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Abstract

Unsupervised image clustering methods often introduce

alternative objectives to indirectly train the model and are

subject to faulty predictions and overconfident results. To

overcome these challenges, the current research proposes

an innovative model RUC that is inspired by robust learn-

ing. RUC’s novelty is at utilizing pseudo-labels of existing

image clustering models as a noisy dataset that may include

misclassified samples. Its retraining process can revise mis-

aligned knowledge and alleviate the overconfidence prob-

lem in predictions. The model’s flexible structure makes it

possible to be used as an add-on module to other cluster-

ing methods and helps them achieve better performance on

multiple datasets. Extensive experiments show that the pro-

posed model can adjust the model confidence with better

calibration and gain additional robustness against adver-

sarial noise.

1. Introduction

Unsupervised clustering is a core task in computer vi-

sion that aims to identify each image’s class membership

without using any labels. Here, a class represents the group

membership of images that share similar visual characteris-

tics. Many studies have proposed deep learning-based algo-

rithms that utilize distance in a feature space as the similar-

ity metric to assign data points into classes [11, 44].

Training without ground-truth guidance, however, is

prone to finding trivial solutions that are learned from low-

level visual traits like colors and textures [22]. Several stud-

ies have introduced innovative ways to guide the model’s

training indirectly by setting alternative objectives. For ex-

ample, Hu et al. [20] proposed to maximize the mutual in-

formation between input and its hidden representations, and

Ji et al. [22] proposed to learn invariant features against

data augmentation. Entropy-based balancing has often been

adopted to prevent degenerate solutions [17, 22, 42].

Nevertheless, these alternative objectives are bound to

∗Equal contribution to this work.

Figure 1: Illustration for this work’s basic concept: robust

learning is used to separate clean data from unclean data

using pseudo-labels from off-the-shelf unsupervised clus-

tering algorithm.

producing overconfident results, i.e., low-entropy predic-

tions, due to the dense grouping among clusters. When

uncertain samples are added to a wrong cluster at an early

stage of training, the model gradually becomes overconfi-

dent in its later predictions as the noise from misclassifica-

tion accumulates and degrades the overall performance.

This paper introduces a novel robust learning train-

ing method, RUC (Robust learning for Unsupervised

Clustering), that runs in conjunction with existing cluster-

ing models to alleviate the noise discussed above. Utiliz-

ing and treating the existing clustering model’s results as

a noisy dataset that may include wrong labels, RUC up-

dates the model’s misaligned knowledge. Bringing insights

from the literature, we filter out unclean samples and apply

loss correction as in Fig. 1. This process is assisted by la-

bel smoothing and co-training to reduce any wrong gradient

signals from unclean labels. This retraining process with re-

vised pseudo-labels further regularizes the model and pre-

vents overconfident results.

RUC comprises two key components: (1) extracting

clean samples and (2) retraining with the refined dataset.

We propose confidence-based, metric-based, and hybrid

strategies to filter out misclassified pseudo-labels. The first

strategy considers samples of high prediction confidence

from the original clustering model as a clean set; it filters

out low confidence samples. This strategy relies on the
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model’s calibration performance. The second strategy uti-

lizes similarity metrics from unsupervised embedding mod-

els to detect clean samples with non-parametric classifiers

by checking whether the given instance shares the same la-

bels with top k-nearest samples. The third strategy com-

bines the above two and selects samples that are credible

according to both strategies.

The next step is to retrain the clustering model with the

sampled dataset. We use MixMatch [5], a semi-supervised

learning technique; which uses clean samples as labeled

data and unclean samples as unlabeled data. We then adopt

label smoothing to leverage strong denoising effects on the

label noise [29] and block learning from overconfident sam-

ples [22, 42]. Finally, a co-training architecture with two

networks is used to mitigate noise accumulation from the

unclean samples during training and increase performance.

We evaluate RUC with rigorous experiments on datasets,

including CIFAR-10, CIFAR-20, STL-10, and ImageNet-

50. Combining RUC to an existing clustering model out-

performs the state-of-the-art results with the accuracy of

90.3% in CIFAR-10, 54.3% in CIFAR-20, 86.7% in STL-

10, and 78.5% in ImageNet-50 dataset. RUC also enhances

the baseline model to be robust against adversarial noise.

Our contributions are as follows:

• The proposed algorithm RUC aids existing unsuper-

vised clustering models via retraining and avoiding

overconfident predictions.

• The unique retraining process of RUC helps existing

models boost performance. It achieves a 5.3pp in-

crease for the STL-10 dataset when added to the state-

of-the-art model (81.4% to 86.7%).

• The ablation study shows every component in RUC

is critical, including the three proposed strategies (i.e.,

confidence-based, metric-based, and hybrid) that excel

in extracting clean samples from noisy pseudo-labels.

• The proposed training process is robust against adver-

sarial noise and can adjust the model confidence with

better calibrations.

Implementation details of the model and codes are avail-

able at https://github.com/deu30303/RUC.

2. Related Work

2.1. Unsupervised Image Clustering

The main objective of clustering is to group the data

points into distinct classes of similar traits [21]. Most real-

world problems deal with high dimensional data (e.g., im-

ages), and thereby, setting a concrete notion of similar-

ity while extracting low-dimensional features becomes key

components for setting appropriate standards for group-

ing [49]. Likewise, unsupervised clustering is a line of

research aiming to tackle both dimensionality reduction

and boundary identification over the learned similarity met-

ric [17]. Existing research can be categorized into sequen-

tial, joint, and multi-step refinement approach.

Sequential approach. Sequential approach extracts fea-

tures, then sequentially applies the conventional distance or

density-based clustering algorithm for class assignments.

For example, Ding et al. [11] use principal component

analysis to extract low-dimensional features and then ap-

ply k-means clustering to assign classes. For feature ex-

traction, autoencoder structures are often used to extract la-

tent features before grouping, types of autoencoder include

stacked [44], boolean [3], or variational autoencoder [24].

However, these models tend to produce features with little

separation among clusters due to the lack of knowledge on

subsequent assignment processes.

Joint approach. The joint approach’s characteristic is to

use an end-to-end pipeline that concurrently performs fea-

ture extraction and class assignment. An example is Yang et

al. [51], which adopt the concept of clustering loss to

guarantee enough separations among clusters. End-to-end

CNN pipelines are used widely to iteratively identify clus-

ters while refining extracted features [6, 8, 49]. Recent

studies have shown that a mutual information-based objec-

tive is an effective measure to improve classification accu-

racy [20, 22]. Nonetheless, those models still bear the prob-

lem of generating unintended solutions that depend on triv-

ial low-level features from random initialization [17].

Multi-step refinement approach. To mitigate the un-

intended trivial solutions, recent approaches leverage the

power of unsupervised embedding learning models to pro-

vide better initialization for downstream clustering tasks [9,

48, 50]. These methods generate feature representations to

gather data points with similar visual traits and push away

the rest in an embedding space. With the initialization, clus-

tering results are elaborated in a refinement step, bringing

significant gain in its class assignment quality [17, 42]. In

particular, SCAN [42] first obtains high-level feature rep-

resentations by feature similarity then clusters those repre-

sentations by nearest neighbors, and this model has shown

remarkable performance on unsupervised clustering.

Add-on modules to improve unsupervised clustering.

The proposed retraining process with sample selection

strategy improves off-the-shelf unsupervised clustering

algorithms (e.g., sequential, joint, multi-step refinement) by

acting as an add-on module. Our module’s main objective

is to revise the misaligned knowledge of trained clustering

models via label cleansing and retraining with the refined

labels. This method has not been well investigated before

but has begun to be proposed recently. Gupta et al. [14]

show that semi-supervised retraining improves unsuper-

vised clustering. They draw a graph where data samples

are nodes, and the confidence from ensemble models
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Figure 2: Illustration of the proposed model. Our model first selects clean samples as a labeled dataset X and considers the

remaining samples as an unlabeled dataset U (Section 3.1). Next, we train two networks fθ(1) and fθ(2) in a semi-supervised

fashion (Section 3.2). In each epoch, the MixMatch algorithm, along with co-training and label smoothing, is applied for

training. The clean set is updated via co-refurbishing for the next epoch.

between the samples is an edge. Then, a dense sub-graph is

considered as a clean set.

The main difference between Gupta et al. and ours is

in how we treat the pseudo-labels obtained by the cluster-

ing. Gupta et al. treats the pseudo-label as a ground-truth

for semi-supervised learning, which produces sub-optimal

result if the pseudo-label is noisy (i.e., memorization). In

contrast, we introduce the robust learning concept of label

smoothing and co-training to mitigate the memorization of

noisy samples, which leads to substantial improvements in

the calibration and clustering performance.

2.2. Robust Learning With Label Noise

A widely used setting for robust learning is where an

adversary has deliberately corrupted the labels, which oth-

erwise arise from some clean distribution [33, 40]. Ac-

cording to the literature, deep networks easily overfit to

the label noise during training and get a low generalization

power [28]. In this light, models that prevent overfitting in

a noise label environment have been studied.

Loss correction. The first representative line of work is

a loss correction, which relabels unclean samples explicitly

or implicitly. For example, Patrini et al. [35] estimate the

label transition probability matrix to correct the loss and re-

train the model. To estimate the transition matrix more ac-

curately, the gold loss correction approach [19] is proposed

to utilize trusted labels as additional information.

Loss reweighting. The next line of work is loss reweight-

ing, which aims to give a smaller weight to the loss of un-

clean samples so that model can reduce the negative effect

of label noise during training. One work computes the im-

portance as an approximated ratio of two data distributions;

clean and unclean [46]. On the other hand, the active bias

approach [7] calculates the inconsistency of predictions dur-

ing training and assigns a weight to penalize unclean data.

Sample selection. Relabeling the misclassified samples

may cause a false correction. In this context, recent works

introduce a sample selection approach that filters out mis-

classified samples and only selects clean data for train-

ing [30, 32]. Notably, the small loss trick, which regards

the sample with small training loss as clean, effectively sep-

arates true- and false-labeled data points [2, 23, 28]. Also,

recent studies suggest diverse ways to lead additional per-

formance by maintaining two networks to avoid accumulat-

ing sampling bias [16, 54], adopting refurbishment of false-

labeled samples [39], or using a semi-supervised approach

to utilize false-labeled sample maximally [27]. Our model

advances some of these sample selection approaches to fil-

ter out unclean samples out of clustering results and utilize

clean samples only during retraining.

3. Method

RUC is an add-on method that can be used in conjunc-

tion with the existing unsupervised clustering methods to

refine mispredictions. Its key idea is at utilizing the ini-

tial clustering results as noisy pseudo-labels and learning

to refine them with a mild clustering assumption [41] and

techniques from the robust learning [27, 29].

Figure 2 and Algorithm 1 illustrate the overall pipeline

of the proposed algorithm. Given the initial pseudo-labels,

we first divide the training data into the two disjoint sets:

clean and unclean (Section 3.1). Then treating these sets

each as labeled and unlabeled data, we train a classifier in a

semi-supervised manner while refurbishing the labeled and

unlabeled data (Section 3.2). We guide the semi-supervised

class assignment with robust learning techniques, such as

co-training and label smoothing, to account for inherent la-

bel noises. These techniques are useful in handling label

noises and calibrating the model’s prediction score. Below

we describe the model in details.

3.1. Extracting Clean Samples

Let D = {(xi,yi)}
N
i=1 denote the training data, where

xi is an image and yi = gφ(xi) is a pseudo-label from
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Algorithm 1 Robust learning algorithm using unsupervised clustering pseudo-label.

Input: Sampling strategy S , training dataset with pseudo-labels D, two networks fθ(1) , fθ(2) , sharpening temperature T ,

number of augmentations M , unsupervised loss weight λU , refurbish threshold τ2, weak- and strong augmentation φa, φA

/* Divide the dataset D into clean and noisy set using a sampling strategy */

X ,U = S(D) (i.e. X = {(xb,yb) : b ∈ (1, ..., B)}, U = {ub : b ∈ (1, ..., B)})
for k ∈ {1, 2} do

/* Train the two networks fθ(1) and fθ(2) iteratively */

for b ∈ {1, .., B} do

ỹb = (1− ǫ) · yb +
ǫ

(C−1)
· (1− yb) // Inject uniform noise into all classes (label smoothing)

for m ∈ {1, ..,M} do

xb,m,ub,m = φa(xb), φa(ub) // Perform weak augmentation M times

end

ȳb = (1− w
(c)
b ) · yb + w

(c)
b · fθ(c)(xb) // Refine the labels ((c) denotes the counter network)

ȳb = Sharpen(ȳb, T ) // Apply sharpening to the refined label

q̄b =
1

2M

∑
m
(fθ(1)(ub,m) + fθ(2)(ub,m)) // Ensemble both networks’ predictions to guess labels

q̄b = Sharpen(q̄b, T ) // Apply sharpening to the guessed labels

end

X s = {(φA(xb), ỹb); b ∈ {1, ..., B}} // Strongly augmented samples with smoothed labels

X̄ (k) = {(xb, ȳb); b ∈ {1, ..., B}} // Co-refined labeled samples

Ū (k) = {(ub, q̄b); b ∈ {1, ..., B}} // Co-refined unlabeled samples

X̂ (k), Û (k) = MixMatch(X̄ (k), Ū (k)) // Apply MixMatch

Lt = LXs + L
X̂
+ λULÛ

// Calculate the total loss

X ← X ∪ Co-Refurbish(U , fθ(k) , τ2) // Refurbish noisy samples to clean samples (Eq. (18), (19))

θ(k) ← SGD(Lt, θ
(k)) // Update network parameters

end

an unsupervised classifier gφ. The model first divides the

pseudo-labels into two disjoint sets as D = X ∪ U with

a specified sampling strategy. We consider X as clean,

whose pseudo-labels are moderately credible and thus can

be used as a labeled dataset (x,y) ∈ X for refinement. In

contrast, we consider U as unclean, whose labels we discard

u ∈ U . Designing an accurate sampling strategy is not

straightforward, as there is no ground-truth to validate the

pseudo-labels directly. Inspired by robust learning’s clean

set selection strategy, we explore three different approaches:

(1) confidence-based, (2) metric-based, and (3) hybrid.

Confidence-based strategy. This approach selects clean

samples based on the confidence score of the unsupervised

classifier. Given a training sample (x,y) ∈ D, we consider

the pseudo-label y is credible if max(y) > τ1, and add it

to the clean set X . Otherwise, it is assigned to U . This

is motivated by the observation that the unsupervised clas-

sifier tends to generate overconfident predictions; thus, we

trust only the most typical examples from each class while

ignoring the rest. The threshold τ1 is set substantially high

to eliminate as many uncertain samples as possible.

Metric-based strategy. The limitation of the above ap-

proach is that the selection strategy still entirely depends

on the unsupervised classifier. The metric-based approach

leverages an additional embedding network hψ learned in

an unsupervised manner (e.g., SimCLR [9]) and measures

the credibility of the pseudo-label based on how well it

coincides to the classification results using hψ . For each

(x,y) ∈ D, we compute its embedding hψ(x), and apply

the non-parameteric classifier based on k-Nearest Neigh-

bor (k-NN) by y′ = k-NN(hψ(x)). We consider that the

pseudo-label is credible if argmax(y) = argmax(y′) and

add it to the clean set X . Otherwise, it is assigned to the

unclean set U .

Hybrid strategy. This approach will add a sample to the

clean set X only if it is considered credible by both the

confidence-based and metric-based strategies. All other

samples are added to U .

3.2. Retraining via Robust Learning

Given the clean setX and the unclean set U , our next step

aims to train the refined classifier fθ that revises incorrect

predictions of the initial unsupervised classifier.

Vanilla semi-supervised learning. A naive baseline is to

consider X as labeled data and U as unlabeled data each

to train a classifier fθ using semi-supervised learning tech-

niques. We utilize MixMatch [5] as such a baseline, which

is a semi-supervised algorithm that estimates low-entropy

mixed labels from unlabeled examples using MixUp aug-

mentation [56].1 For unsupervised clustering, MixUp can

1Note that our method is not dependent on the particular choice of the

semi-supervised learning method and can incorporate the others.
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bring additional resistance against noisy labels since a large

amount of extra virtual examples from MixUp interpolation

makes memorization hard to achieve [27, 56]. Specifically,

given a two paired data (x1,y1) and (x2,y2) sampled from

either labeled or unlabeled data, it augments the data using

the following operations.

λ ∼ Beta(α, α) (1)

λ′ = max(λ, 1− λ) (2)

x′ = λ′x1 + (1− λ′)x2 (3)

y′ = λ′y1 + (1− λ′)y2. (4)

In the case of unlabeled data u ∈ U , MixMatch is employed

such that a surrogate label y = q is obtained by averaging

the model’s predictions over multiple augmentations after

sharpening [5]. Later, we will show that using the labels y

and q directly in semi-supervised learning leads to a subop-

timal solution and discuss how to improve its robustness.

For X̂ and Û after MixMatch (Eq. (5)), a vanilla semi-

supervised learning model trains with two separate losses:

the cross-entropy loss for the labeled set X̂ (Eq. (6)), and the

consistency regularization for the unlabeled set Û (Eq. (7)).

H(p, q) denotes the cross-entropy between p and q.

X̂ , Û = MixMatch(X ,U) (5)

L
X̂

=
1

|X̂ |

∑

x̂,ŷ∈X̂

H(ŷ, fθ(x̂)) (6)

L
Û
=

1

|Û |

∑

û,q̂∈Û

||q̂− fθ(û)||
2
2 (7)

Label smoothing. To regularize our model from being

overconfident to noisy predictions, we apply label smooth-

ing along with vanilla semi-supervised learning. Label

smoothing prescribes soft labels by adding uniform noise

and improves the calibration in predictions [29]. Given a

labeled sample with its corresponding label (x,y) ∈ X , we

inject uniform noise into all classes as follows:

ỹ = (1− ǫ) · y +
ǫ

(C − 1)
· (1− y) (8)

where C is the number of class and ǫ ∼ Uniform(0, 1) is the

noise. We compute cross-entropy using the soft label ỹ and

the predicted label of the strongly augmented sample φA(x)
via RandAugment [10]. We find that strong augmentations

minimize the memorization from noise samples.

LX s =
1

|X |

∑

x,ỹ∈X

H(ỹ, fθ(φA(x))) (9)

Our final objective for training can be written as:

L(θ;X , X̂ , Û) = LX s + L
X̂
+ λULÛ

, (10)

where λU is a hyper-parameter to control the effect of the

unsupervised loss in MixMatch.

Co-training. Maintaining a single network for learning

has a vulnerability of overfitting to incorrect pseudo-labels

since the initial error from the network is transferred back

again, and thereby, accumulated [16]. To avoid this fallacy,

we additionally introduce a co-training module where

the two networks fθ(1) , fθ(2) are trained in parallel and

exchange their guesses for teaching each other by adding a

co-refinement step on top of MixMatch.

Co-refinement is a label refinement process that aims to

produce reliable labels by incorporating both networks’ pre-

dictions. Following the previous literature [27], we apply

co-refinement both on the label set X and the unlabeled set

U for each network. Here, we explain the co-refinement

process from the perspective of fθ(1) . For the labeled data

point x, we calculate the linear sum between the original la-

bel y inX and the prediction from the counter network fθ(2)

(Eq. (11)) and apply sharpening on the result to generate the

refined label ȳ (Eq. (12)).

ȳ = (1− w(2)) · y + w(2) · fθ(2)(x) (11)

ȳ = Sharpen(ȳ, T ), (12)

where w(2) is the counter network’s confidence value of x,

and T is the sharpening temperature. For the unlabeled set

U , we apply an ensemble of both networks’ predictions to

guess the pseudo-label q̄ of data sample u as follows:

q̄ =
1

2M

∑

m

(fθ(1)(um) + fθ(2)(um)) (13)

q̄ = Sharpen(q̄, T ), (14)

where um is m-th weak augmentation of u.

In place of X and U , co-refinement produces the refined

dataset (x, ȳ) ∈ X̄ (1), and (u, q̄) ∈ Ū (1) through Eq. (11)

to (14). We utilize those datasets as an input for MixMatch,

and the model is eventually optimized as follows:

X̄ (1), Ū (1) = Co-refinement(X ,U , θ(1), θ(2)) (15)

X̂ (1), Û (1) = MixMatch(X̄ (1), Ū (1)) (16)

θ(1) ← argmin
θ(1)
L(θ(1);X , X̂ (1), Û (1)), (17)

where L is the loss defined in Eq. (10). This process is also

conducted for fθ(2) in the same manner.

Co-refurbishing. Lastly, we refurbish the noise samples

at the end of every epoch to deliver the extra clean samples

across the training process. If at least one of the networks’

confidence on the given unclean sample u ∈ U is over the

threshold τ2, the corresponding sample’s label is updated

with the network’s prediction p. The updated sample is then

regarded as clean and appended to the labeled set X .

p = fθ(k)(u), where k = argmax
k′

(max(fθ(k′)(u))) (18)

X ← X ∪ {(u,1p)|max(p) > τ2}, (19)
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where 1p is a one-hot vector of p whose i-th element is 1,

considering i = argmax(p).

4. Experiments

For evaluation, we first compared the performance of

our model against other baselines over multiple datasets.

Then, we examined each component’s contribution to

performance improvement. Lastly, we investigated how

RUC helps improve existing clustering models in terms

of their confidence calibration and robustness against

adversarial attacks.

4.1. Unsupervised Image Clustering Task

Settings. Four benchmark datasets were used. The first

two are CIFAR-10 and CIFAR-100, which contain 60,000

images of 32x32 pixels. For CIFAR-100, we utilized 20

superclasses following previous works [42]. The next is

STL-10, containing 100,000 unlabeled images and 13,000

labeled images of 96x96 pixels. For the clustering problem,

only 13,000 labeled images were used. Lastly, we test the

model with the large-scale ImageNet-50 dataset, containing

65,000 images of 256x256 pixels.

Our model employed the ResNet18 [18] architecture fol-

lowing other baselines [17, 22, 42] and the model was

trained for 200 epochs. Initial confidence threshold τ1 was

set as 0.99, and the number of neighbors k to divide the

clean and noise samples was set to 100. The threshold τ2
for refurbishing started from 0.9 and increased by 0.02 in

every 40 epochs. The label smoothing parameter ǫ was set

to 0.5. For evaluating the class assignment, the Hungarian

method [25] was used to map the best bijection permutation

between the predictions and ground-truth.

Result. Table 1 shows the overall performance of clus-

tering algorithms over three datasets: CIFAR-10, CIFAR-

20, and STL-10. For these datasets, the proposed model

RUC, when applied to the SCAN [42] algorithm, outper-

forms all other baselines. Particularly for STL-10, the com-

bined model shows a substantial improvement of 5.3 pp.

Table 2 reports ImageNet-50 result on the confidence based

sampling strategy, which demonstrates RUC’s applicabil-

ity to large-scale dataset. Furthermore, RUC achieves con-

sistent performance gain over another clustering model,

TSUC [17]. These results confirm that our model can be

successfully applied to existing clustering algorithms and

improve them. We also confirm that all three selection

strategies (i.e., confidence-based, metric-based, and hybrid)

bring considerable performance improvement.

4.2. Component Analyses

To evaluate the model’s efficacy, we conduct an ablation

study by repeatedly assessing its performance after remov-

ing each component. We also evaluate the accuracy of dif-

Method CIFAR-10 CIFAR-20 STL-10

k-means [45] 22.9 13.0 19.2

Spectral clustering [55] 24.7 13.6 15.9

Triplets [37] 20.5 9.9 24.4

Autoencoder (AE) [4] 31.4 16.5 30.3

Variational Bayes AE [24] 29.1 15.2 28.2

GAN [36] 31.5 15.1 29.8

JULE [52] 27.2 13.7 27.7

DEC [49] 30.1 18.5 35.9

DAC [8] 52.2 23.8 47.0

DeepCluster [6] 37.4 18.9 33.4

ADC [15] 32.5 16.0 53.0

IIC [22] 61.7 25.7 49.9

TSUC† [17] 80.2 35.5 62.0

SCAN† [42] 88.7 50.6 81.4

TSUC + RUC (Confidence) 81.8 / 82.5 39.6 / 40.6 65.1 / 65.5

TSUC + RUC (Metric) 82.5 / 82.9 39.5 / 40.4 66.3 / 66.6

TSUC + RUC (Hybrid) 82.1 / 82.8 39.5 / 40.6 66.0 / 66.8

SCAN + RUC (Confidence) 90.3 / 90.3 53.3 / 53.5 86.7 / 86.8

SCAN + RUC (Metric) 89.5 / 89.5 53.9 / 53.9 84.7 / 85.1

SCAN + RUC (Hybrid) 90.1/ 90.1 54.3 / 54.5 86.6 / 86.7

Table 1: Performance improvement with RUC (accu-

racy presented in percent). Baseline results are excerpted

from [17, 42] and we report the last/best accuracy. †Results

obtained from our experiments with official code.

Method SCAN (Best) SCAN + RUC (Last / Best accuracy)

ImageNet-50 76.8 78.5 / 78.5

Table 2: Performance comparison over ImageNet-50

Setup Last Acc Best Acc

RUC with all components 86.7 86.8

without co-training 86.2 86.4

without label smoothing 85.5 85.8

with MixMatch only 85.2 85.4

Table 3: Ablation results of the SCAN+RUC on STL-10

ferent selection and refurbishing strategies based on preci-

sion, recall, and the F1 score.

Ablation study. The proposed model utilizes two robust

learning techniques to cope with unclean samples: co-

training and label smoothing. We remove each component

from the full model to assess its efficacy. Table 3 shows

the classification accuracy of each ablation on the STL-10

dataset. RUC with all components performs the best, im-

plying that dropping any component results in performance

degradation. We also compare a variant, which drops both

label smoothing and co-training (i.e., MixMatch only). The

effect of co-training is not evident in Table 3. Neverthe-

less, it improved the performance from 36.3% to 39.6% for

the lowest noise ratio CIFAR-20 pseudo-labels when we set
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(a) SCAN (b) SCAN+RUC (epoch 50) (c) SCAN+RUC (epoch 100) (d) SCAN+RUC (epoch 200)

Figure 3: Visualization of clustering results on STL-10. The leftmost figure shows the results from the SCAN, while the

right three figures display the intermediate results of our model on top of SCAN at different training epochs. This result

demonstrates that RUC effectively alleviates the overconfident predictions while enhancing the clustering quality.

Dataset CIFAR-10 CIFAR-20 STL-10

SCAN 88.7 50.6 81.4

SCAN + Gupta et al. 88.3 / 89.5 53.2 / 53.3 84.2 / 84.3

SCAN + DivideMix 86.5 / 87.9 53.5 / 53.6 80.6 / 83.9

SCAN + M-correction 81.6 / 88.6 48.5 /50.4 81.1 / 81.3

SCAN + P-correction 87.7 / 88.7 49.5 / 50.5 81.2 /81.4

SCAN + RUC (ours) 90.1/ 90.1 54.3 / 54.5 86.6 / 86.7

Table 4: Performance comparison with other possible add-

on modules (Last / Best accuracy)

the base model as TSUC. This finding may suggest that co-

training is more effective for pseudo-labels with high noise

ratios. The co-training structure showed additional stability

in training. Due to space limitation, we report these findings

in the supplementary material.

Comparison with other possible add-on modules As

an alternative of RUC, one may combine the extant

robust learning algorithms (e.g., M-correction [1], P-

correction [53], and DivideMix [27]) or another previously

proposed add-on module (e.g., Gupta et al. [14]) on top of

SCAN [42]. Table 1 summarizes the comparisons to four

baselines. For a fair comparison, we employed SCAN as

the initial clustering method and applied each baseline on

top of it.2 As shown in the results, improving noisy clus-

tering is non-trivial as some baselines show even worse re-

sults after the refinement (e.g., DivideMix, M-correction,

P-correction). While Gupta et al. effectively refines the

results, its improvement is limited when the initial cluster-

ing is reasonably accurate (e.g., CIFAR-10). In contrast,

RUC achieves consistent improvements in all datasets with

non-trivial margins, showing that a carefully designed ro-

bust learning strategy is critical to the performance gain.

2For methods employing an ensemble of clusterings (e.g., Gupta et al.),

we employed multiple SCAN models with random initialization. We also

applied the same semi-supervised method (i.e., MixMatch).

Figure 4: Confidence distribution for noise samples from

the STL-10 dataset. RUC shows more widely distributed

confidence and produces better calibration.

4.3. In­Depth Performance Analysis

So far, we showed that RUC improves existing baselines

substantially, and its components contribute to the perfor-

mance gain. We now examine RUC’s calibration effect and

present a qualitative analysis by applying it to the state-of-

the-art base model, SCAN [42]. We will also demonstrate

the role of RUC in handling adversarially crafted noise.

Confidence calibration. Many unsupervised clustering

algorithms are subject to overconfident results due to their

entropy-based balancing [17, 42]. If a model is overcon-

fident to noisy samples, separating the clean and unclean

set becomes challenging, and this can induce overall per-

formance degradation. Figure 4 shows the calibration effect

of RUC. SCAN’s confidence is highly concentrated near

1, while our model’s confidence is widely distributed over

[0.6, 0.8]. We also report the degree of calibration quality

using Expected Calibration Error (ECE) [13]:

ECE =
M∑

m=1

|Bm|

n
|acc(Bm)− conf(Bm)|, (20)
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Figure 5: Confusion matrices of the SCAN and SCAN+RUC re-

sults on STL-10. The row names are predicted class labels, and

the columns are the ground-truths.

Figure 6: Class activation maps and the

model’s confidence on STL-10. The high-

lighted area indicates where the model fo-

cused to classify the image.

where n is the number of data, Bm is the m-th group from

equally spaced buckets based on the model confidence over

the data points; acc(Bm) and conf(Bm) are the average

accuracy and confidence over Bm. Lower ECE of RUC in

Figure 4 implies that our approach led to better calibrations.

To observe this effect more clearly, we visualize the clus-

tering confidence result at different training epochs in Fig-

ure 3. Unlike the result of SCAN in which the overly clus-

tered sample and the uncertain sample are mixed, the result

of SCAN+RUC shows that the sample’s class distribution

has become smoother, and uncertain samples disappeared

quickly as training continues.

Qualitative analysis. We conducted a qualitative analysis

to examine how well RUC corrects the initial misclassifica-

tion in pseudo-labels. Figure 5 compares the confusion ma-

trices of SCAN and the SCAN+RUC for STL-10. A high

concentration of items on the diagonal line confirms the ad-

vanced correction effect of RUC for every class. Figure 6

compares how the two models interpreted class traits based

on the Grad-CAM [38] visualization on example images.

The proposed model shows a more sophisticated prediction

for similar images.

Robustness to adversarial noise. Clustering algorithms

like SCAN introduce pseudo-labels to train the model

via the Empirical Risk Minimization (ERM) method [43].

ERM is a learning principle that minimizes the averaged er-

ror over the sampled training data (i.e., empirical risk) to

find the model with a small population risk (i.e., true risk).

However, ERM is known to be vulnerable to adversarial ex-

amples, which are crafted by adding visually imperceptible

perturbations to the input images [31, 56].

Here, we show that RUC improves robustness against

the adversarial noise. We conduct an experiment on STL-10

using adversarial perturbations of FGSM [12] and BIM [26]

attacks, whose directions are aligned with the gradient of

the loss surface of given samples. Figure 7 compares the

model’s ability to handle the adversarial noise. Models

based on MixMatch (Gupta et al., DivideMix, RUC) out-

perform the rest, probably because the calibration effect of

MixUp prevents overconfident predictions. Among them,

RUC achieves superior improvement, demonstrating that

robust learning components, such as careful filtering, label

smoothing, and co-training, can also handle the adversarial

noise (see the supplementary material for further details).

(a) FGSM attack (b) BIM attack

Figure 7: RUC’s robustness to adversarial attacks, experi-

mented with different perturbation rate ǫ. Robust learning

components are important in handling the adversarial noise.

5. Conclusion

This study presented RUC, an add-on approach for im-

proving existing unsupervised image clustering models via

robust learning. Retraining via robust training helps avoid

overconfidence and produces more calibrated clustering re-

sults. As a result, our approach achieved a meaningful gain

on top of two state-of-the-art clustering methods. Finally,

RUC helps the clustering models to be robust against ad-

versarial attacks. We expect robust learning will be a critical

building block to advance real-world clustering solutions.
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