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Abstract

CoMoGAN is a continuous GAN relying on the unsu-

pervised reorganization of the target data on a functional

manifold. To that matter, we introduce a new Functional In-

stance Normalization layer and residual mechanism, which

together disentangle image content from position on target

manifold. We rely on naive physics-inspired models to guide

the training while allowing private model/translations fea-

tures. CoMoGAN can be used with any GAN backbone and

allows new types of image translation, such as cyclic im-

age translation like timelapse generation, or detached lin-

ear translation. On all datasets, it outperforms the litera-

ture. Our code is available in this page:

https://github.com/cv-rits/CoMoGAN .

1. Introduction

Image-to-image (i2i) translation networks learn transla-

tions between domains, applying to the context of source

images a target appearance learned from a dataset. This

enables applications such as neural photo editing [75, 32,

21, 48, 6], along with robotics-oriented tasks as time-of-

day or weather selection [74, 47, 46, 13, 61], domain adap-

tation [18, 40, 29, 60], or others. Despite impressive leaps

forward with unpaired [75, 32], multi-target [9, 65], or con-

tinuous [64, 14] i2i, there are still important limitations.

Specifically, to learn complex continuous translations ex-

isting works require supervision on intermediate domain

points. Also, they assume piece-wise or entire linearity

of the domain manifold. Such constraints can hardly meet

cyclic translations (e.g. daytime) or continuous ones costly

or impractical to label (e.g. fog, rain).

Instead, we introduce CoMoGAN, the first i2i frame-

work learning non-linear continuous translations with un-

supervised target data. It is trained using simple physics-

inspired models for guidance, while relaxing model de-

pendency via continuous disentanglement of domain fea-

tures. An interesting resulting property is that CoMoGAN

discovers the target data manifold ordering, unsupervised.

For evaluation we propose new translation tasks, shown in

Fig. 1, being either cyclic/linear, attached/detached from

Figure 1: Detaching from traditional i2i translation, we

are interested in continuous mapping from source domain

(green point) to a target domain (red lines), in single- or

multi- modal setup. A key feature of our proposal, is unsu-

pervised reorganization of the data along a functional mani-

fold (top: cyclic, middle/bottom: linear). We leverage light-

ing translations from day images (top), shallower depth of

field from in-focus images (middle), or synthetic clear im-

ages to realistic foggy images (bottom).

source. Our contributions are:

• a novel model-guided setting for continuous i2i,

• CoMoGAN: an unsupervised framework for disentan-

glement of continuously evolving features in generated

images, using simple model guidance,

• a novel Functional Instance Normalization (FIN) layer,

• the evaluation of CoMoGAN against recent baselines

and new tasks, outperforming the literature on all.

2. Related works

Differently from early i2i [22], the seminal work in

[75, 70] enabled unpaired source/target training. Building

on it, multi-modal [21, 76] or multi-target [8, 9, 65, 2] i2i

appeared. Performance was also boosted with additional

supervision [55, 5, 39, 27, 58, 7, 78, 77, 30, 36, 45, 41, 35].
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Figure 2: CoMoGAN enables unsupervised continuous translation, being end-to-end trainable, and architecture agnostic. Our

Disentanglement Residual Block (DRB) – placed between encoder/decoder (GE/GD) – uses new Functional Instance Nor-

malization (FIN, yellow layer) to learn manifold reshaping and continuous translation, guided with simple physics-inspired

model M . For losses (L), on top of standard ones we optimize model reconstruction (LM ) and manifold consistency (Lφ)

by enforcing manifold distances between GAN output and model outputs {φ, φ′} with a pair-wise estimator (φ-Net).

Model-guided translation. Models can be exploited to

improve i2i. In [61], they hybrid a physics based render-

ing [15] with GANs to enable controllable rainy translation.

Similarly, [46] disentangles occlusions by injecting models

at training. All these rely on model integration, rather than

guidance. Models could influence many training aspects, in

the form of output space conditions [49], loss functions [25]

or ad-hoc data augmentation [68]. They have been used ex-

tensively for image restoration [43, 28, 69], but rarely for

GAN image synthesis. Still, [23] uses simple models to

learn basic image transformation (rotation, brightness, etc.).

Disentangled representations. Disentanglement is com-

monly used to gain control on generation by separating im-

age content and style [21, 26, 24, 44]. Others aim at con-

trolling output images granularity [56] or specific features,

as blur [34] or view-points [42]. Some exploit disentangle-

ment for few-shot generalization capabilities [33, 52]. Do-

main features disentanglement also unifies representations

across domains [66, 31]. While some do not use labels at

all [3, 4], none of them learn translation sequentiality.

Continuous image translation. A common practice for

continuous i2i is to use intermediate domains by weighting

discriminator [14, 13], using losses for middle states [65],

or mixing disentangled styles representations [9, 50]. At-

tribute vectors interpolation [67, 71, 37] enables continuous

control of several features. Others continuously navigate

latent spaces with discovered paths [6, 12, 23]. Finally, fea-

ture [63] or kernel [64] interpolation were proposed. Still,

they assume linear interpolation – not always valid (e.g. day

to night include dusk). GANimation [48] instead, use non-

linear interpolations but require intermediate domain labels.

3. CoMoGAN

Instead of a point-to-point mapping (X 7→ Y ), Co-

MoGAN learns a continuous domain translation controlled

by φ, that is X 7→ Y (φ). Training uses source data (at

fixed φ0) and unsupervised target data (unknown φ). It re-

shapes the data manifold guided by naive physics-inspired

models (e.g. tone-mapping, blurring, etc.). Rather than

mimicry, we relax the model and let the networks discover

private image features via our disentanglement of output, φ,

and style.

Fig. 2 is an overview of our architecture-agnostic pro-

posal. It relies on three key components. We first introduce

Functional Instance Normalization layer (Sec. 3.1) which

enables φ-manifold reshaping. Second, our Disentangle-

ment Residual Block (Sec. 3.2) in charge of φ disentangle-

ment in input data. Finally, we detail φ-Net, a pair-wise φ
regression network (Sec. 3.3) which enforces manifold dis-

tances consistency.

Model guidance. We guide the learning with simple non-

neural models M(x, φ), x the source image. Thus, follow-

ing the intuition that target manifold can be discovered with

coarse guidance: night resembles dark day, fog looks like

a blurry gray clear image, etc. We depart from the need of

complex physical guidance since we disentangle shared and

private features from model/translation which enables dis-

covering complex non-modeled features (e.g. light sources

at night). Models are described in Sec. 4.1 and supp.

3.1. Functional Instance Normalization (FIN)

To take advantage of our model guidance which is con-

tinuous by nature, we must allow our network to encode
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φ continuity. To do so, we build on prior Instance Nor-

malization (IN) which allows carrying style-related infor-

mation [62, 20]. It writes for input x,

IN(x) =
x− µ

σ
γ + β, (1)

where µ and σ are input feature statistics, and γ and β
learned parameters of an affine transformation. As an exten-

sion, we propose Functional Instance Normalization (FIN)

FIN(x, φ) =
x− µ

σ
fγ(φ) + fβ(φ), (2)

where instead of learning a unique value of affine transfor-

mation parameters, we learn the distribution of transforma-

tions fγ and fβ . The intuition is to shape the φ-manifold

based on how the transformation evolves. Compared to oth-

ers [14], this allows us to interpret better the learned man-

ifold. Depending on the nature of Y (φ), we can encode

FIN layer accordingly. In this work, we investigate lin-

ear and cyclic encoding. Linear encoding is commonly en-

countered, and assumes reorganizing features linearly. For

instance, considering adverse weather phenomena, severe

conditions (e.g. thick fog) are always positioned after light

ones (i.e. lite fog). We model linear FIN parameters as

fγ(φ) = aγφ+ bγ ,

fβφ = aβφ+ bβ ,
(3)

with {aγ , aβ , bγ , bβ} the learnable parameters of the layer.

Conversely, some translations path loop back to source,

as it happens with daylight, which is cyclic by nature going

from Day to Dusk 7→ Night 7→ Dawn and Day again. In

this case, we encode cyclic FIN layer with parameters

fγ(φ) = aγcos(φ) + bγ ,

fβ(φ) = aβsin(φ) + bβ .
(4)

3.2. Disentanglement Residual Block (DRB)

The pitfall of strict model-dependency is that the GAN

will only learn to mimic the model. To prevent that, we

must allow target domain Y (φ) and model domain YM (φ)
to have shared modeled features Y φ but also private non-

modeled features Y E and Y E
M , respectively. This writes

Y (φ) = {Y φ, Y E} ,

YM (φ) = {Y φ, Y E
M} .

(5)

We enable private features in either domain with our Disen-

tanglement Residual Block (DRB, shown in Fig. 2) whose

goal is to extract disentangled representations for a given φ.

The DRB is composed of residual blocks mapping the en-

coder feature map hX to the disentangled representations of

output images. Let yφ ∈ Y (φ), yφM ∈ YM (φ), we have

DRB(hX , φ) = {hY , hY
M},

yφ = GD(hY ) , yφM = GD(hY
M ).

(6)

The DRB works as follows. Following Fig. 2, the input rep-

resentation hX is processed by residual blocks, each one ex-

tracting features associated with the atomic ones previously

introduced, such as Y φ, Y E , Y E
M ←→ hφ, hE , hE

M , one per

residual. In particular, the residual block for hφ extraction

uses our FIN layers for normalization to encode continuous

features. The hidden latent representations hY and hY
M are

obtained from summation of the disentangled features and

hX to ease gradient propagation as in [16]. In formulas,

hY = hφ + hE + hX ,

hY
M = hφ + hE

M + hX .
(7)

Intuitively, for optimization we need feedback from both

real data similarity and mimicking of the model output.

While the first must rely on adversarial training due to

the use of unpaired images, we can enforce reconstruction

on the paired modeled ỹφM = M(x, φ). Assuming LS-

GAN [38] training and discriminator D, we obtain

LG
adv = ||D(yφ)− 1||2,

LM = ||yφM − ỹφM ||1.
(8)

Minimization of LG
adv and LM during the generator update

step enables disentanglement of hE and hE
M .

3.3. Pairwise regression network (φ-Net)

The DRB enforces both disentanglement and manifold

shape at a feature level, but it requires ad-hoc training strate-

gies to actually disentangle also continuous features for real

images and not fall into easy pitfalls, e.g. the network only

exploiting hE for target translation ignoring hφ. Hence,

we introduce a training strategy based on similarities which

forces the network to both exploit extracted continuous in-

formation and follow the model guidance. Suppose an input

image x, mapped to x 7→ yφ by the network. As shown in

Fig. 2, we randomly sample φ and φ′ and apply M(.) to

x, obtaining the couple {ỹφM , ỹφ
′

M}. We use a CNN (φ-Net)

for domain similarity discovery. It takes as input a pair of

images and regresses their φ differences, such as

φ-Net(yφ, yφ
′

) = φ− φ′ = ∆φ . (9)

We jointly optimize φ-Net and generator (G) parameters in

an end-to-end setting by enforcing consistency between real

and modeled target domain images. In formulas,

LG
φ = ||φ-Net(yφ, ỹφM )||2 + ||φ-Net(yφ, ỹφ

′

M )−∆φ||2,

Lgt = ||φ-Net(ỹφM , ỹφ
′

M )−∆φ||2,

Lφ = LG
φ + Lgt. (10)

LG
φ forces G to organize the manifold following the feed-

back of the physical model, ultimately resulting in gener-

ated yφ and ỹφM to be mapped to the same φ on the manifold
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Figure 3: We enforce cycle consistency by injecting the

source φ0 in the X 7→ Y 7→ X translation when recon-

structing the original image. Also, for Y 7→ X 7→ Y we

position the input image at φest on the domain using our

φ-NetA CNN trained unsupervised for φ regression.

discovered by φ-Net. That way, the network can identify

that images follow some similarity criteria despite differ-

ences between model output and learned translation, lead-

ing to an organization of the latent space guided by the

physical model. Lgt instead exploits modeled data only and

thus is used to avoid training collapse. For linear FIN, we

train on φ and ∆φ, though for cyclic one stability is in-

creased by evaluating each loss on sin/cos projection of φ.

3.4. Training strategy

CoMoGAN is end-to-end trainable and can be used with

any i2i framework by simply adding the DRB between en-

coder and decoder, with our losses. The final objective for

the generator depends if source and target are detached, i.e.

X 6⊂ Y (see Fig. 1 for visualization). If detached, the gen-

erator update step writes

LG = LG
adv + LM + Lφ . (11)

For attached source/target, we enforce source (φ0) identity:

LG = LG
adv + LM + Lφ + ||G(x, φ0)− x||1 . (12)

Either LG definition is used, sometimes in conjunction with

a regularization pairwise loss to ease training (cf. supp).

Using real data (ỹ) from target the discriminator minimizes

LD = LD
adv = ||D(yφ)||2 + ||D(ỹ)− 1||2 .

Cycle consistency. In addition to X 7→ Y , many net-

works perform Y 7→ X to preserve context with cycle con-

sistency. To handle the latter, we insert a shared DRB be-

tween each encoder/decoder couple to benefit from multiple

sources. This is illustrated in Fig. 3. We also use another

unsupervised network, called φ-NetA, that regresses φ on

the target dataset. From above figure (left), because φ is

injected in X 7→ Y transformation, we enforce a correct

spreading of all φ values by adding Lreg to the generator

objective, Lreg = ||φ-NetA(y
φ)− φ||2.

4. Experiments

We show the efficiency of CoMoGAN on new contin-

uous image-to-image translation tasks X 7→ Y (φ), where

we consider source data to lie on a fixed point (φ0) of

the φ-manifold and unknown φ target data. The underly-

ing optimization challenge is to learn simultaneously the φ-

manifold and continuous image translation. Because con-

tinuous model-guided translation is new, we first describe

our three novel translations tasks (Sec. 4.1) obtained by

leveraging recent datasets [57, 51, 10, 15, 75]. Each task en-

compasses challenges of its own such as linear/cyclic target

manifold, attached/detached manifolds (i.e. X ⊂ Y or X 6⊂
Y ) and uni-/multi- modality. Specifically, we train with

backbone MUNIT [21] (multi-modal) or CycleGAN [75]

(uni-modal) and coin our alternatives CoMo-MUNIT and

CoMo-CycleGAN, respectively. We evaluate the manifold

organization (Sec. 4.2) and the translation quality (Sec. 4.3)

from GAN metrics and proxy tasks. Continuous translation

(Sec. 4.4) is evaluated separately and we conclude with ab-

lation studies (Sec. 4.5). We mostly train with default back-

bone hyperparameters, more details are in supplementary.

4.1. Translation tasks

Day 7→ Timelapse. Using recent Waymo Open dataset

[57], we frame the complex task of day to any time, thus

learning timelapse passing through day/dusk/night/dawn.

Waymo image labels are only used to split clear images

into source {Day} and target {Dusk/Dawn, Night}, respec-

tively obtaining train/val sets of 105307 / 28165 and 27272

/ 7682 images. We train CoMo-MUNIT for multi-modality.

To respect the cyclic nature of time we exploit cyclic FIN

(Eq. 4) encoding φ ∈ [0, 2π], which maps to a sun ele-

vation ∈ [+30◦,−40◦]. For evaluation only, we obtain

ground truth elevation from astronomical models [1] with

image GPS position and timestamp. For guidance, we ex-

ploit a simple day-to-night tone mapping [59] (Ω) interpo-

lating with Hosek radiance model [19] (HSK) to account

for gradual loss of color, and adding asymmetrical hue cor-

rection (corr) to account for temperature changes – i.e. at

analog sun elevation dusk appears red-ish and dawn purple-

ish –. The complete model is in the supplementary. It writes

M(x, φ) = (1− α)x+ αΩ(x,HSK(φ) + corr(φ)) + corr(φ).
(13)

iPhone 7→ DSLR. We inspire from CycleGAN [75] by

adapting their initial task to a continuous setup, learn-

ing the mapping of iPhone images with large depth of

field to DSLR images with shallow depth of field. We

also use the iphone2dslr flowers dataset [75], split in

source 1182/569 and target 3325/480. We train this task

with CoMo-CycleGAN for comparison, and use linear

FIN (Eq. 3) where φ ∈ [0, 1] encodes the progression.

For guidance, we naively render blur by convolving (∗)
a Gaussian (G) which kernel size maps to φ. That is

M(x, φ) = G(φ) ∗ x . (14)
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Figure 4: Translations (dark circle) of a source day image

(center) exhibit both high variability and similarities with

target data (outer circle) for which we report ground truth

elevations. CoMo-MUNIT learned non-modeled visual fea-

tures like frontal sun scenes resembling real ones (as in

{0◦, 6◦, 18◦}). Note that it discovered dawn/dusk and the

stationary appearance of night, proving manifold quality.

Syntheticclear 7→ Realclear, foggy. Here, we propose a de-

tached source/target task, where we learn clear to foggy

except that source is synthetic and target is real data.

For source, we leverage spring sequences of synthetic

Synthia dataset [51], split in 3497/959 images. As tar-

get we mix original Cityscapes [10] and 4 augmented

foggy Weather Cityscapes [15] with max visibility dis-

tances {750m, 350m, 150m, 75m}. In target, each of the

5 Cityscapes version has 2975/500 images. We train here

a CoMo-MUNIT with linear FIN layer (Eq. 3) and encode

maximum visibility as φ ∈ [0, 1], i.e. visibility ∈ [∞, 70m].
For guidance, we simply exploit the fog model of [15]. For

the sake of space, models details, sample outputs and model

experiments are provided in the supplementary.

4.2. Manifold organization

We evaluate the quality of the unsupervised manifold

discovery using CoMo-MUNIT on the Day 7→ Timelapse.

Fig. 4 shows a source day image (center) and our timelapse

translations for uniformly sampled φ (middle circle). Apart

from the appealing translations appearance, notice the net-

work discovered important features like frontal sun (when

the sun is close to the horizon), sunset/sunrise, material re-

flectance (at night), and the stable nighttime appearance.

All these features are not in model M(.) though present

Figure 5: Translations along dimensions φ (red) and style

(dotted). For a given φ, the styles vary slightly (notice hue

and brightness), proving disentanglement of φ and style.

in target images (outer circle). This advocates the network

disentangled model features and translation features. Note

also that the top translation in Fig. 4 accurately resembles

source, assessing that target is attached to source.

Quantitatively, we measure the manifold precision by re-

gressing φ with our φ-NetA CNN (cf. Sec. 3.4) on real

Waymo validation set, and compute the error w.r.t. ground

truth elevations. We get a mean error of 19.8◦ (std 8.56◦)

when unsupervised and 4.05◦ (std 4.20◦) if supervised.

Even unsupervised, our manifold discovery is acceptable,

and opens ways for unsupervised translations where φ
ground truth would be impractical (e.g. rain, snow).

Disentangled dimensions. Because MUNIT is multi-

modal by design, it is important to assess CoMo-MUNIT

properly disentangles φ from the style dimension of MU-

NIT. We do this by sampling φ and style. From Fig. 5, the

latter evolve correctly on different axes, which was expected

since φ is regulated by model-guided features. Again, using

φ-NetA, we regress φ values for 100 fixed φ translations

each with 100 different styles, obtaining 1.06◦ φ-variance

along the style dimension. This proves the orthogonality of

φ and style manifolds.

4.3. Translation quality

GAN metrics. We measure the quality and variability of

all translations task w.r.t. MUNIT and CycleGAN back-

bones, showcasing in Tab. 1 that we always perform bet-

ter or on par. In the table, IS [54] evaluates image quality

and diversity over all the dataset, CIS [21] over multimodal

translations, and LPIPS [72] evaluates absolute diversity

only. We conjecture our performance results of the higher

degree of control we have, since we control φ features in a

disentangled manner (i.e. extremely increasing variability),

while entangled backbones lean towards the easiest trans-

lations. The InceptionV3 networks used for IS/CIS evalu-

ation are trained on the source/target classification task. IS

is evaluated on all validation set, while for CIS/LPIPS we

follow [21] evaluation routine.
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Task Network IS↑ CIS↑ LPIPS↑

Day 7→ Timelapse
MUNIT [21] 1.43 1.41 0.583

CoMo-MUNIT 1.59 1.51 0.580

Syn.clear 7→ Realclear, foggy
MUNIT [21] 1.30 1.02 0.493

CoMo-MUNIT 1.30 1.05 0.515

iPhone 7→ DSLR
CycleGAN [75] 1.39 n.a.* 0.658

CoMo-CycleGAN 1.44 1.18 0.680

* CIS is only applicable to multi-modal network.

Table 1: GAN metrics proves the benefit of our controllable

φ generation, leading to on par or better quality/variability.

Translations CS FD Mean

none (source) 10.9 10.1 10.5

Model [15] 19.9 21.5 20.7

MUNIT [21] 38.3 21.8 30.0

CoMo-MUNIT 43.0 23.4 33.2

(a) mIoU metric

Input Model MUNIT Ours

(b) Samples

Figure 6: Semantic segmentation on clear

Cityscapes (CS) [10] and Foggy Driving (FD) [53]

with PSPNet-50 [73] trained on clear Synthia (source),

foggy physics Model, and Syntheticclear 7→ Realclear, foggy of

MUNIT or CoMo-MUNIT. Noticeably, we outperform all

on both clear (CS) and foggy (FD) dataset.

Semantic segmentation. We measure the effectiveness of

our Syntheticclear 7→ Realclear, foggy translations in Fig. 6

by training PSPNet-50 [73] with either MUNIT or CoMo-

MUNIT outputs. For comparison, we also train segmen-

tation with clear source Synthia or physics-based foggy

model [15] as for guidance. For MUNIT and CoMo-

MUNIT, we employ a multi-modal style-sampling strat-

egy [47] with 5 fixed styles. Additionally, for CoMo-

MUNIT and model translations that allow it, we sample uni-

form φ. We follow [73] settings and train 150 epochs, using

3498 train images for each setup.

Tab. 6a reports the standard mIoU on shared Synthia-

Cityscapes classes on real images from the validation set of

Cityscapes [10] (CS, 500 images) and Foggy Driving [53]

(FD, 101 images). While the transformation is subtle, it still

reduces the domain shift, since even if Model significantly

outperforms source but we beat all by additional margin of

+4.7/+1.6/+3.2. Noticeably, we improve both on clear (CS)

and foggy (FD) datasets showing CoMo-MUNIT preserved

accurate clear and foggy translations. We speculate instead

that MUNIT focuses on target dataset fog intensities which

are discrete and may differ from FD, while our FIN layer

enables continuous representation leading to better general-

ization. Qualitative evaluation on both datasets in Fig. 6b

respects mIoU performances.

4.4. Continuous translation quality

To evaluate the continuity of the translations, we show

uniformly spaced φ translations for Day 7→ Timelapse

(Fig. 7, bottom row), Synthetic 7→ Real (Fig. 8) and

iPhone 7→ DSLR (Fig. 9). For all, regardless of the back-

bone and task, our translations look appealing with our net-

work discovering unique visual features not present in the

model guidance. This is quite noticeable in DSLR (Fig. 9)

which learned depth of field despite simple blurring guid-

ance, or in the detached foggy experiment (Fig. 8) since

translations encompass the desired real appearance with in-

creasing fog.

4.4.1 Benchmark evaluation

We evaluate the challenging Day 7→ Timelapse with the lit-

erature. This is not trivial since our proposal is to the best

of our knowledge the first continuous cyclic GAN. While

some previous works could be adapted to cyclic translation

(e.g. DLOW [14]) they all require intermediate labeled tar-

get points. Hence, to achieve a fair comparison compen-

sating data scarcity in Waymo Open, we formulate time-

lapse as linear {Day, Dusk/Dawn, Night} for all baselines

and randomly sample between Dusk or Dawn branch with

our cyclic network. Please bear in mind that all baselines

are more supervised than ours since they use intermediate

Dusk/Dawn point while CoMoGAN discovers the manifold

from unsupervised target data. We now detail the baselines.

StarGAN v2 [9] is a state-of-the-art multi-target i2i

architecture learning multiple mapping from the same

source point. We train it with official implementation on

Day 7→ Dawn/Dusk 7→ Night path and use its style code

disentanglement capability to enable continuous i2i.

DLOW [14] is continuous by design. We train it

with 2 unimodal DLOW Day 7→ Dawn/Dusk and

Dawn/Dusk 7→ Night. Note that it can be multi-target, but

we already compare with the more recent StarGAN v2.

DNI [64] applies Deep Network Interpolation to interpolate

among kernels of finetuned networks for continuous i2i.

We adapt 2 baselines DNI-CycleGAN and DNI-MUNIT

both trained on Day 7→ Dawn/Dusk 7→ Night.

Comparison. From Fig. 7, baselines (rows 1-4) either ex-

hibit limited variability in interpolated points (StarGAN v2

/ DNI) or unrealistic results (e.g. DLOW at night). A key

limitation is that they rely on (piece-wise) linear interpola-

tion preventing them from discovering the stationary aspect

of night (last 3 cols). Conversely, CoMo-MUNIT (bottom

row) translations are both realistic and stationary at night.

We also study the realism of all translations using the

Frechet Inception Distance [17] (FID) to measure features

distances between generated images and real ones. For that,

we uniformly split the elevations range [+30◦,−40◦] in 70

overlapping bins of 7◦ width, and compute each bin FID

by comparing 100 translations and ad-hoc real images. We

refer to this as ”rolling FID”, plotted in Fig. 10a. From the
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Figure 7: Day 7→ Timelapse translations. Baselines output unrealistic translations (e.g. DLOW [14]) or images with limited

variability (StarGAN V2 [9]). DNI [64] is the best baseline, though our CoMo-MUNIT (last row) is the only cyclic one,

outputs more variable images (e.g. at dusk/dawn) and discovered stable night with less supervision.

Source

Synthetic (clear) Real (clear) CoMo-MUNIT Real (foggy)

Figure 8: Sample Syntheticclear 7→ Realclear, foggy trans-

lations with CoMo-MUNIT. Note the complex detached

source (Synthia [51]) and target (clear/foggy Cityscapes[10,

15]) setting. Still, clear translations correctly encompass

Cityscapes stylistic appearance (notice texture and color).

latter, our method outperforms others especially in complex

intermediate conditions. Note the baselines performance at

precise ”dawn/dusk” center (where they are supervised) and

how their FID degrade as they depart toward night (approx.

−18◦). Even if unsupervised, our lower FID shows CoMo-

MUNIT better learned these complex visual transitions.

An alternative accuracy evaluation is proposed with a proxy

task, which is an InceptionV3 network trained to regress sun

elevation from real images and φ ground truths. For each

method, we then generate 100 images at 100 φ locations,

and measure the error between the input φ and the inference

with the InceptionV3. Tab. 10b shows we outperform other

methods with a 3.96◦ margin due to our better mapping.

Source

iPhone iPhone CoMo-CycleGAN DSLR CycleGAN [75]

Figure 9: CoMo-CycleGAN translations on the iPhone 7→
DSLR task, using iphone2dslr dataset [75]. Despite naive

blur guidance (Eq. 14), it learns continuous DSLR depth of

field, while [75] outputs only target translations.

4.5. Ablation studies

Architectural changes. We ablate the use of LM and Lφ

by removing either. To evaluate the diversity of Day 7→
Timelapse translations, we sample 10 couples of random

{φ1, φ2} for 100 images and evaluate the LPIPS distance

among translations pairs. We obtain LPIPS 0.020 w/o LM ,

0.044 w/o Lφ, while using both proves best with 0.236.

Disentangled reconstruction. While we disentangle real

domain Y (φ) and model domain YM (φ) (cf. Fig. 2), steer-

able GANs [23] instead leverage guidance directly on Y (φ).
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(a) Rolling FID

Method Mean err. ↓Std ↓

Model 21.12 10.15

DLOW [14] 17.39 9.02

StarGANV2 [9] 15.91 10.00

DNI-CycleGAN [64] 13.84 7.91

DNI-MUNIT [64] 13.80 8.30

CoMo-MUNIT 9.84 7.20

Real data 3.61 4.52

(b) φ regression

Figure 10: Evaluation of Day 7→ Timelapse. In a rolling

FID (cf. text) shows our method is more effective in the

complex dawn/dusk (”D/D”) and night points, translating

as lower mean FID (in legend). In b, we rank best on both

mean and std error between the input φ and the regressed φ
with an InceptionV3 network (trained on real data).

(a) Ours (b) [23] (λ = 1) (c) [23] (λ = 5)

Figure 11: FIDs (cf. text) for ours (a) and steerable

GANs [23] (b-c). Ours has lowest FIDs as it learns to depart

from the model. Instead when increasing λ, [23] learns to

mimic model but FID diverges from real images features.

To study either benefit, we replaceLφ andLM withLedit =
λ||yφ − ỹφM ||1 as in [23]. Fig. 11 shows discrete FIDs,

for ours and [23] with λ = 1, 5, evaluated against real

data (blue) or model translations (orange). The plots hold

complex but interesting insights. Specifically, low FIDs at

Dawn/Dusk infer the model is reliable there, while diver-

gent FIDs at night mean the opposite. With λ = 1 the

i2i lacks guidance and performs poorly, but higher λ in-

creases model mimicking and lower real FID. Instead, ours

is guided by the model but learns to depart from it with the

discovery of exclusive target features.

Model choice. We study the benefit of FIN encoding by

swapping linear and cyclic. Comparing with Tab. 1, training

iPhone 7→ DSLR with cyclic FIN is worse (IS/CIS/LPIPS

1.41/1.20/0.678) and at the cost of more complex encod-

ing. Training Day 7→ Timelapse with linear FIN performs

on par or better (IS/CIS/LPIPS 1.65/1.64/0.579) but loses

dusk/dawn distinction capability.

5. Discussion

φ-agnostic inference. In all experiments, translation as-

sumes source at φ0, though agnostic inference is of inter-

est. To test this, we trained our method with cycle con-

sistency and shared parameters for X 7→ Y and Y 7→ X

Input (φest) Rel. +17.5◦ Abs. to −5
◦ (dusk) Abs. to 30

◦ (day)

(a) φ-agnostic inference

Source

(b) Training with domain confusion

Source
Cat Dog (black fur) CoMo-MUNIT Dog (white fur)

(c) Cat 7→ Dog with fur color guidance

Figure 12: a: Training with shared encoder/decoder and

using φ-NetA at inference enables relative and absolute φ
translations. The input is estimated at φest = −33.45◦

(gt −32.73◦) and shifted with various strategies. b:

CoMo-CycleGAN on MNIST-M [11] trained with domain

confusion (w/o fixed φ), guiding on brightness (1st row) or

redness (2nd). It shows source (leftmost) and translations

along φ dimension. Despite domain confusion, it reorga-

nized the manifold and produced valid translations. In c,

we guide the complex Cat 7→ Dog only with fur color.

encoder/decoders (refer to Sec. 3.4). At inference, we used

φ-NetA to estimate φest on input which enabled absolute

translation regardless of input (e.g. anytime 7→day) but also

relative translation (e.g. +5◦). Sample results in Fig. 12a

show exciting results with challenging night input.

Source/Target domains confusion. A limitation of most

GANs is the need of source/target splits while truly unsu-

pervised GAN could discover a continuous manifold from

mixed source/target data (i.e. X∪Y or domains confusion).

Interestingly, model-guided GANs allow this if the model

does not enforce φ input. While there are no physical model

for bilateral night ↔ day or foggy ↔ clear, we prove the

feasibility on MNIST-M [11] toy tasks, learning brightness

or redness manifold. Fig. 12b shows we correctly achieve

translation, paving ways for truly unsupervised GAN.

Models and data limitations. Model-guided GAN are

unsuitable for some complex scenarios (e.g. face-to-face)

due to the lack of models, but can guide features as skin

tone, etc. as in our experiment Fig. 12c on Cat 7→ Dog using

fur color guidance. Like [23], we too experienced that data

scarcity affects greatly the manifold discovery and training

timelapse without dusk and dawn proves to fail drastically.
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