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Abstract

We present Meta Pseudo Labels, a semi-supervised learn-

ing method that achieves a new state-of-the-art top-1 ac-

curacy of 90.2% on ImageNet, which is 1.6% better than

the existing state-of-the-art [16]. Like Pseudo Labels, Meta

Pseudo Labels has a teacher network to generate pseudo la-

bels on unlabeled data to teach a student network. However,

unlike Pseudo Labels where the teacher is fixed, the teacher

in Meta Pseudo Labels is constantly adapted by the feedback

of the student’s performance on the labeled dataset. As a

result, the teacher generates better pseudo labels to teach

the student.1

1. Introduction

The methods of Pseudo Labels or self-training [57, 81,

55, 36] have been applied successfully to improve state-of-

the-art models in many computer vision tasks such as image

classification (e.g., [79, 77]), object detection, and semantic

segmentation (e.g., [89, 51]). Pseudo Labels methods work

by having a pair of networks, one as a teacher and one as a

student. The teacher generates pseudo labels on unlabeled

images. These pseudo labeled images are then combined

with labeled images to train the student. Thanks to the abun-

dance of pseudo labeled data and the use of regularization

methods such as data augmentation, the student learns to

become better than the teacher [77].

Despite the strong performance of Pseudo Labels meth-

ods, they have one main drawback: if the pseudo labels are

inaccurate, the student will learn from inaccurate data. As

a result, the student may not get significantly better than

the teacher. This drawback is also known as the problem of

confirmation bias in pseudo-labeling [2].

In this paper, we design a systematic mechanism for the

teacher to correct the bias by observing how its pseudo labels

would affect the student. Specifically, we propose Meta

Pseudo Labels, which utilizes the feedback from the student

1Code is available at https : / / github . com / google -

research/google-research/tree/master/meta_pseudo_

labels.

to inform the teacher to generate better pseudo labels. In our

implementation, the feedback signal is the performance of

the student on the labeled dataset. This feedback signal is

used as a reward to train the teacher throughout the course of

the student’s learning. In summary, the teacher and student

of Meta Pseudo Labels are trained in parallel: (1) the student

learns from a minibatch of pseudo labeled data annotated by

the teacher, and (2) the teacher learns from the reward signal

of how well the student performs on a minibatch drawn from

the labeled dataset.

We experiment with Meta Pseudo Labels, using the

ImageNet [56] dataset as labeled data and the JFT-300M

dataset [26, 60] as unlabeled data. We train a pair of

EfficientNet-L2 networks, one as a teacher and one as a

student, using Meta Pseudo Labels. The resulting student

network achieves the top-1 accuracy of 90.2% on the Im-

ageNet ILSVRC 2012 validation set [56], which is 1.6%

better than the previous record of 88.6% [16]. This student

model also generalizes to the ImageNet-ReaL test set [6], as

summarized in Table 1. Small scale semi-supervised learn-

ing experiments with standard ResNet models on CIFAR-

10-4K, SVHN-1K, and ImageNet-10% also show that Meta

Pseudo Labels outperforms a range of other recently pro-

posed methods such as FixMatch [58] and Unsupervised

Data Augmentation [76].

Datasets
ImageNet ImageNet-ReaL

Top-1 Accuracy Precision@1

Previous SOTA [16, 14] 88.6 90.72

Ours 90.2 91.02

Table 1: Summary of our key results on ImageNet ILSVRC 2012

validation set [56] and the ImageNet-ReaL test set [6].

2. Meta Pseudo Labels

An overview of the contrast between Pseudo Labels and

Meta Pseudo Labels is presented in Figure 1. The main

difference is that in Meta Pseudo Labels, the teacher receives

feedback of the student’s performance on a labeled dataset.
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Figure 1: The difference between Pseudo Labels and Meta Pseudo Labels. Left: Pseudo Labels, where a fixed pre-trained teacher generates

pseudo labels for the student to learn from. Right: Meta Pseudo Labels, where the teacher is trained along with the student. The student is

trained based on the pseudo labels generated by the teacher (top arrow). The teacher is trained based on the performance of the student on

labeled data (bottom arrow).

Notations. Let T and S respectively be the teacher net-

work and the student network in Meta Pseudo Labels. Let

their corresponding parameters be θT and θS . We use (xl, yl)
to refer to a batch of images and their corresponding labels,

e.g., ImageNet training images and their labels, and use xu

to refer to a batch of unlabeled images, e.g., images from

the internet. We denote by T (xu; θT ) the soft predictions

of the teacher network on the batch xu of unlabeled images

and likewise for the student, e.g. S(xl; θS) and S(xu; θS).
We use CE(q, p) to denote the cross-entropy loss between

two distributions q and p; if q is a label then it is understood

as a one-hot distribution; if q and p have multiple instances

in them then CE(q, p) is understood as the average of all

instances in the batch. For example, CE
(
yl, S(xl; θS)

)
is

the canonical cross-entropy loss in supervised learning.

Pseudo Labels as an optimization problem. To intro-

duce Meta Pseudo Labels, let’s first review Pseudo Labels.

Specifically, Pseudo Labels (PL) trains the student model to

minimize the cross-entropy loss on unlabeled data:

θPL
S = argmin

θS

Exu

[

CE
(
T (xu; θT ), S(xu; θS)

)]

︸ ︷︷ ︸

:=Lu

(
θT ,θS

)

(1)

where the pseudo target T (xu; θT ) is produced by a well

pre-trained teacher model with fixed parameter θT . Given a

good teacher, the hope of Pseudo Labels is that the obtained

θPL
S would ultimately achieve a low loss on labeled data, i.e.

Exl,yl

[

CE
(
yl, S(xl; θ

PL
S )

)]

:= Ll

(
θPL
S

)
.

Under the framework of Pseudo Labels, notice that the

optimal student parameter θPL
S always depends on the teacher

parameter θT via the pseudo targets T (xu; θT ). To facili-

tate the discussion of Meta Pseudo Labels, we can explicitly

express the dependency as θPL
S (θT ). As an immediate obser-

vation, the ultimate student loss on labeled data Ll

(
θPL
S (θT )

)

is also a “function” of θT . Therefore, we could further opti-

mize Ll with respect to θT :

min
θT

Ll

(
θPL
S (θT )

)
,

where θPL
S (θT ) = argmin

θS

Lu

(
θT , θS

)
.

(2)

Intuitively, by optimizing the teacher’s parameter accord-

ing to the performance of the student on labeled data, the

pseudo labels can be adjusted accordingly to further improve

student’s performance. As we are effectively trying to op-

timize the teacher on a meta level, we name our method

Meta Pseudo Labels. However, the dependency of θPL
S (θT )

on θT is extremely complicated, as computing the gradient

∇θT θ
PL
S (θT ) requires unrolling the entire student training

process (i.e. argminθS ).

Practical approximation. To make Meta Pseudo Labels

feasible, we borrow ideas from previous work in meta learn-

ing [40, 15] and approximate the multi-step argminθS with

the one-step gradient update of θS :

θPL
S (θT ) ≈ θS − ηS · ∇θSLu

(
θT , θS

)
,

where ηS is the learning rate. Plugging this approximation

into the optimization problem in Equation 2 leads to the

practical teacher objective in Meta Pseudo Labels:

min
θT

Ll

(

θS − ηS · ∇θSLu

(
θT , θS

))

. (3)

Note that, if soft pseudo labels are used, i.e. T (xu; θT ) is

the full distribution predicted by teacher, the objective above

is fully differentiable with respect to θT and we can perform

standard back-propagation to get the gradient.2 However, in

this work, we sample the hard pseudo labels from the teacher

distribution to train the student. We use hard pseudo labels

because they result in smaller computational graphs which

2When optimizing Equation (3), we always treat θS as fixed parameters

and ignore its higher-order dependency on θT .
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are necessary for our large-scale experiments in Section 4.

For smaller experiments where we can use either soft pseudo

labels or hard pseudo labels, we do not find significant per-

formance difference between them. A caveat of using hard

pseudo labels is that we need to rely on a slightly modified

version of REINFORCE to obtain the approximated gradient

of Ll in Equation 3 with respect to θT . We defer the detailed

derivation to Appendix A.

On the other hand, the student’s training still relies on the

objective in Equation 1, except that the teacher parameter

is not fixed anymore. Instead, θT is constantly changing

due to the teacher’s optimization. More interestingly, the

student’s parameter update can be reused in the one-step

approximation of the teacher’s objective, which naturally

gives rise to an alternating optimization procedure between

the student update and the teacher update:

• Student: draw a batch of unlabeled data xu, then sample

T (xu; θT ) from teacher’s prediction, and optimize objec-

tive 1 with SGD: θ′S = θS − ηS∇θSLu(θT , θS),

• Teacher: draw a batch of labeled data (xl, yl), and “reuse”

the student’s update to optimize objective 3 with SGD:

θ′T = θT − ηT∇θTLl

(
θS −∇θSLu

(
θT , θS

)

︸ ︷︷ ︸

= θ′

S
reused from student’s update

)
.

Teacher’s auxiliary losses. We empirically observe that

Meta Pseudo Labels works well on its own. Moreover, it

works even better if the teacher is jointly trained with other

auxiliary objectives. Therefore, in our implementation, we

augment the teacher’s training with a supervised learning

objective and a semi-supervised learning objective. For the

supervised objective, we train the teacher on labeled data.

For the semi-supervised objective, we additionally train the

teacher on unlabeled data using the UDA objective [76].

For the full pseudo code of Meta Pseudo Labels when it

is combined with supervised and UDA objectives for the

teacher, please see Appendix B, Algorithm 1.

Finally, as the student in Meta Pseudo Labels only learns

from unlabeled data with pseudo labels generated by the

teacher, we can take a student model that has converged

after training with Meta Pseudo Labels and finetune it on

labeled data to improve its accuracy. Details of the student’s

finetuning are reported in our experiments.

Next, we will present the experimental results of Meta

Pseudo Labels, and organize them as follows:

• Section 3 presents small scale experiments where we com-

pare Meta Pseudo Labels against other state-of-the-art

semi-supervised learning methods on widely used bench-

marks.

• Section 4 presents large scale experiments of Meta Pseudo

Labels where we push the limits of ImageNet accuracy.

3. Small Scale Experiments

In this section, we present our empirical studies of Meta

Pseudo Labels at small scales. We first study the role of

feedback in Meta Pseudo Labels on the simple TwoMoon

dataset [7]. This study visually illustrates Meta Pseudo

Labels’ behaviors and benefits. We then compare Meta

Pseudo Labels against state-of-the-art semi-supervised learn-

ing methods on standard benchmarks such as CIFAR-10-4K,

SVHN-1K, and ImageNet-10%. We conclude the section

with experiments on the standard ResNet-50 architecture

with the full ImageNet dataset.

3.1. TwoMoon Experiment

To understand the role of feedback in Meta Pseudo Labels,

we conduct an experiment on the simple and classic TwoM-

oon dataset [7]. The 2D nature of the TwoMoon dataset

allows us to visualize how Meta Pseudo Labels behaves

compared to Supervised Learning and Pseudo Labels.

Dataset. For this experiment, we generate our own version

of the TwoMoon dataset. In our version, there are 2,000 ex-

amples forming two clusters each with 1,000 examples. Only

6 examples are labeled, 3 examples for each cluster, while the

remaining examples are unlabeled. Semi-supervised learn-

ing algorithms are asked to use these 6 labeled examples and

the clustering assumption to separate the two clusters into

correct classes.

Training details. Our model architecture is a feed-forward

fully-connected neural network with two hidden layers, each

has 8 units. The sigmoid non-linearity is used at each layer.

In Meta Pseudo Labels, both the teacher and the student

share this architecture but have independent weights. All

networks are trained with SGD using a constant learning

rate of 0.1. The networks’ weights are initialized with the

uniform distribution between -0.1 and 0.1. We do not apply

any regularization.

Results. We randomly generate the TwoMoon dataset for

a few times and repeat the three methods: Supervised Learn-

ing, Pseudo Labels, and Meta Pseudo Labels. We observe

that Meta Pseudo Labels has a much higher success rate of

finding the correct classifier than Supervised Learning and

Pseudo Labels. Figure 2 presents a typical outcome of our

experiment, where the red and green regions correspond to

the classifiers’ decisions. As can be seen from the figure, Su-

pervised Learning finds a bad classifier which classifies the

labeled instances correctly but fails to take advantage of the

clustering assumption to separate the two “moons”. Pseudo

Labels uses the bad classifier from Supervised Learning and

hence receives incorrect pseudo labels on the unlabeled data.

As a result, Pseudo Labels finds a classifier that misclassifies
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Figure 2: An illustration of the importance of feedback in Meta Pseudo Labels (right). In this example, Meta Pseudo Labels works better

than Supervised Learning (left) and Pseudo Labels (middle) on the simple TwoMoon dataset. More details are in Section 3.1.

half of the data, including a few labeled instances. Meta

Pseudo Labels, on the other hand, uses the feedback from

the student model’s loss on the labeled instances to adjust the

teacher to generate better pseudo labels. As a result, Meta

Pseudo Labels finds a good classifier for this dataset. In

other words, Meta Pseudo Labels can address the problem

of confirmation bias [2] of Pseudo Labels in this experiment.

3.2. CIFAR­10­4K, SVHN­1K, and ImageNet­10%
Experiments

Datasets. We consider three standard benchmarks:

CIFAR-10-4K, SVHN-1K, and ImageNet-10%, which have

been widely used in the literature to fairly benchmark semi-

supervised learning algorithms. These benchmarks were

created by keeping a small fraction of the training set as

labeled data while using the rest as unlabeled data. For

CIFAR-10 [34], 4,000 labeled examples are kept as labeled

data while 41,000 examples are used as unlabeled data. The

test set for CIFAR-10 is standard and consists of 10,000

examples. For SVHN [46], 1,000 examples are used as

labeled data whereas about 603,000 examples are used as

unlabeled data. The test set for SVHN is also standard, and

has 26,032 examples. Finally, for ImageNet [56], 128,000

examples are used as labeled data which is approximately

10% of the whole ImageNet training set while the rest of

1.28 million examples are used as unlabeled data. The test

set for ImageNet is the standard ILSVRC 2012 version that

has 50,000 examples. We use the image resolution of 32x32

for CIFAR-10 and SVHN, and 224x224 for ImageNet.

Training details. In our experiments, our teacher and

our student share the same architecture but have indepen-

dent weights. For CIFAR-10-4K and SVHN-1K, we use a

WideResNet-28-2 [84] which has 1.45 million parameters.

For ImageNet, we use a ResNet-50 [24] which has 25.5

million parameters. These architectures are also commonly

used by previous works in this area. During the Meta Pseudo

Labels training phase where we train both the teacher and

the student, we use the default hyper-parameters from previ-

ous work for all our models, except for a few modifications

in RandAugment [13] which we detail in Appendix C.2.

All hyper-parameters are reported in Appendix C.4. After

training both the teacher and student with Meta Pseudo La-

bels, we finetune the student on the labeled dataset. For this

finetuning phase, we use SGD with a fixed learning rate of

10−5 and a batch size of 512, running for 2,000 steps for

ImageNet-10% and 1,000 steps for CIFAR-10 and SVHN.

Since the amount of labeled examples is limited for all three

datasets, we do not use any heldout validation set. Instead,

we return the model at the final checkpoint.

Baselines. To ensure a fair comparison, we only compare

Meta Pseudo Labels against methods that use the same archi-

tectures and do not compare against methods that use larger

architectures such as Larger-WideResNet-28-2 and Pyramid-

Net+ShakeDrop for CIFAR-10 and SVHN [5, 4, 72, 76],

or ResNet-50×{2,3,4}, ResNet-101, ResNet-152, etc. for

ImageNet-10% [25, 23, 10, 8, 9]. We also do not compare

Meta Pseudo Labels with training procedures that include

self-distillation or distillation from a larger teacher [8, 9].

We enforce these restrictions on our baselines since it is

known that larger architectures and distillation can improve

any method, possibly including Meta Pseudo Labels.

We directly compare Meta Pseudo Labels against two

baselines: Supervised Learning with full dataset and Un-

supervised Data Augmentation (UDA [76]). Supervised

Learning with full dataset represents the headroom because

it unfairly makes use of all labeled data (e.g., for CIFAR-

10, it uses all 50,000 labeled examples). We also compare

against UDA because our implementation of Meta Pseudo

Labels uses UDA in training the teacher. Both of these base-

lines use the same experimental protocols and hence ensure

a fair comparison. We follow [48]’s train/eval/test splitting,

and we use the same amount of resources to tune hyper-

parameters for our baselines as well as for Meta Pseudo

Labels. More details are in Appendix C.

Additional baselines. In addition to these two baselines,

we also include a range of other semi-supervised baselines

in two categories: Label Propagation and Self-Supervised.

Since these methods do not share the same controlled envi-

ronment, the comparison to them is not direct, and should

be contextualized as suggested by [48]. More controlled ex-

periments comparing Meta Pseudo Labels to other baselines
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Method
CIFAR-10-4K SVHN-1K ImageNet-10%

(mean ± std) (mean ± std) Top-1 Top-5

Label Propagation Methods

Temporal Ensemble [35] 83.63± 0.63 92.81± 0.27 −

Mean Teacher [64] 84.13± 0.28 94.35± 0.47 −

VAT + EntMin [44] 86.87± 0.39 94.65± 0.19 − 83.39

LGA + VAT [30] 87.94± 0.19 93.42± 0.36 −

ICT [71] 92.71± 0.02 96.11± 0.04 −

MixMatch [5] 93.76± 0.06 96.73± 0.31 −

ReMixMatch [4] 94.86± 0.04 97.17± 0.30 −

EnAET [72] 94.65 97.08 −

FixMatch [58] 95.74± 0.05 97.72± 0.38 71.5 89.1
UDA∗ [76] 94.53± 0.18 97.11± 0.17 68.07 88.19

Self-Supervised Methods

SimCLR [8, 9] − − 71.7 90.4
MOCOv2 [10] − − 71.1 −

PCL [38] − − − 85.6
PIRL [43] − − − 84.9
BYOL [21] − − 68.8 89.0

Meta Pseudo Labels 96.11 ± 0.07 98.01 ± 0.07 73.89 91.38

Supervised Learning with full dataset∗ 94.92± 0.17 97.41± 0.16 76.89 93.27

Table 2: Image classification accuracy on CIFAR-10-4K, SVHN-1K, and ImageNet-10%. Higher is better. For CIFAR-10-4K and SVHN-

1K, we report mean ± std over 10 runs, while for ImageNet-10%, we report Top-1/Top-5 accuracy of a single run. For fair comparison,

we only include results that share the same model architecture: WideResNet-28-2 for CIFAR-10-4K and SVHN-1K, and ResNet-50 for

ImageNet-10%. ∗ indicates our implementation which uses the same experimental protocols. Except for UDA, results in the first two blocks

are from representative important papers, and hence do not share the same controlled environment with ours.

are presented in Appendix D.

Results. Table 2 presents our results with Meta Pseudo

Labels in comparison with other methods. The results show

that under strictly fair comparisons (as argued by [48]),

Meta Pseudo Labels significantly improves over UDA. In-

terestingly, on CIFAR-10-4K, Meta Pseudo Labels even

exceeds the headroom supervised learning on full dataset.

On ImageNet-10%, Meta Pseudo Labels outperforms the

UDA teacher by more than 5% in top-1 accuracy, going

from 68.07% to 73.89%. For ImageNet, such relative im-

provement is very significant.

Comparing to existing state-of-the-art methods. Com-

pared to results reported from past papers, Meta Pseudo

Labels has achieved the best accuracies among the same

model architectures on all the three datasets: CIFAR-10-

4K, SVHN-1K, and ImageNet-10%. On CIFAR-10-4K and

SVHN-1K, Meta Pseudo Labels leads to almost 10% rela-

tive error reduction compared to the highest reported base-

lines [58]. On ImageNet-10%, Meta Pseudo Labels outper-

forms SimCLR [8, 9] by 2.19% top-1 accuracy.

While better results on these datasets exist, to our knowl-

edge, such results are all obtained with larger models,

stronger regularization techniques, or extra distillation pro-

cedures. For example, the best reported accuracy on CIFAR-

10-4K is 97.3% [76] but this accuracy is achieved with

a PyramidNet which has 17x more parameters than our

WideResNet-28-2 and uses the complex ShakeDrop reg-

ularization [80]. On the other hand, the best reported top-1

accuracy for ImageNet-10% is 80.9%, achieved by Sim-

CLRv2 [9] using a self-distillation training phase and a

ResNet-152×3 which has 32x more parameters than our

ResNet-50. Such enhancements on architectures, regular-

ization, and distillation can also be applied to Meta Pseudo

Labels to further improve our results.

3.3. ResNet­50 Experiment

The previous experiments show that Meta Pseudo La-

bels outperforms other semi-supervised learning methods

on CIFAR-10-4K, SVHN-1K, and ImageNet-10%. In this

experiment, we benchmark Meta Pseudo Labels on the en-

tire ImageNet dataset plus unlabeled images from the JFT

dataset. The purpose of this experiment is to verify if Meta

Pseudo Labels works well on the widely used ResNet-50

architecture [24] before we conduct more large scale experi-

ments on EfficientNet (Section 4).

Datasets. As mentioned, we experiment with all labeled

examples from the ImageNet dataset. We reserve 25,000

examples from the ImageNet dataset for hyper-parameter

tuning and model selection. Our test set is the ILSVRC 2012

validation set. Additionally, we take 12.8 million unlabeled

images from the JFT dataset. To obtain these 12.8 million

511561



unlabeled images, we first train a ResNet-50 on the entire

ImageNet training set and then use the resulting ResNet-50

to assign class probabilities to images in the JFT dataset. We

then select 12,800 images of highest probability for each

of the 1,000 classes of ImageNet. This selection results in

12.8 million images. We also make sure that none of the

12.8 million images that we use overlaps with the ILSVRC

2012 validation set of ImageNet. This procedure of filtering

extra unlabeled data has been used by UDA [76] and Noisy

Student [77].

Implementation details. We implement Meta Pseudo La-

bels the same as in Section 3.2 but we use a larger batch size

and more training steps, as the datasets are much larger for

this experiment. Specifically, for both the student and the

teacher, we use the batch size of 4,096 for labeled images

and the batch size of 32,768 for unlabeled images. We train

for 500,000 steps which equals to about 160 epochs on the

unlabeled dataset. After training the Meta Pseudo Labels

phase on ImageNet+JFT, we finetune the resulting student on

ImageNet for 10,000 SGD steps, using a fixed learning rate

of 10−4. Using 512 TPUv2 cores, our training procedure

takes about 2 days.

Method
Unlabeled Accuracy

Images (top-1/top-5)

Supervised [24] None 76.9/93.3

AutoAugment [12] None 77.6/93.8

DropBlock [18] None 78.4/94.2

FixRes [68] None 79.1/94.6

FixRes+CutMix [83] None 79.8/94.9

NoisyStudent [77] JFT 78.9/94.3

UDA [76] JFT 79.0/94.5

Billion-scale SSL [68, 79] YFCC 82.5/96.6

Meta Pseudo Labels JFT 83.2/96.5

Table 3: Top-1 and Top-5 accuracy of Meta Pseudo Labels and

other representative supervised and semi-supervised methods on

ImageNet with ResNet-50.

Baselines. We compare Meta Pseudo Labels against two

groups of baselines. The first group contains supervised

learning methods with data augmentation or regularization

methods such as AutoAugment [12], DropBlock[18], and

CutMix [83]. These baselines represent state-of-the-art su-

pervised learning methods on ResNet-50. The second group

of baselines consists of three recent semi-supervised learn-

ing methods that leverage the labeled training images from

ImageNet and unlabeled images elsewhere. Specifically,

billion-scale semi-supervised learning [79] uses unlabeled

data from the YFCC100M dataset [65], while UDA [76]

and Noisy Student [77] both use JFT as unlabeled data like

Meta Pseudo Labels. Similar to Section 3.2, we only com-

pare Meta Pseudo Labels to results that are obtained with

ResNet-50 and without distillation.

Results. Table 3 presents the results. As can be seen from

the table, Meta Pseudo Labels boosts the top-1 accuracy of

ResNet-50 from 76.9% to 83.2%, which is a large margin

of improvement for ImageNet, outperforming both UDA

and Noisy Student. Meta Pseudo Labels also outperforms

Billion-scale SSL [68, 79] in top-1 accuracy. This is par-

ticularly impressive since Billion-scale SSL pre-trains their

ResNet-50 on weakly-supervised images from Instagram.

4. Large Scale Experiment: Pushing the Limits

of ImageNet Accuracy

In this section, we scale up Meta Pseudo Labels to train

on a large model and a large dataset to push the limits of

ImageNet accuracy. Specifically, we use the EfficientNet-L2

architecture because it has a higher capacity than ResNets.

EfficientNet-L2 was also used by Noisy Student [77] to

achieve the top-1 accuracy of 88.4% on ImageNet.

Datasets. For this experiment, we use the entire ImageNet

training set as labeled data, and use the JFT dataset as un-

labeled data. The JFT dataset has 300 million images, and

then is filtered down to 130 million images by Noisy Student

using confidence thresholds and up-sampling [77]. We use

the same 130 million images as Noisy Student.

Model architecture. We experiment with EfficientNet-

L2 since it has the state-of-the-art performance on Ima-

geNet [77] without extra labeled data. We use the same

hyper-parameters with Noisy Student, except that we use the

training image resolution of 512x512 instead of 475x475.

We increase the input image resolution to be compatible with

our model parallelism implementation which we discuss in

the next paragraph. In addition to EfficientNet-L2, we also

experiment with a smaller model, which has the same depth

with EfficientNet-B6 [63] but has the width factor increased

from 2.1 to 5.0. This model, termed EfficientNet-B6-Wide,

has 390 million parameters. We adopt all hyper-parameters

of EfficientNet-L2 for EfficientNet-B6-Wide. We find that

EfficientNet-B6-Wide has almost the same performance with

EfficientNet-L2, but is faster to compile and train.

Model parallelism. Due to the memory footprint of our

networks, keeping two networks in memory for the teacher

and the student vastly exceeds the available memory of our

accelerators. We thus design a hybrid model-data parallelism

framework to run Meta Pseudo Labels. Specifically, we use a

cluster of 2,048 TPUv3 cores. We divide these cores into 128

identical replicas to run with standard data parallelism with
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Method # Params Extra Data
ImageNet ImageNet-ReaL [6]

Top-1 Top-5 Precision@1

ResNet-50 [24] 26M − 76.0 93.0 82.94

ResNet-152 [24] 60M − 77.8 93.8 84.79

DenseNet-264 [28] 34M − 77.9 93.9 −

Inception-v3 [62] 24M − 78.8 94.4 83.58

Xception [11] 23M − 79.0 94.5 −

Inception-v4 [61] 48M − 80.0 95.0 −

Inception-resnet-v2 [61] 56M − 80.1 95.1 −

ResNeXt-101 [78] 84M − 80.9 95.6 85.18

PolyNet [87] 92M − 81.3 95.8 −

SENet [27] 146M − 82.7 96.2 −

NASNet-A [90] 89M − 82.7 96.2 82.56

AmoebaNet-A [52] 87M − 82.8 96.1 −

PNASNet [39] 86M − 82.9 96.2 −

AmoebaNet-C + AutoAugment [12] 155M − 83.5 96.5 −

GPipe [29] 557M − 84.3 97.0 −

EfficientNet-B7 [63] 66M − 85.0 97.2 −

EfficientNet-B7 + FixRes [70] 66M − 85.3 97.4 −

EfficientNet-L2 [63] 480M − 85.5 97.5 −

ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram 81.2 96.0 −

ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram 84.8 − −

ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram 85.4 97.6 88.19

FixRes ResNeXt-101 WSL [69] 829M 3.5B labeled Instagram 86.4 98.0 89.73

Big Transfer (BiT-L) [33] 928M 300M labeled JFT 87.5 98.5 90.54

Noisy Student (EfficientNet-L2) [77] 480M 300M unlabeled JFT 88.4 98.7 90.55

Noisy Student + FixRes [70] 480M 300M unlabeled JFT 88.5 98.7 −

Vision Transformer (ViT-H) [14] 632M 300M labeled JFT 88.55 − 90.72

EfficientNet-L2-NoisyStudent + SAM [16] 480M 300M unlabeled JFT 88.6 98.6 −

Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JFT 90.0 98.7 91.12

Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT 90.2 98.8 91.02

Table 4: Top-1 and Top-5 accuracy of Meta Pseudo Labels and previous state-of-the-art methods on ImageNet. With EfficientNet-L2 and

EfficientNet-B6-Wide, Meta Pseudo Labels achieves an improvement of 1.6% on top of the state-of-the-art [16], despite the fact that the

latter uses 300 million labeled training examples from JFT.

synchronized gradients. Within each replica, which runs

on 2,048/128=16 cores, we implement two types of model

parallelism. First, each input image of resolution 512x512 is

split along the width dimension into 16 patches of equal size

512x32 and is distributed to 16 cores to process. Note that

we choose the input resolution of 512x512 because 512 is

close to the resolution 475x475 used by Noisy Student and

512 keeps the dimensions of the network’s intermediate out-

puts divisible by 16. Second, each weight tensor is also split

equally into 16 parts that are assigned to the 16 cores. We

implement our hybrid data-model parallelism in the XLA-

Sharding framework [37]. With this parallelism, we can fit a

batch size of 2,048 labeled images and 16,384 unlabeled im-

ages into each training step. We train the model for 1 million

steps in total, which takes about 11 days for EfficientNet-L2

and 10 days for EfficientNet-B6-Wide. After finishing the

Meta Pseudo Labels training phase, we finetune the mod-

els on our labeled dataset for 20,000 steps. Details of the

finetuning procedures are in Appendix C.4.

Results. Our results are presented in Table 4. From the

table, it can be seen that Meta Pseudo Labels achieves 90.2%

top-1 accuracy on ImageNet, which is a new state-of-the-art

on this dataset. This result is 1.8% better than the same

EfficientNet-L2 architecture trained with Noisy Student [77]

and FixRes [69, 70]. Meta Pseudo Labels also outperforms

the recent results by BiT-L [33] and the previous state-of-the-

art by Vision Transformer [14]. The important contrast here

is that both Bit-L and Vision Transformer pre-train on 300

million labeled images from JFT, while our method only uses

unlabeled images from this dataset. At this level of accuracy,

our gain of 1.6% over [16] is a very significant margin of

improvement compared to recent gains. For instance, the

gain of Vision Transformer [14] over Noisy Student + FixRes

was only 0.05%, and the gain of FixRes over Noisy Student

was only 0.1%.

Finally, to verify that our model does not simply overfit

to the ImageNet ILSVRC 2012 validation set, we test it on

the ImageNet-ReaL test set [6]. On this test set, our model

also works well and achieves 91.02% Precision@1 which is
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0.4% better than Vision Transformer [14]. This gap is also

bigger than the gap between Vision Transformer and Noisy

Student which is only 0.17%.

A lite version of Meta Pseudo Labels. Given the expen-

sive training cost of Meta Pseudo Labels, we design a lite ver-

sion of Meta Pseudo Labels, termed Reduced Meta Pseudo

Labels. We describe this lite version in Appendix E, where

we achieve 86.9% top-1 accuracy on the ImageNet ILSRVC

2012 validation set with EfficentNet-B7. To avoid using pro-

prietary data like JFT, we use the ImageNet training set as

labeled data and the YFCC100M dataset [65] as unlabeled

data. Reduced Meta Pseudo Labels allows us to implement

the feedback mechanism of Meta Pseudo Labels while avoid-

ing the need to keep two networks in memory.

5. Related Works

Pseudo Labels. The method of Pseudo Labels, also known

as self-training, is a simple Semi-Supervised Learning (SSL)

approach that has been successfully applied to improve the

state-of-the-art of many tasks, such as: image classifica-

tion [79, 77], object detection, semantic segmentation [89],

machine translation [22], and speech recognition [31, 49].

Vanilla Pseudo Labels methods keep a pre-trained teacher

fixed during the student’s learning, leading to a confirma-

tion bias [2] when the pseudo labels are inaccurate. Unlike

vanilla Pseudo Labels, Meta Pseudo Labels continues to

adapt the teacher to improve the student’s performance on a

labeled dataset. This extra adaptation allows the teacher to

generate better pseudo labels to teach the student as shown

in our experiments.

Other SSL approaches. Other typical SSL methods of-

ten train a single model by optimizing an objective func-

tion that combines a supervised loss on labeled data and

an unsupervised loss on unlabeled data. The supervised

loss is often the cross-entropy computed on the labeled data.

Meanwhile, the unsupervised loss is typically either a self-

supervised loss or a label propagation loss. Self-supervised

losses typically encourage the model to develop a com-

mon sense about images, such as in-painting [50], solv-

ing jigsaw puzzles [47], predicting the rotation angle [19],

contrastive prediction [25, 10, 8, 9, 38], or bootstraping

the latent space [21]. On the other hand, label propaga-

tion losses typically enforce that the model is invariant

against certain transformations of the data such as data aug-

mentations, adversarial attacks, or proximity in the latent

space [35, 64, 44, 5, 76, 30, 71, 58, 32, 51, 20]. Meta Pseudo

Labels is distinct from the aforementioned SSL methods in

two notable ways. First, the student in Meta Pseudo Labels

never learns directly from labeled data, which helps to avoid

overfitting, especially when labeled data is limited. Second,

the signal that the teacher in Meta Pseudo Labels receives

from the student’s performance on labeled data is a novel

way of utilizing labeled data.

Knowledge Distillation and Label Smoothing. The

teacher in Meta Pseudo Labels uses its softmax predictions

on unlabeled data to teach the student. These softmax pre-

dictions are generally called the soft labels, which have

been widely utilized in the literature on knowledge distilla-

tion [26, 17, 86]. Outside the line of work on distillation,

manually designed soft labels, such as label smoothing [45]

and temperature sharpening or dampening [76, 77], have

also been shown to improve models’ generalization. Both

of these methods can be seen as adjusting the labels of the

training examples to improve optimization and generaliza-

tion. Similar to other SSL methods, these adjustments do not

receive any feedback from the student’s performance as pro-

posed in this paper. An experiment comparing Meta Pseudo

Labels to Label Smoothing is presented in Appendix D.2.

Bi-level optimization algorithms. We use Meta in our

method name because our technique of deriving the teacher’s

update rule from the student’s feedback is based on a bi-level

optimization problem which appears frequently in the litera-

ture of meta-learning. Similar bi-level optimization problems

have been proposed to optimize a model’s learning process,

such as learning the learning rate schedule [3], designing

architectures [40], correcting wrong training labels [88], gen-

erating training examples [59], and re-weighting training

data [73, 74, 54, 53]. Meta Pseudo Labels uses the same

bi-level optimization technique in this line of work to derive

the teacher’s gradient from the student’s feedback. The dif-

ference between Meta Pseudo Labels and these methods is

that Meta Pseudo Labels applies the bi-level optimization

technique to improve the pseudo labels generated by the

teacher model.

6. Conclusion

In this paper, we proposed the Meta Pseudo Labels

method for semi-supervised learning. Key to Meta Pseudo

Labels is the idea that the teacher learns from the student’s

feedback to generate pseudo labels in a way that best helps

student’s learning. The learning process in Meta Pseudo

Labels consists of two main updates: updating the student

based on the pseudo labeled data produced by the teacher

and updating the teacher based on the student’s performance.

Experiments on standard low-resource benchmarks such as

CIFAR-10-4K, SVHN-1K, and ImageNet-10% show that

Meta Pseudo Labels is better than many existing semi-

supervised learning methods. Meta Pseudo Labels also

scales well to large problems, attaining 90.2% top-1 accu-

racy on ImageNet, which is 1.6% better than the previous

state-of-the-art [16]. The consistent gains confirm the benefit

of the student’s feedback to the teacher.
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