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Abstract

Visual attributes constitute a large portion of informa-

tion contained in a scene. Objects can be described using

a wide variety of attributes which portray their visual ap-

pearance (color, texture), geometry (shape, size, posture),

and other intrinsic properties (state, action). Existing work

is mostly limited to study of attribute prediction in specific

domains. In this paper, we introduce a large-scale in-the-

wild visual attribute prediction dataset consisting of over

927K attribute annotations for over 260K object instances.

Formally, object attribute prediction is a multi-label clas-

sification problem where all attributes that apply to an ob-

ject must be predicted. Our dataset poses significant chal-

lenges to existing methods due to large number of attributes,

label sparsity, data imbalance, and object occlusion. To

this end, we propose several techniques that systematically

tackle these challenges, including a base model that uti-

lizes both low- and high-level CNN features with multi-

hop attention, reweighting and resampling techniques, a

novel negative label expansion scheme, and a novel super-

vised attribute-aware contrastive learning algorithm. Us-

ing these techniques, we achieve near 3.7 mAP and 5.7

overall F1 points improvement over the current state of the

art. Further details about the VAW dataset can be found at

https://vawdataset.com/

1. Introduction

Learning to predict visual attributes of objects is one of

the most important problems in computer vision and image

understanding. Grounding objects with their correct visual

attribute plays a central role in a variety of computer vision

tasks, such as image retrieval and search [32], tagging, re-

ferring expression [35], visual question answering (VQA)

[4, 33], and image captioning [7].

While several existing works address attribute predic-

tion, they are limited in many ways. Objects in a visual

*A portion of this work was done during Khoi Pham’s internship at

Adobe Research.

Table

Positive ✔	
Brown, Wooden,
Curved, Clean

Negative ✘
White,	Metallic,
Square

Unlabeled ? 
Large, Flat,
Painted, Indoors...

Plate

Positive ✔	
Yellow, Round,
Ceramic, Full

Negative ✘
White,	Square,
Glass,	Empty

Unlabeled ?
Red, Colorful,
Shallow, Dirty, ...

Flower

Positive ✔	
Pink, Leaning,
Floral

Negative ✘
Yellow,	Held,
Dried

Unlabeled ?
Bright, Cut, Light
Red, Patterned, ...

Cookie

Positive ✔	
Brown, Yellow,
Colorful

Negative ✘
Chocolate,
Circular,	Burnt

Unlabeled ?
White, Dark, Big
Frosted, ...

Figure 1. Example annotations in our dataset. Each possible

attribute-object category pair is annotated with at least 50 exam-

ples consisting of explicit positive and negative labels.

scene can be described using a vast number of attributes,

many of which can exist independently of each other. Due

to the variety of possible object and attribute combinations,

it is a daunting task to curate a large-scale visual attribute

prediction dataset. Existing works have largely ignored

large-scale visual attribute prediction in-the-wild and have

instead focused only on domain-specific attributes [19, 43],

datasets consisting of very small number of attribute-object

pairs [51], or are rife with label noise, ambiguity and la-

bel sparsity [38]. Similarly, while attributes can form an

important part of related tasks such as VQA, captioning, re-

ferring expression, these works do not address the unique

challenges of attribute prediction. Existing work also fails

to address the issue of partial labels, where only a small sub-

set of all possible attributes are annotated. Partial labels and

the lack of explicit negative labels make it challenging to

train or evaluate models for large-scale attribute prediction.

To address these problems, we propose a new large-scale vi-

sual attribute prediction dataset for images in the wild that

includes both positive and negative annotations.

Our dataset, called visual attributes in the wild (VAW),

consists of over 927K explicitly labeled positive and neg-

ative attribute annotations applied to over 260K object in-

stances (with 620 unique attributes and 2,260 unique ob-
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ject phrases). Due to the number of combinations possi-

ble, it is prohibitively expensive to collect exhaustive at-

tribute annotations for each instance. However, we ensure

that every attribute-object phrase pair in the dataset has a

minimum of 50 positive and negative annotations. With

density of 3.56 annotations per instance, our dataset is 4.9

times denser compared to Visual Genome while also pro-

viding negative labels. Additionally, annotations in VAW

are visually-grounded with segmentation masks available

for 92% of the instances. Formally, our VAW dataset pro-

poses attribute prediction as a long-tailed, partially-labeled,

multi-label classification problem.

We explore various state-of-the-art methods in attribute

prediction and multi-label learning and show that the VAW

dataset poses significant challenges to existing work. To this

end, we first propose a strong baseline model that consid-

ers both low- and high-level features to address the hetero-

geneity in features required for different classes of attributes

(e.g., color vs. action), and is modeled with multi-hop at-

tention and an ability to localize the region of the object of

interest by using partially available segmentation masks.

We also propose a series of techniques that are uniquely

suited for our problem. Firstly, we explore existing works

that address label imbalance between positive and negative

labels. Next, we describe a simple yet powerful scheme that

exploits linguistic knowledge to expand the number of neg-

ative labels 15-fold. Finally, we propose a supervised con-

trastive learning approach that allows our model to learn

more attribute discriminative features. Through extensive

ablations, we show that most of our proposed techniques

are model-agnostic, producing improvements not only on

our baseline but also other methods. Our final model is

called Supervised Contrastive learning with Negative-label

Expansion (SCoNE), which surpasses state-of-the-art mod-

els by 3.5 mAP and 5.7 overall F1 points.

Our paper makes the following major contributions:

• We create a new large-scale dataset for visual attribute

prediction in the wild (VAW) that addresses many short-

comings in existing literature and demonstrate that VAW

poses considerable difficulty to existing algorithms.

• We design a strong baseline model for attribute predic-

tion using existing visual attention technique. We fur-

ther extend this baseline to our novel attribute learn-

ing paradigm called Supervised Contrastive learning with

Negative-label Expansion (SCoNE) that considerably ad-

vances the state of the art.

• Through extensive experimentation, we show the efficacy

of both our proposed model and our proposed techniques.

2. Related Work

Some of the earliest work related to attribute learning

stem from a desire to learn to describe objects rather than

predicting their identities [17, 16, 6, 18]. Since then, exten-

sive work has sought to explore several aspects of object at-

tributes, including attribute-based zero-shot object classifi-

cation [41, 30, 2], relative attribute comparison [50, 58, 10],

and image search [57, 39]. While research in composi-

tional zero shot learning [66, 53, 49, 29] also tackle object

attributes, they target transformation of ‘states’ of objects,

treat each instance as having only one state, and focus on

predicting unseen compositions rather than the prediction

of complete set of attributes for each object instance. Sev-

eral works have focused on attribute learning in specific do-

mains such as animals, scenes, clothing, pedestrian, human

facial and emotion attributes [72, 81, 19, 45, 43, 37]. In

contrast, we seek to explore attribute prediction for uncon-

strained set of objects.

Only a limited number of work have sought to explore

general attribute prediction. COCO Attributes [51] is an

attempt to develop in-the-wild attribute prediction dataset,

however, it is very limited in scope, covering only 29 object

categories. Similarly, a portion of the the Visual Genome

(VG) [38] dataset consists of attribute annotations. How-

ever, attributes in VG are not a central focus of the work and

therefore they are very sparsely labeled, noisy, and lack neg-

ative labels, making it unsuitable to be used as a standalone

attribute prediction benchmark. Despite this, attribute an-

notations from VG are used to train attribute-aware object

detectors for downstream vision-language tasks [3, 31, 78].

By introducing the VAW dataset, the research community

can use its dense attribute annotations in conjunction with

VG and our attribute learning techniques to train better at-

tribute prediction models. Several recent works have also

sought to take advantage of massive amount of data in VG

to curate datasets for specific challenges [27, 70]. In a simi-

lar vein, we also start by leveraging existing sources of clean

annotations to develop our VAW dataset.

VAW can be cast as a multi-label classification problem

which has been extensively studied in the research commu-

nity [15, 13, 44, 54]. Multi-label learning involving missing

labels poses a greater challenge, but is also extensively stud-

ied [28, 40, 69, 74]. In many cases, missing labels are as-

sumed to be negative examples [61, 8, 60, 76] which is un-

suitable for attribute prediction, since most of the attributes

are not mutually exclusive. Some others attempt to predict

missing labels by training expert models [56], which is also

infeasible for a large-scale problem like ours.

Data imbalance naturally arises in datasets with large set

of labels. As expected, label imbalance exists in our VAW

dataset, therefore techniques designed to learn from imbal-

anced data are also related to our explorations. These works

can be divided into two main approaches: cost-sensitive

learning [26, 67, 14] and resampling [55, 22, 9, 20, 47]. We

utilize both of these techniques in our final model.

Attention is a highly effective technique in image clas-
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sification, captioning, VQA, and domain-specific attribute

prediction [68, 73, 46, 28, 62, 79, 54]. In our VAW dataset,

most of the objects are annotated with their segmentation

mask, which allows us to guide the attention map to ignore

irrelevant image regions. We also use additional attention

maps to allow our model to properly explore the surround-

ing context of the object.

Contrastive learning has recently gained a lot of traction

as an effective self-supervised learning technique [71, 5, 23,

11]. While originally intended to be used in self-supervised

setting, recent works have expanded contrastive learning

to be used in supervised setting [36]. Motivated by these

works, we propose an extension of supervised contrastive

loss to allow it to work in a multi-label setting required for

VAW. To the best of our knowledge, ours is the first attempt

to apply contrastive loss for multi-label learning.

3. Visual Attributes in the Wild (VAW) Dataset

In this section, we describe how we collect attribute an-

notations and present statistics of the final VAW dataset. In

general, we aim to overcome the limitations of VG on the

attribute prediction task which includes noisy labels, label

sparsity, and lack of negative labels to create a dataset appli-

cable for training and testing attribute classification models.

3.1. Data collection

VAW is created based on the VGPhraseCut and GQA

datasets, both of which leverage and refine annotations from

Visual Genome. VGPhraseCut is a referring expression

dataset that provides high-quality attribute labels and per-

instance segmentation mask, while GQA is a VQA dataset

that presents cleaner scene graph annotations.

Step 1: Extraction from VGPhraseCut and GQA

Our goal is to build a dataset that allows us to predict

the maximal number of attributes commonly used to de-

scribe objects in the wild. From VGPhraseCut, we select

attributes that appear within more than 15 referring phrases.

After manually cleaning ambiguous/hard to recognize at-

tributes, we obtain a set of 620 unique attributes which are

used throughout the rest of the process. Next, we extract

more instances from GQA that are labeled with these at-

tributes. We further take advantage of the referring expres-

sions from VGPhraseCut to collect a reliable negative label

set: given an image, for instances that are not selected by an

attribute referring phrase, we assign that attribute as a neg-

ative label for the instance. This step allows us to collect

220,049 positive and 21,799 negative labels.

Step 2: Expand attribute-object coverage

In this step, we seek to collect additional annotations for

every feasible attribute-object pair that may be lacking an-

notations. We define feasible pair as those with at least 1

positive example in our dataset. We ensure that every feasi-

ble pair has at least 50 (positive or negative) annotations. To

keep the annotation cost in check, we do not annotate pairs

that already have 50 or more annotations. This expansion

enriches our dataset with more positives and negatives for

every attribute across different objects, allowing for better

training and evaluation of classification models. This step

adds 156,690 positive and 455,151 negative annotations.

Step 3: Expand long-tailed attribute set

In this step, we aim to collect additional annotations for

the long-tailed attributes. Long-tailed attributes are asso-

ciated with very few object categories, which is either due

to the attribute not being frequently used by humans or the

attribute is only applied to a small set of objects. Hence,

given a long-tailed attribute and a known object that it ap-

plies to, we first expand its set of possibly applied objects

by using the WordNet ontology. For example, while play-

ing may only be applied to child in the training set, it could

also be applicable to other closely related object categories

like man, woman, person. After we find candidate object

categories for a given long-tail attribute, we ask humans to

annotate randomly sampled images from these candidates

with either positive or negative label for the given attribute.

This step adds additionally 16,239 positive and 57,751 neg-

ative annotations pertaining to all long-tailed attributes.

3.2. Statistics

Our final dataset consists of 620 attributes describing

260,895 instances from 72,274 images. Our attribute set

is diverse across different categories, including color, mate-

rial, shape, size, texture, action. On the annotated instances,

our dataset consists of 392,978 positive and 534,701 nega-

tive attribute labels. The instances from VGPhraseCut (oc-

cupy 92% in the dataset) are provided with segmentation

masks which can be useful in attribute prediction. We split

the dataset into 216,790 instances (58,565 images) for train-

ing, 12,286 instances (3,317 images) for validation, and

31,819 instances (10,392 images) for testing. We split the

dataset such that the test set has higher annotation density

per object, which allows for more thorough testing. In par-

ticular, our test set has an average of 7.03 annotations per

instance compared to 3.02 in the training set.

In Table 1, we compare the statistics of the VAW dataset

with other in-the-wild and domain-specific visual attribute

datasets. Compared to existing work, VAW fills an impor-

tant gap in the literature by providing a domain-agnostic,

in-the-wild visual attribute prediction dataset with denser

annotations, explicit negative labels, segmentation masks,

and large number of attribute and object categories.

4. Methodology

In this section, we will describe components of our

strong baseline model along with the Supervised Con-

trastive learning with Negative-label Expansion (SCoNE)
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Dataset VAW Visual Genome [38] COCO Attributes [51] EMOTIC [37] WIDER [43] iMaterialist [19]

# attributes 620 68,111 196 26 14 228

# instances 260,895 3,843,636 180,000 23,788 57,524 1,012,947

# object categories 2,260 33,877 29 1 (person)* 1 (person*) 1 (clothes)*

# attribute anno. per instance 3.56 0.73 ≥ 20 26 14 16.17

Negative Labels Yes No Yes Yes Yes Yes

Segmentation masks Yes No No No No Yes

Domain In-the-wild In-the-wild In-the-wild Emotions Pedestrian Fashion

Table 1. Statistics of VAW with other attribute in-the-wild and domain-specific datasets. *person (resp. *clothes) category may

represent multiple categories including {boy, girl, man, woman, etc. } (resp. {shirt, pants, top, etc. }). While Visual Genome is the largest

among these in terms of number of attribute annotations, it is sparsely labeled. Other datasets are either fully annotated for domain-specific

attributes or more densely labeled but covering few object categories.

algorithm that helps our model to learn more attribute dis-

criminative features. A depiction of our strong baseline

model is shown in Figure 2.

4.1. Preliminaries

Problem formulation: Let D = {Ii, gi, oi;Yi}
N
i=1 be a

dataset of N training samples, where Ii is an object instance

image (cropped using its bounding box), gi is its segmenta-

tion mask, oi is the category phrase of the object for which

we want to predict attributes, and Yi = [yi,1, ..., yi,C ] is its

C-class label vector with yc ∈ {1, 0,−1} denoting whether

attribute c is positive, negative, or missing respectively. Our

goal is to train a multi-label classifier that, given an input

image and the object name, can output the confidence score

for all C attribute labels.

Image feature representation: Given an image I of an

object o, let fimg(I) ∈ R
H×W×D be the D-dimensional

image feature map with spatial size H ×W extracted using

any CNN backbone architecture. In our model, we use the

output of the penultimate layer of ResNet-50 [24].

4.2. Image­object feature composition

Prior models for attribute prediction mostly tackle

domain-specific settings or a limited number of object cate-

gories [51, 54, 56]. Hence, these works are able to employ

object-agnostic attribute classification. However, because

our VAW dataset contains attribute annotations across a di-

verse set of object categories, incorporating object embed-

ding as input can help the model learn to avoid infeasible

attribute-object combinations (e.g. parked dog).

There are multiple ways to compose the image feature

map with the object embedding [52, 65, 3]. Here, we opt

for a simple object-conditioned gating mechanism, which

we find to be consistently better than concatenation used

in [3, 31]. Let φo ∈ R
d be the object embedding vector,

fcomp(fimg(I), φo) ∈ R
D be the composition module that

takes in the image feature map and object embedding. We

implement fcomp with a gating mechanism as follows:

fcomp(fimg(I), φo) = fimg(I)⊙ fgate(φo), (1)

fgate(φo) = σ(Wg2 · ReLU(Wg1φo + bg1) + bg2), (2)

⊙ is the channel-wise product, σ(·) is the sigmoid function,

fgate(φo) ∈ R
D is broadcasted to match the feature map

spatial dimension and is a 2-layer MLP. Intuitively, fgate
acts as a filter that only selects attribute features relevant to

the object of interest and suppresses incompatible attribute-

object pairs.

4.3. Object localization and multi­attention module

Relevant object localizer. An object bounding box can

contain both the relevant object and other objects or back-

ground. Hence, it is desirable to learn a smarter feature ag-

gregation that can suppress all irrelevant image regions. We

propose to leverage the availability of the object segmenta-

tion mask in the VAW dataset to achieve this.

Let X ∈ R
H×W×D be the image-object composed fea-

ture map, the relevant object region G is localized using a

2-stacked convolutional layers frel with kernel size 1, fol-

lowed by spatial softmax:

g = frel(X), g ∈ R
H×W , (3)

Gh,w =
exp(gh,w)

∑

h,w exp(gh,w)
, G ∈ R

H×W . (4)

We can then pool the image feature vector as

Zrel =
∑

h,w

Gh,wXh,w. (5)

G is learned with direct supervision from the object mask

whenever available with the following loss:

Lrel =
∑

h,w

(Gh,w×(1−Mh,w))−λrel(Gh,w×Mh,w), (6)

where M is the ground truth object binary mask. Rather

than requiring G to exactly match the object mask, we find

it is better to penalize the network whenever its prediction

falls outside of the mask. This frees the network to learn

heterogeneous attention within the object region if neces-

sary (e.g., black mirror refers to its frame being black rather
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Composition

"chair"
embed

Object
localizer

Multi-
attention

ClassifierResNet

Supervise
if available

Red ✔
Bright Red✔

Clean ✔
Giant ✔

Wooden ✔
Blue ✘

Stuffed ✘
Patterned ✘

Multicolored ✘

Positive
N

egative

Groundtruth mask

...

Low-lv feature

Standing ⁇
Lying ⁇
Empty ⁇

Weathered ⁇
...

U
nknow

n

Figure 2. Strong baseline attribute prediction model. Feature map extracted from the input image is modulated with the object embedding

which allows the model to learn useful attribute-object relationships (e.g. ball is round) and also to suppress infeasible attribute-object pairs

(e.g. talking table). The image-object combined feature map X is used to infer the object region G and multiple attention maps {A(m)}
which are subsequently used to aggregate features for classification. Here, Zlow and Zrel respectively denotes low-level and image-object

features aggregated inside the estimated object region, Zatt corresponds to image-object features pooled from the multiple attention maps.

The classifier is trained with BCE loss on the explicit positive and negative labels. For the missing (unknown) labels, we find treating them

as “soft negatives” and assigning them with very small weights in the BCE loss also helps improve results.

than its interior) instead of distributing its attention uni-

formly over the object. Hence, by setting λrel to a small

positive constant less than 1, we prioritize the need for G to

not attend to non-object pixels over the need to uniformly

attend to object pixels.

Multi-attention module. Object localization is beneficial

for recognizing several attributes such as color, material,

texture, and shape, but might be too restrictive for attributes

that require attention to different object parts or the back-

ground. For example: bald-headed or bare-footed requires

looking at a person’s head or foot; distinguishing different

activities (e.g., jumping vs crouching) might require infor-

mation from surrounding context. Therefore, we utilize a

free-form multi-attention mechanism to allow our algorithm

to attend to features at different spatial locations.

There are two extreme cases to apply spatial attention

[28]: (1) one attention map for all attributes and (2) one at-

tention map per attribute [54]. The first approach is similar

to using the object foreground which is unlike what we are

aiming for. The latter allows for more control but does not

scale well with large number of attributes. Hence, we opt

for a hybrid multi-attention idea as in [28].

We extract M attention maps {A(m)}Mm=1 from X using

f
(m)
att which has the same architecture as frel:

E(m) = f
(m)
att (X), E(m) ∈ R

H×W ,m = 1, ...,M (7)

A
(m)
h,w =

exp(E
(m)
h,w )

∑

h,w exp(E
(m)
h,w )

, A
(m)
h,w ∈ R

H×W . (8)

This is partly similar to [80] where object parts are lo-

calized using learned embeddings of these parts. Because

the VAW dataset does not have part annotations for every

attribute, this approach is not usable in our case. Similar to

[28], we employ the following divergence loss to encourage

these attention maps to focus on different regions:

Ldiv =
∑

m 6=n

〈E(m), E(n)〉

‖E(m)‖2‖E(n)‖2
. (9)

Using the computed M attention maps, we aggregate M
feature vectors {r(m)}Mm=1 from X and pass them through

a projection layer to obtain their final representations:

r(m) =
∑

h,w

A
(m)
h,wXh,w, r(m) ∈ R

D, (10)

z
(m)
att = f

(m)
proj (r

(m)), z
(m)
att ∈ R

Dproj . (11)

Our final multi-attention feature is the concatenation of

all individual attention features:

Zatt = concat([z
(1)
att , ..., z

(M)
att ]). (12)

4.4. Loss function and training paradigm

Our final feature vector is the concatenation of the lo-

calized object and the multi-attention feature. In addition,

we also find using low-level feature from early blocks im-

proves accuracy for low-level attributes (color, material).

Therefore, we also pool low-level features from the esti-

mated object region G to construct Zlow. The input to the

classification layer is [Zlow, Zrel, Zatt], and we use a linear

classifier with C output logit values followed by sigmoid.

Let Ŷ = [ŷ1, ..., ŷC ] be the output of the classification

layer. We apply the following reweighted binary cross-

entropy loss that takes data imbalance into account:

Lbce(Y, Ŷ ) = −

C
∑

c=1

wc

(

✶[yc=1]pc log(ŷc) (13)

+✶[yc=0]nc log(1− ŷc)
)

,
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where wc, pc, nc are respectively the reweighting factors for

attribute c, its positive, and its negative example. Let npos
c

and nneg
c be the number of positives and negatives of at-

tribute c. First, we want wc to reflect the importance of

the rare attributes by setting wc inversely proportional to its

number of positive examples: wc ∝ 1/(npos
c )α and nor-

malize so that
∑

c wc = C [14] (α is a smoothing factor).

Second, we want to balance between the effect of positive

and negative examples. We apply the same idea by setting

pc ∝ 1/(npos
c )α, nc ∝ 1/(nneg

c )α and normalize so that

pc + nc = 2. As a result, the ratio between the positive

and negative becomes pc/nc = (nneg
c /npos

c )α, which helps

balance out their effect based on their frequency.

Our re-weighted BCE (termed RW-BCE) is different

from [15], where the authors propose to reweigh each sam-

ple based on its proportion of available labels (i.e., an in-

stance with less number of available labels is assigned a

larger weight). We posit this is not ideal because the num-

ber of labels for an instance should not affect loss computa-

tion (e.g., loss for red should be the same between a red car

instance and a large shiny red car instance). Our final loss

is a combination of all loss functions presented above:

L = Lbce + Lrel + λdivLdiv. (14)

Empirically, we find applying repeat factor sampling

(RFS) [20, 47] with RW-BCE works well. RFS is a method

that defines a repeat factor for every image based on the

rarity of the labels it contains. Therefore, we employ both

RW-BCE and RFS (referred as RR) in training our model.

4.5. Negative label expansion

While our dataset provides unprecedented amount of ex-

plicitly labeled negative annotations, the amount of possible

negatives still far outnumbers the number of possible posi-

tive attributes. Because many attributes are mutually exclu-

sive (i.e., presence of attribute clean implies absence of at-

tribute dirty), we seek to use existing linguistic and external

knowledge tools to expand the set of negative annotations.

Consider attribute type A (e.g., material), the follow-

ing observations can be made about its attributes: (1) there

exists overlapping relation between some attributes due to

their visual similarity or them being hierarchically related

(e.g., wooden overlaps with wicker); (2) there exists exclu-

sive relation where two attributes cannot appear on the same

object (e.g., wet vs. dry). Therefore, for an object labeled

with attribute a ∈ A, we can generate negative labels for it

from the set {a′ ∈ A | ¬overlap(a, a′)∨exclusive(a, a′)}.

We classify the attributes into types and construct their

overlapping and exclusive relations using existing ontology

from a related work [21], WordNet [48], and the relation

edges from ConceptNetAPI [59]. We further expand the

overlapping relations based on the co-occurrence (by using

conditional probability) of the attribute pairs (e.g., white and

beige are similar and often mistaken by human annotators).

More details about how these relations are constructed are

presented in the supplementary material. Our negative la-

bel expansion scheme allows to add 5.9M negative annota-

tions to our training set. Aside from the extra negatives, one

strong point of this approach is that when we want to label

a novel attribute class, we can use the same approach to dis-

cover its relationship with existing attributes in the dataset

and attain free negatives for the new class.

4.6. Supervised contrastive learning

[75] shows with success that imbalanced learning could

benefit from self-supervised pretraining on both labeled and

unlabeled data, where a network can be better initialized by

originally avoiding strong label bias due to data imbalance.

Also motivated by [36], we propose to use supervised con-

trastive (SupCon) pretraining for our attribute learning with

partial labels problem, where we extend the SupCon loss

from a single-label to a multi-label setting.

We perform mean-pooling inside the feature map X to

obtain x ∈ R
D. We follow the design of SimCLR [11] and

add a projection layer to map z = Proj(x) ∈ R
128. The

projection layer is an MLP with hidden size 2048 and is

only used during pretraining. In a multi-label setting, it is

not trivial how to pull two samples together since they can

share some labels but different in terms of other labels. Mo-

tivated by [49, 25], we propose to represent each attribute c
as a matrix Ac ∈ R

128×128 that linearly projects z into an

attribute-aware embedding space zc = Acz, which is then

ℓ2-normalized onto the unit hypersphere. With this, sam-

ples that share the same attribute can have their respective

attribute-aware embeddings pulled together.

In the pretraining stage, we construct a batch of 2N
sample-label vector pairs {Ii, Yi}

2N
i=1, where I2k and I2k−1

(k = 1...N ) are two views (from random augmentation)

of the same object image and Y2k = Y2k−1. Let zi,c be

the c-attribute-aware embedding of Ii, and B(i) = {c ∈
C : Yi,c = 1} is the set of positive attributes of Ii. We

reuse notations from [36]: K ≡ {1...2N}, A(i) ≡ K \ {i},

P (i, c) ≡ {p ∈ A(i) : Yp,c = Yi,c} and use the following

SupCon loss

Lsup =

2N
∑

i=1

∑

c∈B(i)

−1

|P (i, c)|

∑

p∈P (i,c)

log
exp (zi,c · zp,c/τ)
∑

j∈A(i)

exp(zi,c · zj,c/τ)
.

(15)

Linear transformation using Ac, followed by dot prod-

uct in the SupCon loss, implements an inner product in the

embedding space of z, which can be interpreted as find-

ing part of z that encodes the attribute c [25]. Therefore,

our approach fits nicely into the multi-label setting where

an image embedding vector z can simultaneously encode

multiple attribute labels that can be probed by these linear

transformations for contrasting in the SupCon loss.
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After the pretraining stage, we keep the backbone en-

coder and the image-object composition module and fine-

tune them along with the classification layer.

While SupCon is designed to be used for pretraining,

empirically, we find it hampers the multi-attention module

ability to focus on specific regions. To reconcile this dif-

ference, we find it is empirically better to minimize Lsup

jointly with the other loss. For other models that do not use

attention (vanilla ResNet), we find SupCon pretraining still

effective.

5. Experiments

In this section, we discuss the evaluation metrics and re-

port the results of our attribute prediction framework and

other related baselines on the VAW dataset. The implemen-

tation details are presented in the supplementary material.

5.1. Algorithms for VAW Dataset

We consider the following baselines and state-of-the-art

multi-label learning approaches and compare them to our

SCoNE algorithm. We made our best attempt to modify

the authors’ implementation (if available) to include the

image-object composition module in section 4.2. All mod-

els use ResNet-50 as their backbone and use BCE loss (ex-

cept LSEP and ResNet-Baseline-CE) for training. Empir-

ically, we find treating missing labels as negatives and as-

signing them with very small weights in the BCE loss also

improves results. Hence, we apply this for all methods.

• ResNet-Baseline: ResNet-50 followed by image-object

composition and classification layer.

• ResNet-Baseline-CE: Similar as above, but uses softmax

cross entropy loss. This is used by [3, 31] to train attribute

prediction head for object detectors on Visual Genome.

• Strong Baseline (SB): The combination of our image-

object composition, multi-attention, and object localizer.

• LSEP [43] : Uses ranking loss and label threshold esti-

mation method to predict which attributes to output.

• ML-GCN [13] : Uses graph convolution network to pre-

dict classifier weights based on the 100-d GloVe embed-

dings of the attribute names. Label correlation graph is

constructed following the authors’ implementation.

• Durand et al. (Partial BCE + GNN) [15] : BCE loss

reweighted by the authors’ reweighting scheme. Graph

neural network is applied on the output logits.

• Sarafianos et al. [54] : one of the SOTAs in pedestrian

attribute prediction that also uses multi-attention.

5.2. Evaluation metrics

We employ the following metrics to measure attribute

prediction from different perspectives. Detailed discussion

of these metrics can be found in the supplementary.

Object: Wall
GT: stained, brick

Prediction: brick, red, high, tiled,
textured, arch shaped, flat, brown, large,

stained.

Multi-att #1 Object loc Multi-att #1

Predictions: spreading arms,
wearing black, young, jumping,

skateboarding, thin, skinny,
spreading legs, in the air, active.

Object: Person
GT: spreading arms,

silhouetted, skateboarding

Object loc

Predictions: vintage, antique,
stopped, shiny, parking, metal,

black, sunlit, outdoors, turned off

Object: Car
GT: glossy, parking, antique,

dark blue, vintage, black

Multi-att #1Object loc

Figure 3. Qualitative results. Examples of predictions from

SB+SCoNE. We show the object name and its ground truth posi-

tive attribute labels above the image. The object localized region,

attention map #1, and model top-10 predictions are shown below.

Red text represents missed or incorrect predictions.

mAP: mean average precision over all classes. mAP is a

popular metric for attribute prediction and multi-label learn-

ing [51, 13, 64]. Because VAW is partially labeled, we only

evaluate mAP on the annotated data as in [64].

mR@15: mean recall over all classes at top 15 predictions

in each image. Recall@K is often used in datasets that are

not exhaustively labeled such as scene graph generation [77,

12]. This is also used in multi-label learning [13, 44, 28]

under the name ‘per-class recall’.

F1@15: as the above metric may be biased towards infre-

quent classes, we also report overall F1 at top 15 predictions

in each image. Because VAW is partially labeled, we only

evaluate the prediction of label that has been annotated.

mA: mean balanced accuracy over all classes using thresh-

old at 0.5 to separate between positive and negative predic-

tion. This metric is used in pedestrian and human facial

attribute works [54, 42].

5.3. Results

Overall results are shown in Table 2, where SB and

SB+SCoNE are compared with other baselines and state-of-

the-art algorithms. In overall, SB is better than other base-

lines in almost all metrics except for mR@15 where it is

lower than ResNet-Baseline-CE. This shows that the object

localizer and multi-attention are effective in attribute pre-

diction. ResNet-Baseline-CE, which is adopted by [3, 31],

has good recall but very low precision (mAP and F1). This

is in contrast to ResNet-Baseline which is trained with BCE.

SB+SCoNE substantially improves over SB in all met-

rics and clearly surpasses available algorithms by a large

margin. It is particularly effective in long-tail attributes

where it outperforms its closest competitor (other than SB)

by 5 mAP points, and is also highly effective in detecting

color and material attributes where it is nearly 7-8 mAP

points higher than the next-best method. This shows that

our attribute learning paradigm, including the negative la-
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Methods
Overall Class imbalance (mAP) Attribute types (mAP)

mAP mR@15 mA F1@15 Head Medium Tail Color Material Shape Size Texture Action Others

LSEP [44] 61.0 50.7 67.1 62.3 69.1 57.3 40.9 56.1 67.1 63.1 61.4 58.7 50.7 64.9

ML-GCN [13] 63.0 52.8 69.5 64.1 70.8 59.8 42.7 59.1 64.7 65.2 64.2 62.8 54.7 66.5

Partial-BCE + GNN [15] 62.3 52.3 68.9 63.9 70.1 58.7 40.1 57.7 66.5 64.1 65.1 59.3 54.4 65.9

ResNet-Baseline [51] 63.0 52.1 68.6 63.9 71.1 59.4 43.0 58.5 66.3 65.0 64.5 63.1 53.1 66.7

ResNet-Baseline-CE [3, 31] 56.4 55.8 50.3 61.5 64.6 52.7 35.9 54.0 64.6 55.9 56.9 54.6 47.5 59.2

Sarafianos et al. [54] 64.6 51.1 68.3 64.6 72.5 61.5 42.9 62.9 68.8 64.9 65.7 62.3 56.6 67.4

Strong Baseline (SB) 65.9 52.9 69.5 65.3 73.6 62.5 46.0 64.5 68.9 67.1 65.7 66.1 57.2 68.7

SB + SCoNE (Ours) 68.3 58.3 71.5 70.3 76.5 64.8 48.0 70.4 75.6 68.3 69.4 68.4 60.7 69.5

Table 2. Experimental results compared with baselines and SOTA multi-label learning methods. The top box displays results of

multi-label learning methods; the middle box shows results of models from attribute prediction works and our strong baseline; the last row

shows performance of our SCoNE algorithm applied onto the strong baseline.

Methods mAP mR@15 mA F1@15

Strong Baseline (SB) 65.9 52.9 69.5 65.3

+ Negative 67.7 54.3 70.0 69.6

+ Neg + SupCon 68.2 55.2 70.3 70.0

+ Neg + SupCon + RR (SCoNE) 68.3 58.3 71.5 70.3

ResNet-Baseline 63.0 52.1 68.6 63.9

+ SCoNE 66.4 56.8 70.7 68.8

Table 3. Ablation study. We show how each of our proposed tech-

niques help improve overall performance.

bel expansion, supervised contrastive loss, reweighted and

resampling scheme is clearly effective in attribute learning.

5.4. Ablation studies

Table 3 shows effect of different components of SCoNE.

Starting from our SB, we can see that each of our model

choices substantially improves its performance, with the

biggest mAP improvements provided by our negative label

expansion scheme. Each of the components of SCoNE also

stacks additively, with our final model performing 2.4 mAP,

5.4 mR@15, and 5 F1@15 points over SB. Moreover, the

components of SCoNE are model agnostic. We verify that

by enhancing our ResNet-Baseline with SCoNE, which also

improves its mAP and mR@15 by 3.4 and 4.7 points.

Due to lack of space, several additional ablation experi-

ments are included in the supplementary material.

5.5. Qualitative examples

Figure 3 shows qualitative results of our SB+SCoNE

model, which clearly showcases its various strengths.

Firstly, we clearly show a robust ability of the model to

predict a variety of attribute types of different objects with

good accuracy. Next, our object localizer shows remarkable

ability to find the correct object of interest and ignore back-

ground and other distracting objects (in 3a, the ground is not

attended by the object localizer). Next, our multi-attention

module often works to complement our object localizer by

attending to relevant image regions that may be outside of

the object region. For example, in figure 3b, the activity

skateboarding is easier to predict if our model can look at

the skateboard, but it is outside the person region. Here, our

multi-attention correctly learns to look at appropriate image

regions that can help our model determine the person has

an attribute skateboarding. More results can be found in the

supplementary material.

6. Discussion, Future Works and Conclusion

VAW is a first-of-its kind large-scale object attribute pre-

diction dataset in the wild. We explored various challenges

posed by the VAW dataset and also discussed efficacy of

current models towards this task. Our SCoNE algorithm

proposed several novel algorithmic improvements that have

helped us improve performance in the VAW dataset com-

pared to our strong baseline by 2.4 mAP and and 5.4

mR@15 points. Despite our results, there are several out-

standing challenges remaining to be solved in VAW.

Data Imbalance: Reweighting and resampling techniques

have helped considerably improve the performance of tail

categories in VAW dataset. However, even for our best

model, mAP for tail categories still lags more than 25 points

behind our head category. Similar to many vision and lan-

guage problems [34], this is one considerable challenge for

future works in this space.

Object-bias effect: Using object label as input is crucial

to obtain good results in VAW, but it may also introduce

object-bias in predictions. Ideally, an algorithm should be

able to make robust predictions for compositionally novel

instance. While not in scope of current paper, this can be

explored in detail by redistributing train-test split in com-

positionally novel patterns [1, 53, 63].

In conclusion, we believe that VAW can serve as an im-

portant benchmark not only for attribute prediction in the

wild, but also as a generic test for long-tailed multi-label

prediction task with limited labels, data imbalance, out-of-

distribution testing and bias-related issues.
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