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Abstract

Impressive progress in 3D shape extraction led to rep-

resentations that can capture object geometries with high

fidelity. In parallel, primitive-based methods seek to repre-

sent objects as semantically consistent part arrangements.

However, due to the simplicity of existing primitive repre-

sentations, these methods fail to accurately reconstruct 3D

shapes using a small number of primitives/parts. We ad-

dress the trade-off between reconstruction quality and num-

ber of parts with Neural Parts, a novel 3D primitive repre-

sentation that defines primitives using an Invertible Neural

Network (INN) which implements homeomorphic mappings

between a sphere and the target object. The INN allows

us to compute the inverse mapping of the homeomorphism,

which in turn, enables the efficient computation of both the

implicit surface function of a primitive and its mesh, with-

out any additional post-processing. Our model learns to

parse 3D objects into semantically consistent part arrange-

ments without any part-level supervision. Evaluations on

ShapeNet, D-FAUST and FreiHAND demonstrate that our

primitives can capture complex geometries and thus simul-

taneously achieve geometrically accurate as well as inter-

pretable reconstructions using an order of magnitude fewer

primitives than state-of-the-art shape abstraction methods.

1. Introduction

Recovering the geometry of a 3D shape from a single

RGB image is a fundamental task in computer vision and

graphics. Existing shape reconstruction models utilize a

neural network to learn a parametric function that maps the

input image into a mesh [47, 33, 41, 84, 89, 59], a point-

cloud [24, 66, 1, 40, 80, 89], a voxel grid [8, 15, 26, 68,

70, 77, 87] or an implicit surface [51, 13, 60, 73, 88, 52].

An alternative line of research focuses on compact low-

(a) Convexes

(b) Neural Parts

Figure 1: Expressive Primitives. We address the trade-off

between reconstruction quality and sparsity (i.e. number of

parts) in primitive-based methods. Prior work [83, 61, 63,

16] has considered convex shapes as primitives, which due

to their simplicity, require a large number of parts to accu-

rately represent complex shapes. This results in less inter-

pretable shape abstractions (i.e. primitives are not identifi-

able parts e.g. legs, arms etc.). In this work, we propose

Neural Parts, a novel 3D primitive representation that can

represent arbitrarily complex genus-zero shapes and thus

yields geometrically more accurate and semantically more

meaningful parts compared to simpler primitives.

dimensional representations that reconstruct 3D objects by

decomposing them into simpler parts, called primitives

[83, 61, 16, 30]. Primitive-based representations seek to

infer semantically consistent part arrangements across dif-

ferent object instances and provide a more interpretable al-

ternative, compared to representations that only focus on

capturing the global object geometry. Primitives are partic-

ularly useful for various applications where the notion of
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parts is necessary, such as shape editing, physics-based ap-

plications, graphics simulation etc.

Existing primitive-based methods rely on simple shapes

for decomposing complex 3D objects into parts. In the

early days of computer vision, researchers explored various

shape primitives such as 3D polyhedral shapes [71], gener-

alized cylinders [6] and geons [5] for representing 3D ge-

ometries. More recently, the primitive paradigm has been

revisited in the context of deep learning and [83, 61, 36, 16]

have demonstrated the ability of neural networks to learn

part-level geometries using 3D cuboids [83, 56, 92], su-

perquadrics [61], spheres [36] or convexes [16]. Due to

their simple parametrization, these primitives have lim-

ited expressivity and cannot capture complex geometries.

Therefore, existing part-based methods require a large num-

ber of primitives for extracting geometrically accurate re-

constructions. However, using more primitives comes at the

expense of the interpetability of the reconstruction.

To address this, we devise Neural Parts, a novel 3D

primitive representation that is more expressive and inter-

pretable, in comparison to alternatives that are limited to

convex shapes. We argue that a primitive should be a non

trivial genus-zero shape with well defined implicit and ex-

plicit representations. These characteristics allow us to ef-

ficiently combine primitives and accurately represent arbi-

trarily complex geometries. To this end, we pose the task of

primitive learning as the task of learning a family of homeo-

morphic mappings between the 3D space of a simple genus-

zero shape (e.g. sphere, cube, ellipsoid) and the 3D space

of the target object. We implement this mapping using an

Invertible Neural Network (INN) [19]. Being able to map

3D points in both directions allows us to efficiently com-

pute the explicit representation of each primitive, namely

its tesselation as well as the implicit representation, i.e. the

relative position of a point wrt. the primitive’s surface. In

contrast to prior work [83, 61, 16, 63] that directly predict

the primitive parameters (i.e. centroids and sizes for cuboids

and superquadrics and hyperplanes for convexes), we em-

ploy the INN to fully define each primitive. Note that while

a homeomorphism preserves the genus of the shape it does

not constrain it in any other way. As a result, while exist-

ing primitives are constrained to a specific family of shapes

(e.g. ellipsoids), our primitives can capture arbitrarily com-

plicated genus-zero shapes (see Fig. 1). We demonstrate

that Neural Parts can be learned in an unsupervised fashion

(i.e. without any primitive annotations), directly from un-

structured 3D point clouds by ensuring that the assembly of

predicted primitives accurately reconstructs the target.

In summary, we make the following contributions: We

propose the first model that defines primitives as a homeo-

morphic mapping between two topological spaces through

conditioning an INN on an image. Since the homeomor-

phism does not impose any constraints on the primitive

shape, our model effectively decouples geometric accuracy

from parsimony and as a result captures complex geome-

tries with an order of magnitude fewer primitives. Experi-

ments on ShapeNet [9], D-FAUST [7] and FreiHAND [91]

demonstrate that our model can parse objects into more

expressive and semantically meaningful shape abstractions

compared to models that rely on simpler primitives. Code

and data is available at https: / /paschalidoud.github. io/

neural parts.

2. Related Work

Learning-based 3D reconstruction approaches can be

categorized based on the type of their output representa-

tion to: depth-based [42, 37, 62, 21], voxel-based [15, 86,

26, 68], point-based [24, 66, 1], mesh-based [47, 33, 41],

implicit-based [51, 13, 60] and primitive-based [83, 56, 61].

Here, we primarily focus on primitive-based methods that

are more relevant to our work. Since our formulation is

independent of a specific INN implementation, a thorough

discussion of INNs is beyond the scope of this paper, thus

we refer the reader to [2] for a detailed overview.

3D Representations: Voxels [8, 15, 86, 26, 68, 77, 87] nat-

urally capture the 3D geometry by discretizing the shape

into a regular grid. While several efficient space parti-

tioning techniques [50, 70, 79, 35, 69] have been pro-

posed to address their high memory and computation re-

quirements, their application is still limited. A promis-

ing new direction explored learning a deformation of the

grid itself to better capture geometric details [27]. Point-

clouds [24, 66, 1, 40, 80, 89] are more memory efficient

but lack surface connectivity, thus post-processing is neces-

sary for generating the final mesh. Most mesh-based meth-

ods [47, 33, 41, 84, 89, 31, 59, 10, 16, 90] naturally yield

smooth reconstructions but either require a deformable tem-

plate mesh [84] or represent the geometry as an atlas of mul-

tiple mappings [33, 17, 49]. To address these limitations,

implicit models [51, 13, 60, 73, 88, 52, 54, 57, 3, 85, 29, 12,

55, 4, 32, 74, 39, 14, 65, 67, 58] have recently gained popu-

larity. These methods represent a 3D shape as the level-set

of a distance or occupancy field implemented as a neural

network, that takes a context vector and a query point and

predicts either a signed distance value [60, 52, 4, 32, 78] or a

binary occupancy value [51, 13] for the query point. While

these methods result in accurate reconstructions, they lack

interpretability as they do not consider the part-based object

structure. Instead, in this work, we focus on part-based rep-

resentations and showcase that our model simultaneously

yields both geometrically accurate and interpretable recon-

structions. Furthermore, in contrast to implicit models, that

require expensive iso-surfacing operations (i.e. marching

cubes) to extract a mesh, our model directly predicts a high

resolution mesh for each part, without any post-processing.
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Structured-based Representations: Our work falls into

the category of shape abstraction techniques. This line of

research seeks to decompose 3D shapes into semantically

meaningful simpler parts using either supervision in terms

of the primitive parameters [92, 56, 44, 53, 28, 45, 76, 46]

or without any part-level annotations [83, 61, 18, 63, 30,

16, 43]. Neural Parts perform primitive-based learning in

an unsupervised manner. Traditional primitives include

cuboids [83, 56, 92, 44, 53, 22], superquadrics [61, 63],

convexes [16, 11, 25], CSG trees [75] or shape programms

[23, 81, 48]. Due to the simplicity of the shapes of tradi-

tional primitives, the reconstruction quality of existing part-

based methods is coupled with the number of primitives,

namely a larger number of primitives results in more accu-

rate reconstructions (see Fig. 5). However, these reconstruc-

tions are less parsimonious and the constituent primitives

often lack a semantic interpretation (i.e. are not recogniz-

able parts). Instead, Neural Parts are not restricted to con-

vex shapes and can capture complex geometries with a few

primitives. In recent work, [29] propose a 3D representa-

tion that decomposes space into a structured set of implicit

functions [30]. However, extracting a single part from their

prediction is not possible. This is not the case for our model.

Shape Deformations: Deforming a single genus-zero

shape into more complicated shapes with graph convo-

lutions [84], MLPs [33, 82] and Neural ODEs [34] has

demonstrated impressive results. Groueix et al. [33] were

among the first to employ an MLP to implement a homeo-

morphism between a sphere and a complicated shape. Note

that since the deformation is implemented via an MLP, com-

puting the inverse mapping becomes infeasible. Very re-

cently, [34] proposed to learn the deformation of a single

ellipsoid using several Neural ODEs. While [34] propose

an invertible model, it does not consider any part decom-

position or latent object structure. Instead, we use the in-

verse mapping of the homeomorphism to define the pre-

dicted shape as the union of primitives, by discarding points

from a part’s surface that are internal to any other part. Thus

our model learns to combine multiple genus-zero primitives

and is able to reconstruct shapes of arbitrary genus. In addi-

tion, we formulate our optimization objective using both the

forward and the inverse mapping of the homeomorphism,

which in turn allows us to utilize both volumetric and sur-

face information during training. This facilitates imposing

additional constraints on the predicted primitives e.g. nor-

mal consistency and parsimony and improves performance.

3. Method

Given an input image we seek to learn a representation

with M primitives that best describes the target object. We

define our primitives via a deformation between shapes that

is parametrized as a learned homeomorphism implemented

with an Invertible Neural Network (INN). Using an INN

allows us to efficiently compute the implicit and explicit

representation of the predicted shape and impose various

constraints on the predicted parts. In particular, for each

primitive, we seek to learn a homeomorphism between the

3D space of a simple genus-zero shape and the 3D space of

the target object, such that the deformed shape matches a

part of the target object. Due to its simple implicit surface

definition and tesselation, we employ a sphere as our genus-

zero shape. We refer to the 3D space of the sphere as latent

space and to the 3D space of the target as primitive space.

In Sec. 3.1, we present the explicit and implicit represen-

tation of our primitives as a homeomorphism of a sphere.

Subsequently, in Sec. 3.2, we present our novel architecture

for predicting multiple primitives using homeomorphisms

conditioned on the input image. Finally, in Sec. 3.3, we

formulate our optimization objective.

3.1. Primitives as Homeomorphic Mappings

A homeomorphism is a continuous map between two

topological spaces Y and X that preserves all topological

properties. Intuitively a homeomorphism is a continuous

stretching and bending of Y into a new space X . In our 3D

topology, a homeomorphism φθ : R3 → R
3 is

x = φθ(y) and y = φ−1
θ

(x) (1)

where x and y are 3D points in X and Y and φθ : Y → X ,

φ−1
θ

: X → Y are continuous bijections. In our setting, Y

and X correspond to the latent and the primitive space re-

spectively. Using the explicit and implicit representation of

a sphere with radius r, positioned at (0, 0, 0) and the home-

omorphic mapping from (1), we can now define the implicit

and explicit representation of a single primitive.

Explicit Representation: The explicit representation of a

primitive, parametrized as a mesh with vertices Vp and faces

Fp, can be obtained by applying the homeomorphism on the

sphere vertices V and faces F as follows:

Vp = {φθ(vj), ∀ vj ∈ V}

Fp = F .
(2)

Note that applying φθ on the sphere vertices V alters their

location in the primitive space, while the vertex arrange-

ments (i.e. faces) remain unchanged. Furthermore, since

our primitives are defined as a deformation of a sphere

mesh of arbitrarily high resolution, we can also obtain

primitive meshes of arbitrary resolutions without any post-

processing, e.g. marching-cubes.

Implicit Representation: The implicit representation of a

primitive can be derived by applying the inverse homeomor-

phic mapping on a 3D point x as follows

g(x) = ‖φ−1
θ

(x)‖
2
− r. (3)
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Figure 2: Method Overview. Our model comprises two main components: A Feature Extractor which maps an input

image into a per-primitive shape embedding and a Conditional Homeomorphism that deforms a sphere into M primitives

and vice-versa. First, the feature encoder maps the input to a global feature representation F. Then, for every primitive m,

F is concatenated with a learnable primitive embedding Pm to generate the shape embedding Cm for this primitive. The

Conditional Homeomorphism φθ(·;Cm) is implemented by a stack of L conditional coupling layers. Applying the forward

mapping on a set of points Ys, randomly sampled on the surface of the sphere, generates points on the surface of the m-th

primitive Xm
p (9). Using the inverse mapping φ−1

θ
(·;Cm), allows us to compute whether any point in 3D space lies inside or

outside a primitive (7). We train our model using both surface (Lrec,Lnorm) and occupancy (Locc) losses to simultaneously

capture fine object details and volumetric characteristics of the target object. The use of the inverse mapping allows us to

impose additional constraints (e.g. discouraging inter-penetration) on the predicted primitives (Loverlap,Lcover).

To evaluate the relative position of a point x wrt. the prim-

itive surface it suffices to evaluate whether φ−1
θ (x) lies in-

side, outside or on the surface of the sphere. Namely, points

that are internal to the sphere are also inside the primitive

and points that are outside the sphere are also outside the

primitive surface. Note that computing g(x) in (3) is only

possible because φθ(x) is implemented with an INN.

Multiple Primitives: The homeomorphism in (1) imple-

ments a single deformation. However, we seek to predict

multiple primitives (i.e. deformations) conditioned on the

input. Hence, we define a conditional homeomorphism as:

x = φθ(y;Cm) and y = φ−1
θ

(x;Cm) (4)

where Cm is the shape embedding for the m-th primitive

and is predicted from the input. Note that for different shape

embeddings a different homeomorphism is defined.

3.2. Network Architecture

Our architecture comprises two main components: (i)

the feature extractor that maps the input to a vector of per-

primitive shape embeddings {Cm}Mm=1 and (ii) the condi-

tional homeomorphism that learns a homeomorphic map-

ping conditioned on the shape embedding. The overall ar-

chitecture is illustrated in Fig. 2.

Feature Extractor: The first part of the feature extractor

module is a ResNet-18 [38] that extracts a feature represen-

tation F ∈ R
D from the input image. Subsequently, for

every primitive m, F is concatenated with a learnable prim-

itive embedding Pm ∈ R
D to derive a shape embedding

Cm ∈ R
2D for this primitive.

Conditional Homeomorphism: We implement the INN

using a Real NVP [20] due to its simple formulation. A Real

NVP models a bijective mapping by stacking a sequence of

simple bijective transformation functions. For each bijec-

tion, typically referred to as affine coupling layer, given an

input 3D point (xi, yi, zi), the output point (xo, yo, zo) is

xo = xi

yo = yi

zo = zi exp (sθ (xi, yi)) + tθ (xi, yi)

(5)

where sθ : R2 → R and tθ : R2 → R are scale and trans-

lation functions implemented with two arbitrarily compli-

cated networks. Namely, in each bijection, the input is

split into two, (xi, yi) and zi. The first part remains un-

changed and the second undergoes an affine transformation

with sθ(·) and tθ(·). We follow [20] and we enforce that

consecutive affine coupling layers scale and translate dif-

ferent input dimensions. Namely, we alternate the splitting

43207



Figure 3: Conditional Coupling Layer. Pictorial repre-

sentation of (6). The input point (xi, yi, zi) is passed into

a coupling layer that scales and translates one dimension

of the input based on the other two and the per-primitive

shape embedding Cm. The scale factor s and the transla-

tion amount t are predicted by two MLPs, sθ(·) and tθ(·).
pθ(·) is another MLP that increases the dimensionality of

the input point before it is concatenated with Cm.

between the dimensions of the input randomly.

However, the original Real NVP cannot be directly ap-

plied in our setting as it does not consider a shape em-

bedding. To address this, we augment the affine coupling

layer as follows: we first map (xi, yi) into a higher dimen-

sional feature vector using a mapping, pθ(·), implemented

as an MLP. This is done to increase the relative importance

of the input point before concatenating it with the high-

dimensional shape embedding Cm. The conditional affine

coupling layer becomes

xo = xi

yo = yi

zo = zi exp (sθ ([Cm; pθ (xi, yi)]))

+ tθ ([Cm; pθ (xi, yi)])

(6)

where [·; ·] denotes concatenation. A graphical representa-

tion of our conditional coupling layer is provided in Fig. 3.

3.3. Training

Due to the lack of primitive annotations, we train our

model by minimizing the geometric distance between the

target and the predicted shape. In the following, we de-

fine the implicit and explicit representation of the predicted

shape as the union of M primitives.

The implicit surface of the m-th primitive can be derived

from (3), by applying the inverse homeomorphic mapping

on points in 3D space as follows

gm(x) = ‖φ−1
θ

(x;Cm)‖
2
− r, ∀ x ∈ R

3 (7)

The implicit surface representation of the predicted object is

defined as the union of all per-primitive implicit functions

G(x) = min
m∈0...M

gm(x), (8)

namely a point is inside the predicted shape if it is inside at

least one primitive.

Similarly, the explicit representation of the m-th primi-

tive is a set of points on its surface, let it be Xm
p , that are

generated by applying the forward homeomorphic mapping

on points on the sphere surface Ys in the latent space

Xm
p = {φθ(yj ;Cm), ∀ yj ∈ Ys}. (9)

To generate points on the surface of the predicted shape Xp,

we first need to generate points on the surface of each primi-

tive and then discard the ones that are inside any other prim-

itive. From (8) this can be expressed as follows:

Xp = {x | x ∈
⋃

m

Xm
p s.t. G(x) ≥ 0}. (10)

Loss Functions: Our loss L seeks to minimize the geomet-

ric distance between the target and the predicted shape and

is composed of five loss terms:

L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt)

+ Loverlap(Xo) + Lcover(Xo)
(11)

where Xt = {{xi,ni}}
N
i=1 comprises surface samples of

the target shape and the corresponding normals, and Xo =
{{xi, oi}}

V
i=1 denotes a set of occupancy pairs, where xi

corresponds to the location of the i-th point and oi denotes

whether xi lies inside (oi = 1) or outside (oi = 0) the tar-

get. Note that our optimization objective comprises both

occupancy (13) and surface losses (12)+(14), since they

model complementary characteristics of the target object

e.g. the surface loss attends to fine details that may have

small volume, whereas the occupancy loss more efficiently

models empty space. We empirically observe that using

both significantly improves reconstruction (see Sec. 4.3).

Reconstruction Loss: We measure the surface reconstruc-

tion quality using a bidirectional Chamfer loss between the

points Xp on the surface of the predicted shape and the

points on the target object Xt as follows:

Lrec(Xt,Xp) =
1

|Xt|

∑

xi∈Xt

min
xj∈Xp

‖xi − xj‖
2
2 +

1

|Xp|

∑

xj∈Xp

min
xi∈Xt

‖xi − xj‖
2
2

(12)

The first term of (12) measures the average distance of all

ground truth points to the closest predicted points and the

second term measures the average distance of all predicted

points to the closest ground-truth points.

Occupancy Loss: The occupancy loss ensures that the vol-

ume of the predicted shape matches the volume of the tar-

get. Intuitively, we want to ensure that the free and the oc-

cupied space of the predicted and the target object coincide.
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Figure 4: Trade-off Reconstruction Quality and # Primitives. We evaluate the reconstruction quality of primitive-based

methods on the D-FAUST test set for different number of primitives. Neural Parts (purple) outperform CvxNet (turquoise),

SQs (orange) and H-SQs (magenta) in terms of both IoU (↑) and Chamfer-L1 (↓) for any primitive configuration, even when

using as little as 2 primitives. In addition, we show that our reconstructions are competitive to OccNet (dashed) which does

not provide a primitive-based representation and requires expensive post-processing for extracting surface meshes.

To this end, we convert the implicit surface of the predicted

shape from (8) to an indicator function and compute the bi-

nary cross-entropy loss over all volume samples Xo

Locc(Xo) =
∑

(x,o)∈Xo

Lce

(

σ

(

−G(x)

τ

)

, o

)

. (13)

Lce(·, ·) is the cross-entropy loss, σ(·) is the sigmoid func-

tion and τ is a temperature hyperparameter that defines the

sharpness of the boundary of the indicator function. Note

that σ
(

−G(x)
τ

)

is 1 when x is inside the predicted shape

and 0 otherwise.

Normal Consistency Loss: The normal consistency loss

ensures that the orientation of the normals of the predicted

shape will be aligned with the normals of the target. We

penalize misalignments between the predicted and the target

normals by minimizing the cosine distance as follows

Lnorm(Xt) =
1

|Xt|

∑

(x,n)∈Xt

(

1−

〈

∇xG(x)

‖∇xG(x)‖2
, n

〉)

(14)

where 〈·, ·〉 is the dot product. Note that the surface normal

of the predicted shape for a point x is simply the gradient

of the implicit surface wrt. to point x and can be efficiently

computed with automatic differentiation.

Overlapping Loss: To encourage semantically meaningful

shape abstractions, (i.e. primitives represent different object

parts), we introduce a non-overlapping loss that penalizes

any point in space that is internal to more than λ primitives

Loverlap(Xo) =
1

|Xo|
max

(

0,
M
∑

m=1

σ

(

−gm(x)

τ

)

− λ

)

(15)

Figure 5: Human body modelling. We visualize the target

mesh and the predicted primitives with Neural Parts (first

row) and CvxNet (second) using 1, 2, 5, 8 and 10 primitives.

Coverage Loss: The coverage loss makes sure that all

primitives cover parts of the predicted shape. In practice,

it prevents degenerate primitive arrangements, where some

primitives are very small and do not contribute to the recon-

struction. We implement this loss by encouraging that each

primitive contains at least k points of the target object:

Lcover(Xo) =

M
∑

m=1

∑

x∈Nm
k

max (0, gm(x)) . (16)

Here Nm
k ⊂ {(x, o) ∈ Xo|o = 1} contains the k points

with the minimum distance from the m-th primitive.

4. Experimental Evaluation

Datasets: We evaluate our model on D-FAUST [7], Frei-

HAND [91] and ShapeNet [9]. For ShapeNet [9], we per-

form category specific training using the same image ren-

derings and train/test splits as [15]. For D-FAUST [7], we

follow the experimental evaluation proposed in [63] and

for FreiHAND [91], we select the first 5000 hand poses
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Target OccNet SQs H-SQs CvxNet Ours

Figure 6: Single Image 3D Reconstruction on D-FAUST.

The input image is shown on the first column and the

rest contain predictions of all methods: OccNet (second),

primitive-based predictions with superquadrics (third and

fourth) and convexes (fifth) and ours with 5 primitives (last).

and generate meshes using the provided MANO parame-

ters [72]. Details regarding data preprocessing as well as

additional results are provided in the supplementary.

Baselines: We compare against various primitive-based

methods: SQs [61] that employ superquadrics, CvxNet [16]

that use smooth convexes and H-SQs [63] that consider a

hierarchical, geometrically more accurate decomposition of

parts using superquadrics. Finally, we also report results for

OccNet [51], a state-of-the-art implicit-based method that

does not reason about object parts.

4.1. Representation Power

In this experiment, we train our model and our baselines

on D-FAUST for different number of primitives and mea-

sure their reconstruction quality wrt. IoU and Chamfer-L1

distance. In particular, we train our model for 2, 5 and 8
primitives, CvxNet [16] and SQs [61] for 5, 10, 25 and 50
primitives and H-SQs [63] for 4, 8, 16 and 32 primitives.

We observe that our model achieves more accurate recon-

structions for any given number of primitives and is compet-

itive to OccNet that does not reason about parts. In particu-

lar, our model achieves 67.3% IOU with only 5 primitives,

whereas CvxNet, with 10 times more primitives, achieves

62% (see Fig. 4). In Fig. 5, we provide a qualitative com-

parison of reconstructions with different number of parts

and we observe that Neural Parts accurately capture the hu-

man limbs with as little as one or two primitives, whereas

CvxNet cannot capture the arms even with 10 primitives.

4.2. Reconstruction Accuracy

Dynamic FAUST: In this experiment, we compare CvxNet

and SQs with 50 primitives and H-SQs for a maximum

number of 32 primitives to Neural Parts with 5 primitives to

showcase that our model can capture the human body’s ge-

ometry using an order of magnitude less primitives. Quali-

Input OccNet SQs H-SQs CvxNet Ours

OccNet SQs H-SQs CvxNet Ours

IoU 0.891 0.693 0.768 0.832 0.879

Chamfer-L1 0.038 0.093 0.077 0.059 0.057

Figure 7: Single Image 3D Reconstruction on Frei-

HAND. We compare our model with OccNet, SQs and

CvxNet with 5 primitives and H-SQs with 8 primitives. Our

model outperforms all primitive based methods in terms of

both IoU (↑) and Chamfer-L1 (↓) distance.

tative results from the predicted primitives using our model

and the baselines are summarized in Fig. 6. Note that Oc-

cNet is not directly comparable with part-based methods,

however, we include it in our analysis as a typical repre-

sentative of powerful implicit shape extraction techniques.

We observe that while all methods roughly capture the hu-

man pose, Neural Parts result in a part assembly that is very

close to the target object. While CvxNet with 50 primitives

yield fairly accurate reconstructions, the final representation

lacks any part-level semantic interpretation. The quantita-

tive evaluation of this experiment is provided in Fig. 4.

FreiHAND: Similarly, we train our model, CvxNet and

SQs with 5 and H-SQs with 8 primitives on the FreiHAND

dataset and we observe that Neural Parts yield more geo-

metrically accurate reconstructions that faithfully capture

fine details, i.e. the position of the thumb, (see Fig. 7). In

contrast, CvxNet, H-SQs, SQs focus primarily on the struc-

ture of the predicted shape and miss out fine details.

ShapeNet: We train our model with 5 primitives and

CvxNet with 5 and 25 primitives on cars, planes and chairs

and observe that our model results in more accurate recon-

structions than CvxNet with both 5 and 25 primitives (see

Fig. 8). When increasing the number of primitives to 25,

CvxNet improves in terms of reconstruction quality but the

predicted primitives lack semantic interpretation. For the

case of chairs and planes, CvxNet with 25 primitives accu-

rately capture the object’s geometry, but when we reduce

the primitives to 5 entire object parts are missing.
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Input OccNet CvxNet-5 CvxNet-25 Ours

IoU OccNet CvxNet - 5 CvxNet - 25 Ours

cars 0.763 0.650 0.666 0.697

planes 0.451 0.425 0.448 0.454

chairs 0.432 0.364 0.392 0.412

Figure 8: Single Image 3D Reconstruction on ShapeNet.

We compare Neural Parts to OccNet and CvxNet with 5
and 25 primitives. Our model yields semantic and more

accurate reconstructions with 5× less primitives.

4.3. Ablation Study

In this section, we ablate various components of our

model to evaluate their impact on the single-view 3D re-

construction task on D-FAUST with 5 primitives.

Invertibility: To investigate the impact of the INN, we train

our model without using the inverse mapping, φ−1
θ

(x). As a

result, it is not possible to either compute the union of parts

or enforce additional constraints on the predicted primitives

i.e. we only train with the loss of (12), without discarding

internal points as in (9). From Fig. 9a it becomes evident

that each primitive seeks to cover the entire shape thus re-

sulting in redundant and non semantic primitives. In addi-

tion, the lack of an inverse mapping prevents us from us-

ing any occupancy loss, which results in poor modelling of

empty space (i.e. the hands are connected with the body).

Occupancy and Surface Losses: We compare the per-

formance of our model using either the occupancy (13)

or the surface loss (12). The reconstruction without Locc

(Fig. 9b) accurately captures the geometry of the human

but fails to efficiently model empty space (i.e. legs are con-

nected). Similarly, the reconstruction without Lrec (Fig. 9c)

results in degenerate primitives with small volume that are

“pushed” far away from the human body.

Semantic Consistency: We now investigate the ability of

our model to decompose 3D objects into semantically con-

sistent parts. Similar to [16], we use 5 representative ver-

tex indices provided by SMPL-X [64] (i.e. thumbs, toes

and nose) and compute the classification accuracy of those

points when using the label of the closest primitive. We

compare with CvxNet with 5 and 50 primitives and note that

(a) w/o φ−1

θ
(x) (b) w/o Locc (c) w/o Lrec (d) Ours

w/o φ−1
θ

(x) w/o Locc w/o Lrec Ours

IoU 0.639 0.642 0.643 0.673

Chamfer-L1 0.119 0.125 0.150 0.09

Figure 9: Ablation Study. We ablate the INN as well as the

volumetric and the surface loss and show their impact both

quantitatively and qualitatively.

L-thumb R-thumb L-toe R-toe Nose

CvxNet-5 61.1% 67.1% 98.2% 91.2% 98%
CvxNet-50 29% 37% 56.3% 58.1% 52%
Ours 91.9% 88.2% 99.8% 92.5% 100%

Figure 10: Semantic Consistency. We report the classifica-

tion accuracy of semantic vertices on the human body using

the label of the closest primitive. Our predicted primitives

are consistently used for representing the same human part.

Neural Parts are more semantically consistent (see Fig. 10).

5. Conclusion

We consider this paper a step towards bridging the gap

between interpretable and geometrically accurate primitive-

based representations. Our experiments demonstrate that

our model yields geometrically accurate and semantically

meaningful shape abstractions. In addition, we show that

Neural Parts outperform existing methods, that rely on sim-

pler shapes, both in terms of accuracy and semanticness. In

future work, we plan to investigate learning primitive-based

decompositions without any 3D supervision, but using dif-

ferentiable rendering techniques. In addition, we would like

to experiment with more complex shapes than spheres, to

further improve the expressivity of our primitives.
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[8] André Brock, Theodore Lim, James M. Ritchie, and Nick

Weston. Generative and discriminative voxel modeling with

convolutional neural networks. arXiv.org, 1608.04236, 2016.

1, 2

[9] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich

3d model repository. arXiv.org, 1512.03012, 2015. 2, 6

[10] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaako

Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to pre-

dict 3d objects with an interpolation-based differentiable ren-

derer. In Advances in Neural Information Processing Sys-

tems (NIPS), 2019. 2

[11] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:

Generating compact meshes via binary space partitioning. In

Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), pages 42–51, 2020. 3

[12] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha

Chaudhuri, and Hao Zhang. BAE-NET: branched autoen-

coder for shape co-segmentation. In Proc. of the IEEE Inter-

national Conf. on Computer Vision (ICCV), 2019. 2

[13] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition (CVPR), 2019. 1, 2

[14] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.

Implicit functions in feature space for 3d shape reconstruc-

tion and completion. In Proc. IEEE Conf. on Computer Vi-

sion and Pattern Recognition (CVPR), 2020. 2

[15] Christopher Bongsoo Choy, Danfei Xu, JunYoung Gwak,

Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified ap-

proach for single and multi-view 3d object reconstruction.

In Proc. of the European Conf. on Computer Vision (ECCV),

2016. 1, 2, 6

[16] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien

Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.

Cvxnets: Learnable convex decomposition. Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2020. 1, 2, 3, 7, 8
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lah, Raphaël Groscot, and Leonidas J. Guibas. Composite

shape modeling via latent space factorization. In Proc. of the

IEEE International Conf. on Computer Vision (ICCV), pages

8139–8148. IEEE, 2019. 3

[23] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and

Joshua B. Tenenbaum. Learning to infer graphics programs

from hand-drawn images. In Advances in Neural Informa-

tion Processing Systems (NIPS), 2018. 3

[24] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point

set generation network for 3d object reconstruction from a

single image. Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 2

[25] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomı́r

Mech, Nathan Carr, Tamy Boubekeur, Rui Wang, and

Subhransu Maji. Learning generative models of shape han-

dles. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2020. 3

[26] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape

induction from 2d views of multiple objects. In Proc. of the

International Conf. on 3D Vision (3DV), 2017. 1, 2

[27] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,

Morgan McGuire, and Sanja Fidler. Learning deformable

tetrahedral meshes for 3d reconstruction. In Advances in

Neural Information Processing Systems (NIPS), 2020. 2

[28] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-

Kun Lai, and Hao Zhang. SDM-NET: deep generative net-

work for structured deformable mesh. In ACM SIGGRAPH

Conference and Exhibition on Computer Graphics and In-

teractive Techniques in Asia (SIGGRAPH Asia), 2019. 3

93212



[29] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,

and Thomas A. Funkhouser. Local deep implicit functions

for 3d shape. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2020. 2, 3

[30] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,

William T Freeman, and Thomas Funkhouser. Learning

shape templates with structured implicit functions. In Proc.

of the IEEE International Conf. on Computer Vision (ICCV),

2019. 1, 3

[31] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

R-CNN. In Proc. of the IEEE International Conf. on Com-

puter Vision (ICCV), 2019. 2

[32] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and

Yaron Lipman. Implicit geometric regularization for learn-

ing shapes. In Proc. of the International Conf. on Machine

learning (ICML), 2020. 2

[33] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,

Bryan C. Russell, and Mathieu Aubry. AtlasNet: A papier-
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