggregated

in Eq. 1 across all Nyi
samples xj in the minibatch sharing

label with xi (yi = yj) except for the self-contrast case

(i = j), as defined by the indicator function 1B ∈ {0, 1}
that returns 1 when condition B is fulfilled and 0 otherwise.

Minimizing Li implies adjusting fθ and gφ to pull together

the feature representations zi and zj when they share the

same label (yi = yj), while pushing them apart when they

do not. Also, the gradient analysis in [24] reveals that Eq.

1 focuses on hard positives/negatives rather than easy ones.

Note that having two data views implies that Li contains an

unsupervised contribution equivalent to the NT-Xent loss [5].

In the presence of label noise, Eq. 1 incorrectly selects

positive/negative samples, which degrades the feature repre-

sentation z (see Tab. 2). To overcome this limitation and per-

form robust image classification under label noise conditions,

we propose a Multi-Objective Interpolation Training (MOIT)

framework that consists of: i) a regularization technique to

prevent memorization when training with the supervised

contrastive learning loss (Sec. 3.1), ii) a semi-supervised

classification strategy based on a novel label noise detection

strategy that exploits the noise-robust representation z to

measure agreements with the original labels y and tag noisy

samples as unlabeled (Sec. 3.2), and iii) a classifier refine-

ment on clean data to boost classification performance (Sec.

3.3). Fig. 1 shows an overview of MOIT.

3.1. Interpolated Contrastive Learning

Interpolation training strategies have demonstrated excel-

lent performance in classification frameworks [53, 40, 39],

and have further shown promising results to prevent label

noise memorization [53, 1, 28, 22]. Inspired by this success,

we propose Interpolated Contrastive Learning (ICL), a novel

adaptation of mixup data augmentation [53] for supervised

contrastive learning. ICL performs convex combinations of
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pairs of samples as

xi = λxa + (1− λ)xb, (3)

where λ ∈ [0, 1] ∼ Beta (α, α) and xi denotes the training

sample that combines two minibatch samples xa and xb, and

imposes a linear relation in the contrastive loss:

LMIX

i = λLi (zi, ya) + (1− λ)Li (zi, yb) . (4)

The first and second terms in Eq. 4 consider, respectively,

positive samples from the class ya (yb) given by the first

(second) sample xa (xb). The selection of positive/negative

samples involves considering a unique class for every mixed

example. However, in most cases the input samples contain

two classes as a result of the interpolation, where λ deter-

mines the dominant one. We assign this dominant class to

every sample for positive/negative sampling. Intuitively, ICL

makes it harder to pull together clean and noisy samples with

the same label, as noisy samples are interpolated with either

another clean sample that provides a clean pattern beneficial

for training or another noisy sample that makes it harder to

memorize the noisy pattern.

Memory bank The number of positives and negatives se-

lected for contrastive learning depends on the minibatch size

and the number of dataset classes. Therefore, unless a large

minibatch is used during training, few positive and negative

samples are selected, which negatively affects the training

process [24]. To address limitations in computing resources,

we introduce the memory bank proposed in [47] to perform

robust similarity learning despite using relatively small mini-

batches compared to those in [24]. In particular, we define

a memory to store the last M feature representations from

previous minibatches and define a loss term LMEM
i similar

to LMIX
i in Eq. 4. While LMIX

i is estimated contrasting

the 2N minibatch samples across them, LMEM
i contrasts the

2N samples with the M memory samples, thus extending

the number of positive and negative samples. The final ICL

loss then aggregates the average batch and memory losses:

LICL = LMIX + LMEM . (5)

Sec. 4.3 shows the benefits of using ICL loss instead of the

original loss in [24] and Sec. 4.4 demonstrates the effect of

the memory bank on the overall method.

3.2. Semi­Supervised Classification

The goal is to predict a class c ∈ {1, . . . , C} by learning

a second mapping h(v) = gϕ (v) to the class space, where

C is the number of classes. Naı̈vely training a classifier

in the presence of label noise leads to noise memorization

[3, 52], which degrades the performance. Semi-supervised

learning, where noisy labels are discarded, can mitigate this

memorization [9, 28, 34]. We, therefore, propose to jointly

adopt semi-supervised learning with ICL. The former boosts

the performance achievable by the latter, while the latter

enables accurate label noise detection necessary for good

performance in the former.

Label noise detection We propose to measure agreements

between the feature representation zi (robust to label noise)

and the original label yi to identify mislabeled samples. To

quantify this agreement, we start by estimating a class prob-

ability distribution from the representation zi by doing a

k-nearest neighbor (k-NN) search:

p (c | xi) =
1

K

K
∑

k=1
xk∈Ni

1yk 6=c, (6)

where Ni denotes the neighbourhood of K closest images

to xi according to the feature representation z. Eq. 6 then

counts the number of samples per class in the local neighbor-

hood Ni and normalizes the counts to estimate a probability

distribution. This distribution can be interpreted as a soft-

label that can be compared with the original label to identify

potential disagreements, i.e. noisy samples. However, the

labels y might be noisy, thus biasing the estimation of p. We,

therefore, estimate a corrected distribution p̂ using:

p̂ (c | xi) =
1

K

K
∑

k=1
xk∈Ni

1ŷk 6=c, (7)

where we introduce corrected labels ŷ that are estimated

taking the dominant label in Ni, i.e. ŷ = argmaxc p (c | x).
Finally, the disagreement between the corrected distribu-

tion p̂ (c | xi) and the label noise distribution given by the

original label yi is measured by the cross-entropy

di = −yTi log (p̂) , (8)

where T denotes the transpose operation. The higher di, the

higher the disagreement between distributions and the more

likely xi is a noisy sample. We select clean samples for each

class c based on di using:

Dc = {(xi, yi) : di ≤ γc} , (9)

where γc is a per-class threshold on di, which is dynamically

defined to ensure a balanced clean set across classes. To

perform this balancing, we use the median of per-class agree-

ments between the corrected label ŷi and the original label yi
across all classes. Sec. 4.4 illustrates the importance of this

balancing strategy as well as the corrected distribution p̂ over

p for achieving better performance. Note that a k-NN noise

detection that resembles Eq. 6 has been recently proposed

in [4]. However, we differ in that we propose a corrected
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version in Eq. 7 that surpasses the straightforward k-NN of

Eq. 6 (see Tab. 3), we use k-NN during training, and always

avoid using a trusted clean set.

Semi-supervised learning We learn the classifier by per-

forming semi-supervised learning where samples in D are

considered as labeled and the remaining samples as unla-

beled. To leverage these unlabeled samples, pseudo-labeling

[2] based on interpolated samples is applied by defining the

objective

LSSL

i = −λỹTa log (hi)− (1− λ) ỹTb log (hi) , (10)

where the pseudo-label ỹa (ỹb) for xa (xb) is estimated as

ỹa =

{

ya, xa ∈ Dc

h̄a, xa /∈ Dc

, (11)

where h̄a is the softmax prediction for image xa without

data augmentation. The final Multi-Objective Interpolation

Training (MOIT) optimizes the loss:

LMOIT = LICL + LSSL. (12)

In summary, the proposed MOIT framework enables robust

training in the presence of label noise by learning robust

representations via contrastive learning that help in achieving

successful noise detection that discards noisy labels and

enables semi-supervised learning for classification. Note that

the method needs to learn useful features before performing

accurate noise detection; thus we start training with ỹ =
y, ∀x in LSSL, i.e. a normal supervised training. We start

doing semi-supervised learning once reasonable features to

search for reliable nearest neighbors in Eq. 7 are learned and

the clean sample detection is made reliable. We assume that

good features are available soon after reducing the learning

rate, given that there is little risk of overfitting noisy labels

at earlier epochs when using a high learning rate, as often

reported in the literature [41, 50, 1].

3.3. Classification refinement

Supervised pre-training on relatively clean datasets such

as ImageNet [8] has proved to mitigate label noise memoriza-

tion [17, 22]. We, therefore, refine our MOIT predictions by

fine-tuning fθ and re-training gϕ on our detected clean set D
using a constant low learning rate. We name this fine-tuning

stage MOIT+. We train using mixup [53] and later introduce

hard bootstrapping loss correction [38] to deal with possible

low amounts of label noise present in D, thus defining the

following training objective:

LMOIT+

i = −λ
[

(δya + (1− δ) ỹa)
T
log (hi)

]

−

(1− λ)
[

(δyb + (1− δ) ỹb)
T
log (hi)

]

, (13)

where λ is the mixing coefficient from [53] as we are inter-

polating images as explained in Eq. 3, and δ is a weight to

balance the contribution of the original labels (ya and yb) or

the network predictions (ỹa and ỹb). This training objective

is similar to that used in [1], but different in that we do not

train from scratch using all data, or need to infer per sample

δ weights. Instead, we set δ = 0.8 as done in [38] to give

more importance to the original labels, which is reasonable

given that the training uses the detected clean data D. Note

that ỹa = argmaxc h̄a (ỹb = argmaxc h̄b) is the network

prediction for xa (xb) without data augmentation. As com-

mented before, MOIT+ starts with a mixup training without

bootstrapping (i.e. δ = 1.0) during the initial epochs to allow

adequate re-training of gϕ before trusting its predictions.

4. Experiments

We first run experiments on the standard benchmarks for

synthetic noise in CIFAR-100 [26] aiming at analyzing the

different components of our method. We further perform

comparative evaluations against related work using synthetic

label noise in CIFAR-10/100, controlled web noise in mini-

ImageNet [22], and the uncontrolled web noise from the

WebVision dataset [29].

4.1. Datasets

The CIFAR-10/100 datasets [26] contain 50K (10K) small

resolution images for training (test). For hyperparameter and

ablation studies, we keep 5K training samples for validation

using their correct labels. However, to facilitate comparison

with related work, we train with the full 50K samples and

use the 10K test set for evaluation (reporting accuracy in

the last epoch). For noise addition, we follow the criteria in

[50]: symmetric noise is introduced by randomly flipping the

labels of a percentage of the training set to incorrect labels;

asymmetric noise uses label flips to incorrect classes “truck

→ automobile, bird → airplane, deer → horse, cat → dog”

in CIFAR-10, whereas in CIFAR-100 label flips are done

circularly within the super-classes.

Jiang et al. [22] propose to use mini-ImageNet and

Stanford Cars to introduce both web and symmetric in-

distribution noise in a controlled manner with different noise

ratios. We adopt the mini-ImageNet web noise dataset for

evaluation in a real scenario with several ratios, which con-

sists of 100 classes with 50K (5K) samples for training

(validation). For further evaluation against web noise, we

adopt the mini-WebVision dataset [28] that uses the top-50

classes from the Google image subset of WebVision [29].

4.2. Training details

We use a PreAct ResNet-18 (PRN-18) [16] as encoder net-

work in CIFAR following [1], while for mini-ImageNet we

use the ResNet-18 (RN-18) from [20] used in mini-ImageNet

for few-shot learning. For mini-WebVision we use a standard
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Table 1. Training details. We always train from scratch. LR: Learn-

ing rate. B: Bootstrapping.

CIFAR mini-ImageNet mini-WebVision

Resolution 32× 32 84× 84 224× 224

Batch size 128 64 64

Mem. size 20K 100K 50K

Network PRN-18 RN-18 RN-18

Epochs 250 130 130

Optimizer SGD, momentum 0.9, weight decay 10
−4

Initial LR 0.1 0.1 0.1

LR decay 125, 200 80, 105 80, 105

Decay factor ×0.1 ×0.1 ×0.1

SSL epoch 130 85 85

Decay factor ×0.1 ×0.1 ×0.1

Epochs (MOIT+) 70 50 50

LR (MOIT+) 0.001 (not reduced)

B epoch (MOIT+) 30 20 20

RN-18 [15]. We do not evaluate using other frameworks in

mini-ImageNet or WebVision [22, 28] due to limitations of

our computing resources. We, conversely, re-run the offi-

cial implementation of top-performing and recent methods

[53, 28, 30] in our framework. As projection head and clas-

sifier, we always use a linear layer that maps, respectively, to

a feature vector z of 128 dimensions and to the class space.

Table 1 presents the training details for MOIT and

MOIT+. We interpolated input samples as proposed in [53]

with α = 1 (i.e. λ is sampled from a uniform distribution),

and apply standard strong data augmentations to achieve

successful contrastive learning1 in MOIT: random resized

crops, horizontal flips, color jitter and gray scale transforma-

tions. For MOIT+ and all other methods, mixup as well as

standard augmentations are used (CIFAR: random horizontal

flips and random 4 pixel translations, mini-ImageNet and

mini-WebVision: random resized crops and random horizon-

tal flips). We double the epochs in MOIT+ for 80% noise

in CIFAR-10/100 as there are few selected clean samples,

which make epochs extremely short. We always use τ = 0.1
temperature scaling for contrastive learning and increase the

memory size in mini-ImageNet and mini-WebVision to deal

with reduced batch size. Note that MOIT+ finetunes the

model in the last epoch when training MOIT.

In practice, the noise ratio and distribution are not usually

known a-priori; we therefore use a common configuration

for training our method (mixup α, k-NN parameter K, loss

function, D balancing criterion, δ for MOIT+), and only

modify typical hyperparameters (batch size, memory and

epochs). We use the official implementations of DivideMix

(DMix) [28] and ELR [30]. However, DMix adopts specific

configurations for different datasets and even for different

1https://github.com/HobbitLong/SupContrast

Table 2. Weighted k-NN evaluation in CIFAR-100.

Symmetric Asymmetric

0% 40% 80% 10% 40%

SCL 72.66 58.32 41.00 71.11 68.00

ICL 75.30 66.38 53.60 74.34 72.04

MOIT 75.76 67.42 55.58 74.86 72.60

noise ratios and types in the same dataset. To perform as

fair as possible a comparison without degrading DMix re-

sults, we select a single parametrization of DMix in every

dataset based on the most repeated configuration in [28].

This affects the CIFAR configuration (CIFAR-10: λu = 0,

CIFAR-100: λu = 150) as mini-WebVision has a unique

configuration that we also adopt for mini-ImageNet. We

run DMix and ELR for the same number of epochs as our

method respecting suggested learning rates and equip ELR

with mixup for a fair comparison with DMix and our method

that both use interpolation training. Note that ELR+ in [30]

uses mixup, but we do not use it for comparison as it involves

using a second network and a weight averaging.

4.3. Supervised contrastive learning and label noise

We start by analyzing supervised contrastive learning be-

havior in the presence of label noise and how introducing

interpolation training impacts the learned representations.

We evaluate the quality of representations using a weighted

k-NN (k = 200) evaluation typical in unsupervised learning

[21]. Tab. 2 reports this evaluation using the embedding

z extracted after the projection head (model from the last

training epoch) and the true labels in the training set. This ex-

periments show that Supervised Contrastive Learning (SCL)

[24] performance degrades when there is label noise (the

noise-free accuracy of 72.66 decreases). The proposed reg-

ularization using Interpolated Contrastive Learning (ICL)

mitigates label noise drops and outperforms SCL in the noise-

free case, validating the utility of imposing a interpolated

behavior in the contrastive loss. Note that ICL and MOIT

(joint ICL and semi-supervised classification) perform worse

in the asymmetric case than in the symmetric case. This

occurs due to the former having label flips that keep some

semantic meaning (e.g. cat→dog), while the latter does not

(e.g. cat→truck). Semantic noise is more informative dur-

ing ICL, which leads to better performance and less room

for semi-supervised learning improvement in MOIT com-

pared to ICL. We train SCL and ICL using a memory bank

for 350 epochs with initial learning rate of 0.1, divided by

10 at epochs 200 and 300. Note that contrastive learning

frameworks tend to be very sensitive to hyperparameters

[5, 14, 24] (learning rate, temperature, data augmentation,

etc.), a behavior that we also observed when training them

alone in the presence of label noise. We experimentally

found that averaging the contrastive losses of the minibatch
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Table 3. Classification accuracy for different noise detection strategies and K values for 40% asymmetric noise in CIFAR-100.

K 5 10 25 50 100 150 200 250 300 350

k-NN (p) Acc. 59.42 61.74 64.84 66.10 67.18 67.42 67.46 67.68 67.14 66.94

k-NN (p̂) Acc. 62.28 65.30 68.58 70.56 71.16 71.22 71.24 71.42 70.98 70.80

Table 4. Effect on classification accuracy of the balancing strategy

for the clean set D in CIFAR-100. A: Asymmetric. S: Symmetric.

Unbalanced Min Max Median

A-40% 69.58 52.88 62.58 71.42

S-40% 66.28 63.26 66.12 66.58

LMIX and the memory LMEM helped convergence in SCL

and ICL and used it in this experiment. Adding a classi-

fication objective, as done in the proposed MOIT method,

stabilizes this behavior and achieves better representations

than SCL and ICL alone (see Tab. 2).

4.4. Label noise detection analysis

We exploit the feature representation z by searching the

closest K neighbors to estimate a corrected soft-label p̂ in

Eq. 7 and measure agreements with the original labels y.

Tab. 3 shows that using this corrected soft-label p̂ (bottom)

rather than the soft-label p from Eq. 6 (top) results in better

performance due to improved label noise detection: precision

and recall for p̂ are 90.83 and 87.84 compared to 80.20 and

84.43 for p. The method is also not very sensitive to the

value of K once it is set to a high enough value. We adopt

K = 250 for the remaining experiments. We further study

the effect of balancing the clean set D (see Tab. 4). In

particular, we experiment by balancing with the minimum

(Min), maximum (Max), or median (used by our method)

number of agreements between corrected ŷ and original y
labels across classes. The median consistently outperforms

the others as it poses a better trade-off than the Min (Max),

which restricts (extends) the samples to select in classes

with many (few) agreements. Here the unbalanced criterion

considers as clean all samples that satisfy ŷ = y.

4.5. Joint training ablation study

Tab. 5 illustrates the effect of removing key components

of our method on classification accuracy. Removing semi-

supervised learning (SSL) involves training the classifier

using mixup, which results in substantial degradation due

to label noise memorization. Removing the memory (M)

decreases performance due to the limited batch size used

(128), which provides few positives/negatives for supervised

contrastive learning with 100 classes. Not balancing (B) the

clean set D to perform SSL also decreases performance. The

criterion used to select clean samples without balancing was

Table 5. Ablation study for MOIT and MOIT+ in CIFAR-100. A:

Asymmetric, S: Symmetric, SSL: semi-supervised learning, M:

memory, B: Balanced clean set, r-t C: Re-training classifier, s-DA:

strong data augmentation.

S-40% A-40%

(MOIT) w/o SSL 62.82 53.73

(MOIT) w/o M 66.10 68.88

(MOIT) w/o B 66.28 69.58

MOIT 66.58 71.42

(MOIT+) w/o r-t C 69.54 73.32

(MOIT+) w/ s-DA 67.98 71.90

MOIT+ 70.68 73.58

to select every sample x satisfying the agreement ŷ = y as

studied in Sec. 4.4. Regarding the classifier refinement done

by MOIT+, re-training the classifier (r-t C) and avoiding the

use of strong data augmentation impact performance. The

former might prevent some slight memorization behavior

in the classifier occurring during MOIT, while the latter

avoids the strong data augmentation that harms classification

accuracy but is required for successful contrastive learning.

4.6. Synthetic label noise evaluation

Tables 6 and 7 evaluate the performance of MOIT and

MOIT+ in, respectively, CIFAR-10 and CIFAR-100 for dif-

ferent levels of symmetric and asymmetric noise and report

average accuracy for each dataset to ease comparison. We

compare against some relevant and recent methods from the

literature [53, 1, 50, 49, 28, 30] and demonstrate that MOIT

and MOIT+ achieve state-of-the-art results. We achieve es-

pecially robust results for asymmetric noise, which is more

realistic than symmetric as label flips are done considering

semantic similarities between classes. We run DMix (eval-

uation done without ensembling both networks) and ELR,

while using the remaining results from [34], which used the

same network architecture and label noise criterion. DMix

[28] and, especially, ELR outperform our method for some

noise levels, but experience important drops at high noise

levels, which penalize the average performance. We stress

that our label noise criterion (also adopted in [23, 45, 34])

considers 40% noise as 0.4 probability of flipping the label

to an incorrect class, and not to any class as reported in the

DMix and ELR papers [28, 30], which results in 40% being

more challenging in our setup.
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Table 6. Performance in CIFAR-10 with symmetric and asymmetric

noise. (*) Denotes that we have run the algorithm.

Symmetric Asymmetric Avg.

0% 20% 40% 80% 10% 30% 40%

CE 93.85 78.93 55.06 33.09 88.81 81.69 76.04 72.50

Mix [53] 95.96 84.76 66.07 20.38 93.30 83.26 77.74 74.50

DB [1] 79.18 93.82 92.26 15.53 89.58 92.20 91.20 79.11

DMI [49] 93.88 88.33 83.24 43.67 91.11 91.16 83.99 82.20

PCIL [50] 93.89 92.72 91.32 55.99 93.14 92.85 91.57 87.35

DRPL [34] 94.08 94.00 92.27 61.07 95.50 92.98 92.84 88.96

DMix* [28] 94.27 95.12 94.11 35.36 93.77 92.47 90.04 85.02

ELR* [30] 95.49 94.49 92.56 38.23 95.25 94.66 92.88 86.22

MOIT 95.17 92.88 90.55 70.53 93.50 93.19 92.27 89.73

MOIT+ 95.65 94.08 91.95 75.83 94.23 94.31 93.27 91.33

Table 7. Performance in CIFAR-100 with symmetric and asymmet-

ric noise. (*) Denotes that we have run the algorithm.

Symmetric Asymmetric Avg.

0% 20% 40% 80% 10% 30% 40%

CE 74.34 58.75 42.92 8.29 68.10 53.28 44.46 50.02

Mix [53] 77.90 66.40 52.20 13.21 72.40 57.63 48.07 55.40

DB [1] 64.79 69.11 62.78 45.67 67.09 58.59 47.44 59.35

DMI [49] 74.44 58.82 53.22 20.30 68.15 54.15 46.20 53.61

PCIL [50] 77.75 74.93 68.49 25.41 76.05 59.29 48.26 61.45

DRPL [34] 71.84 71.16 72.37 52.95 72.03 69.30 65.69 67.91

DMix* [28] 67.41 71.39 70.83 49.52 69.53 68.28 50.99 63.99

ELR* [30] 78.01 75.90 72.89 36.83 77.08 74.61 71.25 69.51

MOIT 75.83 72.78 67.36 45.63 75.49 73.34 71.55 68.85

MOIT+ 77.07 75.89 70.88 51.36 77.43 75.13 74.04 71.69

Table 8. Performance evaluation on controlled web noise in mini-

ImageNet. We run all methods.

0% 20% 40% 80%

Mix [53] Best 61.18 57.76 52.88 38.32

Last 58.96 54.60 50.40 37.32

DMix [28] Best 57.80 55.86 55.44 41.12

Last 55.84 50.30 50.94 35.42

ELR [30] Best 63.12 61.48 57.32 41.68

Last 57.38 58.10 50.62 41.68

MOIT Best 67.18 64.82 61.76 46.40

Last 64.72 63.14 60.78 45.88

MOIT+ Best 68.28 64.98 62.36 47.80

Last 67.82 63.10 61.16 46.78

4.7. Web label noise evaluation

Tables 8 and 9 illustrate the superior performance of

MOIT/MOIT+ when training in the presence of web label

noise in mini-ImageNet [22] and mini-WebVision [28]. The

results demonstrate that MOIT/MOIT+ are robust to web

noise and that they do not need careful re-parametrization

Table 9. Performance evaluation in mini-WebVision. We run all

methods.

Mix [53] DMix [28] ELR [30] MOIT MOIT+

Best 74.96 76.08 73.00 78.36 78.76

Last 73.76 74.64 71.88 77.76 78.72

depending on the noise level or distribution to achieve state-

of-the-art performance. The results in Tab. 8 further confirm

that the improvements are consistent across noise levels.

It is interesting to observe that, although MOIT+ consis-

tently outperforms MOIT, the improvements compared to

CIFAR experiments tend to be smaller. We think that a

plausible explanation is the dominance of out-of-distribution

samples in web-noise, which makes label correction via

semi-supervised learning less beneficial. Note that we run

M, DMix, EReg, and MOIT for the same number of epochs

(130) in both mini-ImageNet and mini-WebVision.

5. Conclusion

This paper proposes Multi-Objective Interpolation Train-

ing (MOIT), an approach for image classification with deep

neural networks that robustly learns in the presence of both

synthetic and web label noise. The key idea of MOIT is to

combine supervised contrastive learning and classification

in such a way that they are both robust to label noise. Inter-

polated Contrastive Learning regularization enables learning

label noise robust representations that are used to estimate a

soft-label distribution whose agreement with the original la-

bel allows identification of correctly labeled samples. MOIT

then treats the remaining samples as unlabeled and trains

a label noise robust image classifier in a semi-supervised

manner. We further propose MOIT+, a refinement of our

model by fine-tuning the model while re-training the im-

age classifier. We conduct experiments in CIFAR-10/100

with synthetic label noise and in mini-ImageNet and mini-

WebVision with web noise to demonstrate that MOIT and

MOIT+ achieve state-of-the-art results when training deep

neural networks with different noise distributions and levels.

Future work will explore instance-dependent label noise as

well as how to simplify the contrastive learning framework

by using class prototypes.
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