
PGT: A Progressive Method for Training Models on Long Videos

Bo Pang∗ Gao Peng∗ Yizhuo Li Cewu Lu†

Shanghai Jiao Tong University

{pangbo, penggao, liyizhuo, lucewu}@sjtu.edu.cn

Abstract
Convolutional video models have an order of magni-

tude larger computational complexity than their counter-

part image-level models. Constrained by computational

resources, there is no model or training method that can

train long video sequences end-to-end. Currently, the main-

stream method is to split a raw video into clips, lead-

ing to incomplete fragmentary temporal information flow.

Inspired by natural language processing techniques deal-

ing with long sentences, we propose to treat videos as se-

rial fragments satisfying Markov property, and train it as

a whole by progressively propagating information through

the temporal dimension in multiple steps. This progres-

sive training (PGT) method is able to train long videos

end-to-end with limited resources and ensures the effec-

tive transmission of information. As a general and robust

training method, we empirically demonstrate that it yields

significant performance improvements on different models

and datasets. As an illustrative example, the proposed

method improves SlowOnly network by 3.7 mAP on Cha-

rades and 1.9 top-1 accuracy on Kinetics with negligible

parameter and computation overhead. Code is available

at: https://github.com/BoPang1996/PGT.

1. Introduction

Semantic information often flows across a long time

in videos. However, end-to-end modeling a long video

as a whole is not feasible for current convolutional meth-

ods since their computational complexities linearly increase

with the number of frames [51]. The main-stream solution

is splitting a video into multiple short clips [59, 60, 6, 34],

but in this way, video models can only access local fragmen-

tary temporal information, thus, fail to model long seman-

tics [64, 51]. Is this trade-off between computational com-

plexity and semantic integrity unavoidable, or might there

be a specific training method tailored for video tasks that

can model long semantics with acceptable complexity?

The main cause of this problem is that 3D convolutional

∗Equal contribution.
†Cewu Lu is the corresponding author, member of Qing Yuan Research

Insitute, MoE Key Lab of Artificial Intelligence, AI Institute, CS depart-

ment of Shanghai Jiao Tong University, and Qi Zhi Institute.

tg

task loss task loss

original local
convolution

operator

original local
convolution

operator

Markov
convolution

operator

tg

step 1 step 2

Figure 1: Progressive training (PGT) treats videos as serial

fragments and optimizes a CNN model with multiple pro-

gressive steps on long videos. The Markov convolutional

operator designed to transfer temporal features among steps

is adopted on the first and last frames of each step, and the

gradient is truncated between them. “tg” denotes truncating

gradients. Fi is the ith video frame and Ip is the input of

the pth progressive step containing multiple frames.

models [53, 2, 54] treat a video signal I(x, y, t) as an inte-

grated information block and have to process it as a whole.

With the video growing longer, the information block be-

comes larger and the processing complexity increases to an

infeasible point. Since in the temporal dimension the devel-

opment of video semantics has high-order Markov property,

violently splitting long videos and processing short clips

with convolutions to model local features will hurt seman-

tic integrity. For example, the model will never know an

action of “pour milk” is making latte, unless it also sees the

previous action of “grinding coffee beans”.

To avoid the trade-off between computational complex-

ity and semantic integrity — i.e., to end-to-end train a model

on long videos with much lower complexity, in this pa-

per, we propose the progressive training (PGT) method (see

Fig. 1). Inspired by Truncated Back-Propagation through

Time (TBPTT) [63] originally designed for recurrent neu-

ral networks to model long natural language sequences, the

central idea of PGT is to 1) treat a video as serial fragments

satisfying high-order Markov property instead of an inte-

grated signal block, 2) disassemble the integrated forward

and backward propagation into multiple serial portions like

TBPTT (see §2), which doesn’t break the Markov depen-

dency of the calculation flow. Modeling a long video in

11379

multiple steps won’t lead to high resource consumption and

the Markov property ensures the integrity of temporal se-

mantics after disassembling, akin to how TBPTT enables

training RNN on long sequences.

Because the common convolutional operator is a kind

of local operator which does not satisfy the Markov prop-

erty, we design several Markov convolutional operators

with only a few modifications on the original convolutional

operator so that they can easily replace the original one in

modern video models when training. With these operators,

the progressive training schedule mixing local and Markov

features is proposed (see Fig. 2 and Fig. 3): The temporal

information is propagated progressively forward in multi-

ple steps where within each progressive step, local opera-

tors capture current features together with those transferred

from previous steps through the Markov operators. In this

schedule, the Markov operators propagate temporal infor-

mation among the progressive steps throughout the tempo-

ral dimension and the serial multi-step splitting reduces the

computational resource requirements.

The proposed PGT method is effective and pretty sim-

ple. It is easy to implement and typically requires small

changes to a video model with negligible parameter or com-

plexity overhead. Empirically, it works with default learn-

ing rate schedules and hyper-parameters already in use ex-

cept for weight decay rates (longer inputs need stronger

regularization). Extensive experiments show that the pro-

gressive training method works robustly out-of-the-box

for different models (RegNet3D [40], ResNet [13], Slow-

Fast [6]), datasets (Kinetics-200 [66], Kinetics-400 [20],

Charades [42], AVA [11]), and training settings (e.g. from

scratch or pre-trained). We observe consistent performance

improvements without tuning. As an example, the progres-

sive method improves SlowOnly network by 3.7 mAP on

Charades and 1.9 top-1 accuracy on Kinetics. We hope this

simple and effective method will provide the community

with new insights into modeling long videos.

2. Related Work
Convolutional Video Networks Video convolutional

backbones are developed from image-level backbone net-

works [13, 21, 44, 50, 33]. Inchoate methods [43, 8] di-

rectly apply image networks on optical-flow inputs [57, 38]

to model temporal information. Then researchers extend 2D

convolutional operators to 3D ones by extending the tem-

poral dimension [53, 12] and 3D convolution based mod-

els [53, 2, 54, 66, 19, 29, 41, 9, 39, 49, 28] (including

ones adopting 2D spatial plus 1D temporal filters) become

the mainstream method. Recently, non-local network [60]

is designed to model global video features instead of lo-

cal ones. A two-stream structure SlowFast [6] is proposed

to balance the spatial and temporal information. X3D [5]

finds efficient video architectures by progressively extend-

ing each dimensions (e.g. spatial, temporal, channel dimen-

sions). AssembleNet [41] proposes a method to automati-

cally form connections among CNN blocks.

Methods to Handle Long Videos How to use mod-

ern convolutional networks to handle long video tasks is

less studied, due to limited computational resources and

the behaviour of the convolutional operator. One simple

method is to use large sampling strides to represent a long

video with only a few frames [59, 7, 26], which causes

serious information loss. A better strategy is to model

long videos on the top of pre-computed deep features of

short clips [22, 31, 52, 69, 64, 51] by pooling [52, 31],

CNN [69, 17], graph [16, 68], memory blocks [51], or at-

tention methods [64]. However, because the features of

short clips only contain local information and cannot be up-

dated, these two-step methods without end-to-end training

are likely suboptimal. Thus, we propose the first method to

train deep CNN models end-to-end on long videos, requir-

ing almost the same computational resources as short clips.

Sequential Methods for Video Tasks Modeling videos

as sequences is an alternative strategy for convolutional

models. [69, 4, 25, 48] adopt LSTM [14] layers (a kind of

recurrent operator) to model video frame features generated

by image-level CNN models. [35, 36] tailor better recurrent

layers that are easy to stack deep for higher-dimensional

video information. These recurrent-based methods have ad-

vantages over convolutional ones for tasks sensitive to se-

quence order, such as video future prediction [32, 56, 67],

trajectory prediction [47], and video description [4, 55].

While for tasks that more focus on integrated features like

action recognition [65, 25, 37, 2, 6, 24, 23], there is still a

gap between the recurrent and convolutional models.

Truncated Back-Propagation through Time Back-

Propagation Through Time, or BPTT [62], is the training al-

gorithm used to update weights in recurrent neural networks

like LSTMs [14]. It unrolls input timesteps (frames for

video), calculates and accumulates errors for each timestep.

Then the network is rolled back up to update the weights.

But, for a long sequence with length n, BPTT will consume

lots of memory and the complexity will be extremely large.

Truncated Back-Propagation through Time (TBPTT) [63]

solves this problem by periodically updating the network. It

unrolls and forward propagates the input for k1 steps, then

backward propagates accumulated errors of the past k2 un-

rolled steps to update the network (k1 ≤ k2 < n). This

process is repeated till unrolling all the inputs. Through

splitting the integrated training process (k1 = k2 = n) into

several sub-processes, TBPTT reduces the resource require-

ment. More importantly, because of the Markov property of

RNN, this splitting does not change the flowing path of tem-

poral information.

In this paper, inspired by TBPTT, we slightly modify the

convolutional operator to satisfy the Markov property and

design a progressive training method for long videos.

11380

loss loss loss

Each contains only 1 frame

loss

Each contains several frames

original conv operator Markov conv operator input clip

(a) (b) (c) (d)

Figure 2: Conceptual comparison of (a) baseline, (b) splitting model, and (c, d) splitting input progressive training.

The solid and dashed lines mean forward and backward paths. (a) The conventional training method trains the model M with

input I in an integrated step. (b) In the splitting model setting, we split M into several parts. Although these parts satisfy

the one-way dependency and can be calculated progressively in forward-propagation, they break this one-way dependency

in back-propagation, failing to achieve the serial progressive training. (c) The splitting input setting satisfies the one-way

dependency constraint in both forward and backward propagation, thus, can be optimized step by step progressively. Here,

only the Markov operator is adopted to transfer features among progressive steps. (d) This setting is similar to (c). Differences

are that (d) has a larger progressive length for each step and within each step, besides Markov operators adopted at the edge of

each step to transfer temporal information, original convolutional operators are adopted to capture internal temporal features.

3. Progressive Training for Video Models

Before introducing the proposed progressive training

method, let’s consider a reference convolutional video pro-

cessing model (e.g. C3D [53], I3D [2]) that operates on

videos of shape T ×H ×W (number of frames × height ×
width). Due to the computational resource limitation, com-

mon methods are to split the raw video into short ones with

length T ′ < T . This separation forces models to focus

on short local temporal features, wasting the large recep-

tive field of deep models (e.g. SlowOnly with the receptive

field of 39 only models 8 frames) and breaking the seman-

tic integrity. Although there are methods for long videos

[31, 52, 69, 64, 51], they design extra modules to model

fixed features generated by backbone models which only

take short clips as input, instead of end-to-end training the

backbone and extra modules. Thus, the whole is likely sub-

optimal, since the backbone still models short local features.

To end-to-end train long videos and ensure the com-

plexity won’t surpass the acceptable range, we propose

the progressive training method. Inspired by Truncated

Back-Propagation Through Time designed for recurrent

methods, which reduces the complexity by separating each

time stamp and truncating the computing graph of back-

propagation, we realize that the end-to-end feature extrac-

tion and optimization process of a long video need not be

finished in only one step. Instead, it can be a serial progres-

sive process. We will show in experiments that this method

can significantly enhance model’s performance without in-

troducing any parameter or complexity overhead. After

analysis, we believe this improvement is mainly due to the

increase of the temporal receptive field (see § 4.3).

3.1. Progressive Method

The progressive training (PGT) method aims at disas-

sembling an integrated computing process into several por-

tions that can be calculated serially to reduce computing re-

sources requirements. To make sure that the temporal se-

mantics are not broken by the disassembling process, the

equivalent disassembling is the best choice — i.e. the cal-

culation flow is exactly the same before and after disassem-

bling. To achieve this equivalency, the serial disassembling

process needs to satisfy such a constraint:

Constraint 1: Among the split portions, there is only

one-way dependency — if the computing process of portion

A depends on results from portion B, then the computing of

portion B cannot depend on portion A.

The disassemble progress satisfying this constraint can

be formally expressed as:

M(I) ⇔ MP (IP ,MP−1(IP−1,MP−2(IP−2, ...))), (1)

where I = {Ip|p ∈ {1, 2, ..., P}} and M = {Mp|p ∈
{1, ..., P}} are whole input and model. Ip and Mp are small

portions of them, pth in the progressive order. P is the total

number of split portions. This means that the disassembling

can be achieved by splitting the input, splitting the model,

or both of them. For example (see Fig. 2):

- Splitting input: we split an input video I =
{F1, F2, ..., FT } with T frames to several frame groups

Ip = {F(p−1)×T ′+1, ..., Fp×T ′}, where T ′ is the length of

each frame group. The computation of each group can only

depend on the current and previous groups (here, model M
is not split, — i.e. M = M1 = M2 = ... = MP);

- Splitting model: we split a deep model to several layer

groups and compute group by group to the results (here, we

11381

do not split the input. Thus, I2 = I3 = ... = IP = None).

Although with Constraint 1 we can split the for-

ward propagation equivalently, progressively training a

long video also needs to serially disassemble the back-

propagation process by truncating the gradient among the

portions to completely isolate them to reduce the training

resource requirements. To make sure each portion can get

gradients to update their parameters after truncating, the

disassembling needs to satisfy another constraint:

Constraint 2: The one-way dependency should be main-

tained in the back-propagation process — Assume the com-

puting of portion A depends on portion B and B does not

depend on A. B should be able to update its parameters

without gradients back-propagated from portion A.

Now let’s go back to the “Splitting model” example,

which doesn’t satisfy this constraint (see Fig. 2 (b)). Be-

cause fore layers can only get gradients from hind layers,

if truncated, the fore layers will have no gradient to update

their parameters. Thus, in the training phase, the split por-

tions still need to be optimized together, failing to reduce

the complexity of each portion by disassembling. Thus, in

this paper, to satisfy both the two constraints, we only con-

sider the “splitting input” setting:

M(I) ⇔ M(IP ,M(IP−1,M(IP−2, ...))), (2)

Eq. 2 is similar to the calculation process of RNN, but our

progressive method does not aim at building a RNN model,

instead, providing a method to train any model (such as

CNNs, transformers) satisfying the constraints in a progres-

sive manner to reduce the training resource requirements.

For an integrated input I ∈ RT×H×W with T frames,

we call the length T ′ of Ip ∈ RT ′
×H×W as the “progressive

length” and P as the “number of progressive steps”.

3.2. Basic Progressive Training for Deep CNN

In this part, we will discuss how to apply the basic pro-

gressive training (PGT) method on convolutional networks.

Local operator The conventional convolution is a local

operator that models both the past and future information.

Formally, one-dimensional temporal convolution operator

can be expressed as:

Conv(fpast, fcur, ffuture) (3)

where fpast, fcur, ffuture are features of past, current and fu-

ture frames from the previous layer. In deep models, fea-

tures of each frame relies on the intermediate results from

far past and future frames (30 frames in I3D; 18 ones in

SlowOnly) — i.e. the adjacent frames rely on each other.

This violates the one-way dependency constraints, making

it difficult to adopt PGT to serialize the computation.

Basic Markov operator To solve the problem, we

slightly modify the original local temporal convolutional

operator to Markov one — i.e. hind frames depend on fore

frames, while fore ones do not depend on hind ones in both

forward and backward processes (Constraint 1 & 2). The

basic Markov convolutional operator (MCO) is to replace

ffuture with zero-padding in forward-propagation and trun-

cate gradients to prevent it back-propagating through time:

fres = Conv(fpast, fcur, 0)

∂fres
∂fpast

:= 0
(4)

This simple modification does not aim at improving the

original model. It is a compromise to make the deep CNN

model satisfy the one-way dependency in Constraint 1 &

2. We can apply the most fine-grained progressive training

method (see Fig. 2 (c)) with it: every progressive step only

propagates information forward and backward one frame —

i.e. the progressive length T ′ = 1 and the number of pro-

gressive steps P = T .

Basic progressive schedule The “Fine-grained” pro-

gressive method above is not necessary, because it makes

the computing complexity of each step too low to take ad-

vantage of all the hardware’s parallel computing power.

More importantly, compared with the original local convo-

lutional operator, the basic Markov one has a worse ability

to extract temporal features since it weakens the temporal

information flows. To this end, we set the progress length T ′

to the same as the ordinary length of short clips generated

by conventional preprocessing (e.g. 8 or 32), and mean-

while use the original and Markov convolutional operators

in combination. Specifically, we adopt modified operators

on the first and last frames of each progressive step, where

the beginning one truncates the gradients and the ending

one zero-pads ffuture, to satisfy the one-way dependency

and make Markov property exist between them. And for

the frames in the middle, the original operator is utilized

(see Fig. 2d and Fig. 3). Note that the original and the mod-

ified Markov operators share the same parameters.

With these basic Markov operator and progressive sched-

ule, we apply the progressive training method on CNN mod-

els and we call it our basic progressive training method

(Fig. 3). It’s worth noting that in this basic method, the

modification is tiny and can be applied on any convolutional

network. In the following parts, we develop more delicate

Markov operators (§3.3) and progressive schedules (§3.4) to

get our full progressive training method.

3.3. Further Designs on Markov operators

When designing Markov convolutional operators, we

make sure that they won’t introduce more parameters or

heavy computation overhead. A further criterion is that op-

erators should strengthen the efficiency of temporal infor-

mation propagation, unlike the basic Markov convolutional

operator which only restricts the information transfer to sat-

isfy the two constraints. We experiment with the following

two advanced operators (see Fig. 3):

Cascade Markov convolutional operator (CMCO) In ba-

sic Markov operator, fpast is just features of the adjacent

11382

org operator Markov operator Markov operator

Avg Avg

basic Markov convolutional operator

cascade Markov convolutional operator

parallel Markov convolutional operator

tg tg
0 0 0

0 0 0

0 0 0

Figure 3: Illustration of the proposed Markov convo-

lutional operators. Compared with the original convolu-

tional operator, the Markov convolutional operator (MCO)

satisfies the one-way dependency constraint. Cascade MCO

enhances the temporal information flow between two pro-

gressive steps. Parallel MCO intensifies long-term features

transfer. “tg” denotes “truncate gradient”.

previous frame. To better propagate the integrated feature

of the last progressive step, CMCO sets fpast as the aggrega-

tion of features from all the frames in the previous progres-

sive step. The aggregation function g(·) can be average/max

pooling or other reasonable choices. CMCO builds denser

information paths to enhance feature propagation.

Parallel Markov convolutional operator (PMCO) In

CMCO, we enhance the connection between the current and

adjacent previous progress steps. In PMCO, we intensify

the information flows from all the previous steps. Specifi-

cally, we set fpast as the momentum average of the features

from all the previous progressive steps. PMCO allows fea-

tures to transfer better over a long time horizon.

These operators do not change the core computation of

the basic Markov convolutional operator, just modify the

input features by adding some preprocessing. Note that the

preprocessing only contains a few addition operations and

the overhead can be ignored.

3.4. Further Designs on Progressive Schedule

Here, we further refine the progressive schedule. In the

basic version, the progressive length T ′ and number of pro-

gressive step P are fixed values. Thus, the positions of the

local and Markov operators in a long sequence are fixed too.

Because the behaviour of the local and Markov operators is

not the same, as the Markov one has a relatively weaker

feature extraction ability than the local operator, the tempo-

ral feature capture will be uneven, leading to information

propagation bottlenecks.

To avoid above problems caused by such unevenness,

we propose the dynamic progressive regularization (DPR).

Specifically, we randomly jitter the value of T ′ and P
around the values of basic schedule and keep T ′ × P float-

ing around a constant value. This method adjusts the ratio of

local operators to Markov operators and meanwhile makes

the position of Markov operators more evenly distributed in

the long video to reduce the effect caused by information

propagation bottlenecks. From another point of view, sim-

ilar to Dropout [45], DPR which randomly adjust the paths

of forward and backward propagation is kind of a model

regularization. Thus, we call it dynamic progressive regu-

larization. In experiments, we adopt two DPR settings:

- DPR-A: We randomly choose T ′ from the set

{0.75T ′

b, T
′

b, 1.25T
′

b} where T ′

b is the progressive length of

the basic schedule. Note that when the progressive length is

1.25T ′

b, the training complexity of each step will be higher.

- DPR-B: We randomly choose T ′ from the set

{0.5T ′

b, 0.75T
′

b, T
′

b}. This setting adopts more Markov op-

erators and won’t cause complexity increase.

3.5. Implementation Details

Optimizer We choose SGD as our optimizer and its spe-

cific settings like momentum and learning rate schedule are

kept the same with corresponding baselines. For different

tasks and datasets, optimization details are given in their ex-

periment sections. Different from the conventional training

method, when training with PGT, we accumulate the gra-

dients of each progressive step and update parameters after

the backward propagations of all the progressive steps.

Progressive implementation We keep the same frame

sampling stride as baselines. For example, a common sam-

pling method is T × τ = 8×8, where T and τ are the num-

ber of sampling frames and the sampling stride. We keep

the stride τ and only enlarge T to train a long video instead

of short clips. Considering the video length in commonly

used datasets, we set the number of progressive step P = 5
for the basic schedule, unless otherwise specified. We let

the two adjacent progressive steps overlap by one frame for

better performance. Thus, the total frame in progressive in-

put is T = (T ′−1)∗P+1. For DPR, given the total number

of input frames Tb of basic schedule, the number of progres-

sive step P is calculated as P = round[(Tb − 1)/(T ′ − 1)]
to keep the total length basically the same.

Inference method Like training, the mainstream infer-

ence method also splits long videos into short clips, tests

them separately, and averages the outputs to get final re-

sults. This method needs to test multiple views and usually,

there are overlaps among the views. The proposed progres-

sive training method trains a long video end-to-end, thus,

when inference, we still test a long video directly. Although

its inference complexity of one view is higher, we can adopt

much fewer views to cover the whole video. We experiment

with two inference methods:

- Original long view (orig long): In this mode, we get rid

of the Markov operators and only utilize the original convo-

lution for all the frames in the long video. It is the same as

testing a long video in only one progressive step.

11383

Table 1: PGT’s performance on Mini-Kinetics-200. We

express the inference complexity as single-view GFLOPs ×
number of progressive steps P× number of views v. “full

PGT” adopts PMCO and DPR-B.

model top-1 top-5 GFLOPs ×P× v

RegNet0.4G-3D 74.5 92.3 6.59 × 1 × 30

RegNet0.4G-3D, + basic PGT 76.6 93.0 6.59 × 5 × 6

RegNet0.4G-3D, + full PGT 77.5 93.6 6.59 × 5 × 6

SlowOnly, R50 77.1 93.4 54.5 × 1 × 30

SlowOnly, R50, + basic PGT 78.9 94.0 54.5 × 5 × 6

SlowOnly, R50, + full PGT 79.6 94.2 54.5 × 5 × 6

- Progressive long view (PG long): Just like the training

phase, a long video is tested in multiple progressive steps.

4. Experiments on Kinetics

We first evaluate our progressive training method on the

large scale action recognition benchmark Kinetics-400 [20]

and provide ablations on its subset Mini-Kinetics-200 [66].

Dataset Kinetics-400 contains 240k training and 20k

validation videos covering 400 action categories. Its sub-

set Mini-Kinetics-200 includes 200 categories and each one

contains 400 training samples and 25 validation samples,

resulting in 80k training and 5k validation samples in total.

Training We adopt ResNet-3D (SlowOnly) [6], RegNet-

3D [40], and SlowFast [6] as our baselines. The baseline

training recipe follows [6]. We run SGD for 196 epochs on

16 GPUs with a mini-batch of 8 clips per GPU with initial

learning rate of 0.2. The half-period cosine learning rate

schedule [27] is adopted. We use a weight decay of 10−4,

momentum of 0.9, and a linear learning rate warm-up [10]

from 0.02 over 34 epochs. Video clips are resized with

shorter side ∈ [256, 320] and inputs are randomly cropped

patches with size of 224× 224. Temporal sampling method

is T × τ = 8 × 8. For progressive training, we enlarge the

weight decay to 2 × 10−4, set T ′ = 8 and P = 5. The

total training epoch reduces to 100 and other recipes keep

the same with baselines.

Inference Following [6], 10 clips with size T × τ =
8 × 8 are uniformly sampled from a video along temporal

dimension. Each frame is resized with shorter side of 256

pixels and three patches of size 256×256 are taken to cover

the spatial dimensions. Thus, there are 10× 3 views in total

for baselines. For PGT, each clip has a size of T ′×P ×τ =
8 × 5 × 8, covering a much longer range. Thus, we only

take 2 temporal views (2× 3 views in total).

4.1. Ablation Study

This section provides ablation studies on Mini-Kinetics-

200 comparing accuracy and computational complexity.

For convenient comparison, we express complexity as one-

view Flops × progressive steps P× number of views v.

Basic and full progressive training In Tab. 1, we re-

port the performance comparison between the progressive

training (PGT) method and baselines to preliminarily reveal

PGT’s effectiveness. Since PGT does not modify models’

overall structure, the one-view complexities of PGT are the

same as the baselines. PGT processes 5 times longer videos

than the baseline. Thus, it needs fewer temporal views to

cover the whole video. Their total complexities are (almost)

the same — i.e. PGT does not involve any overhead. From

Tab. 1, it is seen that PGT improves the top-1 accuracy of

RegNet0.4G [40] by 3.0% and SlowOnly-50 [6] by 2.5%,

revealing the importance of intact global temporal features

that PGT focuses on.

Next, Tab. 2 shows a series of ablations on the progres-

sive training designs and inference methods, mainly using

the RegNet0.4G-3D network, analyzed in turn.

Markov operators Tab. 2a shows the performance

of various Markov convolutional operators. As a naive

Markov operator, the basic MCO improves the performance

significantly as the previous paragraph states, although it

sacrifices some feature extraction capabilities to transfer se-

mantics among progressive steps. CMCO and PMCO alle-

viate this weakness to some extent and further improve the

performance by 0.5% and 0.7%. For the following experi-

ments (except ablations), we employ PMCO as our default.

PGT schedules Different feature extraction capacities

of the Markov and local convolutional operators make tem-

poral features uneven. We solve this problem by introduc-

ing the dynamic progressive regularization (DPR). Tab. 2b

shows the effectiveness of it. It is seen that more progres-

sive steps lead to better performance. DPR-A and DPR-B

have almost the same improvements, where DPR-A is only

a little bit ahead. Since DPR-B has lower complexity, we

employ it as our default for following experiments.

Inference methods For PGT, we test the performance

with longer clips and fewer views. In Tab. 2c, we also test

the baseline model with this setting (first two lines) and we

can see that it achieves similar performance to the multi-

view short-clip setting, without substantial improvements.

This reveals that it is the progressive training process that

makes the model extract better temporal features instead of

the longer test setting. The same conclusion can be drawn

by comparing the 1st & 3rd or 2nd & 4th rows.

Then we compare the two inference methods designed

for PGT mentioned in §3.5. It is seen that the original long

view inference method performs better on Kinetics. In the

next section, we will show that the progressive long view

method is more suitable for Charades which contains longer

activities consisting of several sub-actions.

4.2. Main Results

Tab. 3 shows the comparison with the SOTA results on

Kinetics-400 for PGT method with different backbones:

RegNet [40], ResNet [13], SlowFast [6], and Nonlocal [60].

In comparison to the advanced video baselines, our PGT

method consistently provides a performance boost with

negligible complexity overhead. For single-stream mod-

els such as RegNet and ResNet, PGT improves the perfor-

11384

Table 2: Ablations on Mini-Kinetics-200. Experiments are mainly based on RegNet0.4G-3D. For baseline, T × τ = 8× 8.

P = 5 when adopting PGT.

(a) Markov Operators Operators enhanced

temporal information flow achieve better per-

formances than the basic one.

model operator top-1 top-5

RegNet0.4G-3D baseline 74.5 92.3

RegNet0.4G-3D basic MCO 76.6 93.0

RegNet0.4G-3D CMCO-avg 77.1 93.3

RegNet0.4G-3D CMCO-max 76.9 93.2

RegNet0.4G-3D PMCO 77.3 93.3

SlowOnly, R50 baseline 77.1 93.4

SlowOnly, R50 basic MCO 78.9 94.0

SlowOnly, R50 PMCO 79.3 94.1

(b) PGT Schedules More progres-

sive steps perform better and DPR

is more effective for more steps.

P schedule top-1 top-5

1 step baseline 74.5 92.3

5 step basic 76.6 93.0

5 step DPR-A 77.3 93.4

5 step DPR-B 77.2 93.4

4 step basic 76.3 92.8

4 step DPR-B 76.7 93.0

3 step basic 75.8 92.7

2 step basic 75.1 92.6

(c) Inference Methods Performances of the

baselines and progressive training methods

with different inference schemes.

train method test method top-1 top-5

baseline 10×3 short clip 74.5 92.3

baseline 1×3 orig long 74.7 92.4

basic PGT 10×3 short clip 75.8 92.7

basic PGT 1×3 orig long 76.1 92.7

basic PGT 1×3 PG long 75.6 92.7

basic PGT 2×3 orig long 76.6 93.0

full PGT 2 × 3 orig long 77.5 93.6

full PGT 2 × 3 PG long 76.7 93.1

Table 3: Comparison with the SOTAs on Kinetics-400.

“flow” column indicates whether to adopt the optical flow

and “preT” denotes pre-trained on ImageNet.

inference

model flow preT top-1 top-5 GFLOPs×P × v

I3D [2] � 72.1 90.3 108×1×N/A

Two-Stream I3D � � 75.7 92.0 216×1×N/A

S3D-G [66] � � 77.2 93.0 143×1×N/A

Nonlocal R50 [60] � 76.5 92.6 282×1×30

Nonlocal R101 � 77.7 93.3 359×1×30

STC [3] 68.7 88.5 N/A×1×N/A

ARTNet [58] 69.2 88.3 23.5×1×250

S3D [66] 69.4 89.1 66.4×1×N/A

ECO [70] 70.0 89.4 N/A×1×N/A

I3D [2] � 71.6 90.0 216×1×N/A

R(2+1)D [54] � 73.9 90.9 304×1×115

X3D-M [5] 76.0 92.3 6.2×1×30

X3D-XL [5] 79.1 93.9 48.4×1×30

RegNet0.4G-3D [40] 70.3 89.3 6.59×1×30

RegNet0.4G-3D + PGT 72.1 90.7 6.59×5×6

R50-3D [6] 74.0 91.3 54.5×1×30

R50-3D + PGT 75.9 92.4 54.5×5×6

R101-3D [6] 75.5 91.9 110×1×30

R101-3D + PGT 77.1 92.9 110×5×6

SlowFast R50 [6] 75.8 92.0 65.7×1×30

SlowFast R50 + NL 76.5 92.4 80.8×1×30

SlowFast R50 + PGT 76.8 92.6 65.7× 5×6

SlowFast R101 [6] 77.2 92.8 126×1×30

mance by ∼1.8 accuracy. As for SlowFast with two streams,

PGT provides 1.0% improvements, which is higher than

adopting Nonlocal with 10%∼20% complexity overheads.

Comparisons of the performance and complexity trade-

off are shown in Fig. 4. The horizontal axis measures the

single-step single-view GFLOPs with 256×256 pixels in-

put. We can see that PGT achieves better performance with

lower complexity as the red arrow shows. The red boxes

show that PGT leads to almost the same improvements as

SlowFast does with lower complexities.

4.3. Analysis on Receptive Field

Modern deep convolutional video models often have

large theoretical temporal receptive fields, such as 39 for

SlowOnly network. Theoretical receptive field (TRF) is

the upper bound of effective receptive field (ERF) [30] and

from [30], we know the ERF will gradually increase during

the training process, however, the input short clip gener-

ated by the mainstream temporal cropping training method

is much shorter than the TRF, making model’s ERF difficult

to achieve a relative larger value after training.

73

74

75

76

77

78

40 90 140 190

R50-3D
8x8

SlowFast R50
8x8 R101-3D

8x8

SlowFast R101
8x8

+1.9

+1.0

+0.7

Baseline
+ PGT
+ Nonlocal

single-view GFLOPs

to
p-

1
ac

cu
ra

cy
 o

n
Ki

ne
tic

s-
40

0

R101-3D
16x8

+1.6

Figure 4: Accuracy & complexity comparison on

Kinetics-400. PGT method achieves consistent improve-

ments on all the baselines with negligible overhead. As

the red dashed line and red boxes shows, the PGT method

achieves a better performance/complexity trade-off.

Here we conduct experiments to reveal that the proposed

progressive training method can alleviate this problem. We

adopt the SlowOnly network and train it on the Kinetics-

200 dataset [66]. Qualitative results are shown in Fig. 5.

We can see that compared with the original method trained

on 8 frames, our progressive training method with T ′ = 8
and P = 5 has a 40% larger ERF.

5. Experiments on Charades

We then evaluate the proposed method on Charades

dataset [42] containing longer range activities spanning 30s

on average. It contains about 9.8k training and 1.8k valida-

tion videos in 157 action categories (multi-labelled).

Implementation details We adopt SlowFast [6] and

ResNet-3D (SlowOnly) [6] as our baselines. The models

are pre-trained on Kinetics-400 or Kinetics-600 [1] follow-

ing prior works [6, 5]. For PGT, we set T ′ = 16 and

P = 5 for both training and inference. PMCO and CMCO-

max are adopted together here. We adopt “pg long” in-

ference method and get the final results with max-pooling

over frames, instead of average-pooling since Charades is a

multi-classification dataset.

Results Charades contains longer range activities. Thus,

11385

or
g

pg
t

or
g

pg
t

high response
low response

1 361910 30

mid frame

4 frame

3 frame

Figure 5: Effective receptive field (ERF) of original (org)

and progressive (pgt) training method. The color bars show

the ERF of the 19th frame with 36 input frames in total.

From the red dashed boxes we can see that the progressive

training method has a 40% larger ERF on previous frames.

it can better reflect the advantages of PGT designed for long

videos. Tab. 4 shows the results with ResNet [13], Slow-

Fast [6], and Nonlocal [60] as backbones. It is seen that our

PGT consistently provides a performance boost: 3.1 mAP

improvements on average for SlowOnly and SlowFast. It

is worth noting that for SlowFast-R50, the improvement is

up to 4.2 mAP. Moreover, compared with Nonlocal that in-

troduces 10% overhead and LFB [64] with 182% overhead,

our PGT provides much more performance improvements.

Note that in Tab. 4, we report the performances achieved

by “progressive long view” inference method. The perfor-

mances of “original long view” inference method are ∼3%

lower in mAP, which reveals that “pg long” method is more

suitable for long activities consisting of several sub-actions.

6. Experiments on AVA

The AVA [11] dataset is designed for action detection,

which is labelled with bounding-boxes and action cate-

gories for each person in 437 movies. Following standard

protocol, we report performance (mAP) on 60 classes.

Implementation We adopt SlowOnly [6] and Slow-

Fast [6] as our baselines. Following [11, 46, 18, 6], we

utilize the off-the-shelf human detection results originally

adopted by SlowFast as our region proposals. The models

are pre-trained on Kinetics-400 or Kinetics-600 following

prior works [5, 6, 64]. For PGT, similar to Charades, we

adopt “pg long” inference method and max-pooling over

frames to get multi-classification results.

Results Comparisons with baselines of SlowOnly and

SlowFast are shown in Tab. 5. It is seen that the proposed

PGT provides consistent performance improvements. After

adopting the progressive training method, SlowOnly-R50

model achieves a better performance than the much larger

Table 4: Comparison with the SOTA on Charades. All

PGT settings are based on T × P × τ = 16 × 5 × 8 and

their corresponding baselines are T × τ = 16× 8.

model backbone pretrain mAP GFLOPs×P × v

Nonlocal [60] R101 IN+K400 37.5 544 ×1×30

STRG, +NL [61] R101 IN+K400 39.7 630×1×30

Timeception [15] R101 K400 41.1 N/A

LFB, +NL [64] R101 K400 42.5 529×1×30

X3D-XL [5] - K400 43.4 48.4×1×30

SlowOnly [6] R50 K400 37.3 109×1×30

SlowOnly, + PGT R50 K400 40.3 109×5×6

SlowOnly R101 K400 39.0 187 ×1×30

SlowOnly, + PGT R101 K400 42.7 187×5× 6

SlowFast [6] R50 K400 39.6 130×1×30

SlowFast, +PGT R50 K400 43.8 130×5×6

SlowFast [6] R101 K400 42.1 213×1×30

SlowFast, +NL R101 K400 42.5 234×1×30

SlowFast, +PGT R101 K400 44.3 213×5 ×6

SlowFast, +NL R101 K600 45.2 234×1×30

SlowFast, +PGT R101 K600 47.7 213×5× 6

Table 5: Performances on AVA-v2.2. Our PGT variants

have progressive step P = 5.

model pretrain val mAP

SlowOnly, R50, 8×8 [6] K400 21.9

SlowOnly, R50, 16×8 [6] K400 22.9

SlowOnly, R50, 8×5×8, + PGT K400 23.5

SlowOnly, R101, 8×8 [6] K400 23.4

SlowOnly, R101, 8×5×8, + PGT K400 24.5

SlowFast, R101, 8×8, + NL [5] K600 27.4

SlowFast, R101, 8×5×8, + PGT K600 27.6

SlowOnly-R101 model. Consistent with the experiments

on Kinetics and Charades, PGT method provides higher

performance improvements than the Nonlocal module with

lower computational complexity. Note that compared with

the original training method adopting a twice longer input

length which introduces twice inference complexity, our

PGT version has a better performance (+0.6 mAP vs. 16

× 8 original training version). This verifies that PGT is an

efficient training strategy for processing long videos.

7. Conclusion

We propose the progressive training (PGT) method for

end-to-end training models on long videos. With the re-

designed Markov convolutional operators, we split an inte-

grated computation progress into several serial progressive

steps satisfying one-way dependency, which reduces the re-

source requirement while ensuring the integrity of tempo-

ral semantics. With out-of-box settings, it works on multi-

ple advanced video backbones and benchmarks, achieving

1∼4% higher performances with negligible computation or

parameter overhead. We hope PGT can provide a new op-

tion for researchers who need to process long videos.

Acknowledges This work is supported in part by the Na-

tional Key R&D Program of China, No. 2017YFA0700800,

National Natural Science Foundation of China under Grants

61772332 and Shanghai Qi Zhi Institute, SHEITC (018-

RGZN-02046).

11386

References

[1] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe

Hillier, and Andrew Zisserman. A short note about kinetics-

600. arXiv preprint arXiv:1808.01340, 2018.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 6299–6308, 2017.

[3] Ali Diba, Mohsen Fayyaz, Vivek Sharma, M Mahdi Arzani,

Rahman Yousefzadeh, Juergen Gall, and Luc Van Gool.

Spatio-temporal channel correlation networks for action

classification. In Eur. Conf. Comput. Vis., pages 284–299,

2018.

[4] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 2625–2634, 2015.

[5] Christoph Feichtenhofer. X3d: Expanding architectures for

efficient video recognition. In IEEE Conf. Comput. Vis. Pat-

tern Recog., pages 203–213, 2020.

[6] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

Int. Conf. Comput. Vis., pages 6202–6211, 2019.

[7] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.

Spatiotemporal multiplier networks for video action recog-

nition. In IEEE Conf. Comput. Vis. Pattern Recog., pages

4768–4777, 2017.

[8] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 1933–1941, 2016.

[9] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-

serman. Video action transformer network. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 244–253, 2019.

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017.

[11] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-

oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,

George Toderici, Susanna Ricco, Rahul Sukthankar, et al.

Ava: A video dataset of spatio-temporally localized atomic

visual actions. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 6047–6056, 2018.

[12] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and

imagenet? In IEEE Conf. Comput. Vis. Pattern Recog., pages

6546–6555, 2018.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 770–778, 2016.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Comput., 9(8):1735–1780, 1997.

[15] Noureldien Hussein, Efstratios Gavves, and Arnold WM

Smeulders. Timeception for complex action recognition. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 254–263,

2019.

[16] Noureldien Hussein, Efstratios Gavves, and Arnold W. M.

Smeulders. Videograph: Recognizing minutes-long human

activities in videos. arXiv preprint arXiv:1905.05143, 2019.

[17] Noureldien Hussein, Efstratios Gavves, and Arnold W. M.

Smeulders. PIC: permutation invariant convolution for

recognizing long-range activities. CoRR, abs/2003.08275,

2020.

[18] Jianwen Jiang, Yu Cao, Lin Song, Shiwei Zhang4 Yunkai

Li, Ziyao Xu, Qian Wu, Chuang Gan, Chi Zhang, and Gang

Yu. Human centric spatio-temporal action localization. In

ActivityNet Workshop on CVPR, 2018.

[19] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 1725–1732, 2014.

[20] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Communications of the ACM, 60(6):84–90, 2017.

[22] Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long,

Yandong Li, Zhichao Li, Jie Zhou, and Shilei Wen. Tempo-

ral modeling approaches for large-scale youtube-8m video

understanding. arXiv preprint arXiv:1707.04555, 2017.

[23] Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu,

Jiefeng Li, and Cewu Lu. Detailed 2d-3d joint representation

for human-object interaction. In IEEE Conf. Comput. Vis.

Pattern Recog., 2020.

[24] Yong-Lu Li, Liang Xu, Xinpeng Liu, Xijie Huang, Yue Xu,

Shiyi Wang, Hao-Shu Fang, Ze Ma, Mingyang Chen, and

Cewu Lu. Pastanet: Toward human activity knowledge en-

gine. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[25] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,

and Cees GM Snoek. Videolstm convolves, attends and flows

for action recognition. Computer Vision and Image Under-

standing, 166:41–50, 2018.

[26] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift

module for efficient video understanding. In Int. Conf. Com-

put. Vis., pages 7083–7093, 2019.

[27] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016.

[28] Yujing Lou, Yang You, Chengkun Li, Zhoujun Cheng,

Liangwei Li, Lizhuang Ma, Weiming Wang, and Cewu Lu.

Human correspondence consensus for 3d object semantic un-

derstanding. In Eur. Conf. Comput. Vis., pages 496–512.

Springer, 2020.

[29] Chenxu Luo and Alan L. Yuille. Grouped spatial-temporal

aggregation for efficient action recognition. In Int. Conf.

Comput. Vis., pages 5511–5520. IEEE, 2019.

[30] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel.

Understanding the effective receptive field in deep convolu-

11387

tional neural networks. In Adv. Neural Inform. Process. Syst.,

pages 4898–4906, 2016.

[31] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable

pooling with context gating for video classification. arXiv

preprint arXiv:1706.06905, 2017.

[32] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis,

and Satinder Singh. Action-conditional video prediction us-

ing deep networks in atari games. In Adv. Neural Inform.

Process. Syst., pages 2863–2871, 2015.

[33] Bo Pang, Yizhuo Li, Jiefeng Li, Muchen Li, Hanwen Cao,

and Cewu Lu. Tdaf: Top-down attention framework for vi-

sion tasks. In AAAI, 2021.

[34] Bo Pang, Yizhuo Li, Yifan Zhang, Muchen Li, and Cewu Lu.

Tubetk: Adopting tubes to track multi-object in a one-step

training model. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 6308–6318, 2020.

[35] Bo Pang, Kaiwen Zha, Hanwen Cao, Chen Shi, and Cewu

Lu. Deep rnn framework for visual sequential applications.

In IEEE Conf. Comput. Vis. Pattern Recog., pages 423–432,

2019.

[36] Bo Pang, Kaiwen Zha, Hanwen Cao, Jiajun Tang, Minghui

Yu, and Cewu Lu. Complex sequential understanding

through the awareness of spatial and temporal concepts. Nat.

Mach. Intell., 2(5):245–253, 2020.

[37] Bo Pang, Kaiwen Zha, Yifan Zhang, and Cewu Lu. Further

understanding videos through adverbs: A new video task. In

AAAI, pages 11823–11830, 2020.

[38] AJ Piergiovanni and Michael S Ryoo. Representation flow

for action recognition. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 9945–9953, 2019.

[39] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In Int. Conf. Comput. Vis., pages 5533–5541, 2017.

[40] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In IEEE Conf. Comput. Vis. Pattern Recog., pages

10428–10436, 2020.

[41] Michael S. Ryoo, A. J. Piergiovanni, Mingxing Tan, and

Anelia Angelova. Assemblenet: Searching for multi-stream

neural connectivity in video architectures. In Int. Conf.

Learn. Represent., 2020.

[42] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood

in homes: Crowdsourcing data collection for activity un-

derstanding. In Eur. Conf. Comput. Vis., pages 510–526.

Springer, 2016.

[43] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Adv.

Neural Inform. Process. Syst., pages 568–576, 2014.

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple

way to prevent neural networks from overfitting. J. Mach.

Learn. Res., 15(1):1929–1958, 2014.

[46] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-

phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric

relation network. In Eur. Conf. Comput. Vis., pages 318–334,

2018.

[47] Jianhua Sun, Qinhong Jiang, and Cewu Lu. Recursive so-

cial behavior graph for trajectory prediction. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 660–669, 2020.

[48] Lin Sun, Kui Jia, Kevin Chen, Dit-Yan Yeung, Bertram E

Shi, and Silvio Savarese. Lattice long short-term memory

for human action recognition. In Int. Conf. Comput. Vis.,

pages 2147–2156, 2017.

[49] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human

action recognition using factorized spatio-temporal convolu-

tional networks. In Int. Conf. Comput. Vis., pages 4597–

4605, 2015.

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 1–9, 2015.

[51] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.

Asynchronous interaction aggregation for action detection.

Eur. Conf. Comput. Vis., 2020.

[52] Yongyi Tang, Xing Zhang, Lin Ma, Jingwen Wang, Shaoxi-

ang Chen, and Yu-Gang Jiang. Non-local netvlad encoding

for video classification. In Eur. Conf. Comput. Vis., pages

0–0, 2018.

[53] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In Int. Conf. Comput. Vis., pages

4489–4497, 2015.

[54] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 6450–6459, 2018.

[55] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Mar-

cus Rohrbach, Raymond Mooney, and Kate Saenko. Trans-

lating videos to natural language using deep recurrent neural

networks. arXiv preprint arXiv:1412.4729, 2014.

[56] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin,

and Honglak Lee. Decomposing motion and content for nat-

ural video sequence prediction. Int. Conf. Learn. Represent.,

2017.

[57] Lei Wang, Piotr Koniusz, and Du Huynh. Hallucinating IDT

descriptors and I3D optical flow features for action recogni-

tion with cnns. In Int. Conf. Comput. Vis., pages 8697–8707.

IEEE, 2019.

[58] Limin Wang, Wei Li, Wen Li, and Luc Van Gool.

Appearance-and-relation networks for video classification.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1430–1439, 2018.

[59] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks for action recognition in videos. IEEE Trans. Pat-

tern Anal. Mach. Intell., 41(11):2740–2755, 2018.

[60] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 7794–7803, 2018.

11388

[61] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In Eur. Conf. Comput. Vis., pages 399–417,

2018.

[62] Paul J Werbos. Backpropagation through time: what it does

and how to do it. Proc. IEEE, 78(10):1550–1560, 1990.

[63] Ronald J Williams and Jing Peng. An efficient gradient-

based algorithm for on-line training of recurrent network tra-

jectories. Neural Comput., 2(4):490–501, 1990.

[64] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-

ing He, Philipp Krahenbuhl, and Ross Girshick. Long-term

feature banks for detailed video understanding. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 284–293, 2019.

[65] Zuxuan Wu, Xi Wang, Yu-Gang Jiang, Hao Ye, and Xi-

angyang Xue. Modeling spatial-temporal clues in a hybrid

deep learning framework for video classification. In ACM

Int. Conf. Multimedia, pages 461–470, 2015.

[66] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding. Eur. Conf. Comput. Vis., 2018.

[67] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Ye-

ung, Wai-Kin Wong, and Wang-chun Woo. Convolutional

lstm network: A machine learning approach for precipita-

tion nowcasting. In Adv. Neural Inform. Process. Syst., pages

802–810, 2015.

[68] Yuliang Xiu, Jiefeng Li, Haoyu Wang, Yinghong Fang, and

Cewu Lu. Pose Flow: Efficient online pose tracking. In Brit.

Mach. Vis. Conf., 2018.

[69] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 4694–4702, 2015.

[70] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In Eur. Conf. Comput. Vis., pages 695–712,

2018.

11389

