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Figure 1: Panoptic segmentation on high-resolution natural images is challenged with recognizing objects at a wide range of

scales. Standard approaches (left) can struggle when dealing with very small (zoomed detail) or very large objects (bus on

the left). By introducing a novel instance scale-uniform sampling strategy and a crop-aware bounding box loss, we are able

to improve panoptic segmentation results at all scales (right).

Abstract

Crop-based training strategies decouple training reso-

lution from GPU memory consumption, allowing the use

of large-capacity panoptic segmentation networks on multi-

megapixel images. Using crops, however, can introduce a

bias towards truncating or missing large objects. To ad-

dress this, we propose a novel crop-aware bounding box

regression loss (CABB loss), which promotes predictions to

be consistent with the visible parts of the cropped objects,

while not over-penalizing them for extending outside of the

crop. We further introduce a novel data sampling and aug-

mentation strategy which improves generalization across

scales by counteracting the imbalanced distribution of ob-

ject sizes. Combining these two contributions with a care-

fully designed, top-down panoptic segmentation architec-

ture, we obtain new state-of-the-art results on the challeng-

ing Mapillary Vistas (MVD), Indian Driving and Cityscapes

datasets, surpassing the previously best approach on MVD

by +4.5% PQ and +5.2% mAP.

1. Introduction

Panoptic segmentation [16] is the task of generating per-

pixel, semantic labels for an image, together with object-

specific segmentation masks. It is thus a combination of

semantic segmentation and instance segmentation, i.e. two

long-standing tasks in computer vision that have been tradi-

tionally tackled separately. Due to its importance for tasks

like autonomous driving or scene understanding it has re-

cently attracted a lot of interest in the research community.

The majority of deep-learning based panoptic segmenta-

tion architectures [15, 23, 17, 29, 21] proposed a combina-

tion of specialized segmentation branches – one for con-

ventional semantic segmentation and another one for in-

stance segmentation – followed by a combination strategy

to generate a final panoptic segmentation result. Instance

segmentation branches in top-down panoptic architectures

are dominantly designed on top of Mask R-CNN [12], i.e.

a segmentation extension of Faster R-CNN [24] generating

state-of-the-art mask predictions for given bounding boxes.

In contrast and more recently, bottom-up panoptic architec-

tures [6, 26] have emerged but still lag behind in terms of

instance segmentation performance.

Panoptic segmentation networks are typically solving

multiple tasks (object detection, instance segmentation and

semantic segmentation), and are trained on batches of full-

sized images. However, with increasing complexity of tasks

and growing capacity of the network backbone, full-image

training is quickly inhibited by available GPU memory, de-

spite availability of memory-saving strategies during train-

ing like [25, 20, 11, 14]. Obvious mitigation strategies

include a reduction of training batch size, downsizing of

high-resolution training images, or building on backbones

with lower capacity. These workarounds unfortunately in-

troduce other limitations: i) Small batch sizes can lead to

higher variance in the gradients which will reduce the ef-

fectiveness of Batch Normalization [13] and consequently

the performance of the resulting model. ii) Reducing the

image resolution leads to a loss of fine structures which are

known to strongly correlate with objects belonging to the
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long tail of the label distribution. Downsampling the images

is consequently amplifying already existing performance is-

sues on small and usually underrepresented classes. iii)

A number of recent works [28, 5, 31] have shown that

larger backbones with sophisticated strategies of maintain-

ing high-resolution features are boosting panoptic segmen-

tation results in comparison to those with reduced capacity.

A possible strategy to overcome the aforementioned is-

sues is to move from full-image-based training to crop-

based training. This was successfully used for conventional

semantic segmentation [25, 3, 2], which is however an eas-

ier problem as the task is limited to a per-pixel classification

problem. By fixing a certain crop size the details of fine

structures can be preserved, and at a given memory bud-

get, multiple crops can be stacked to form reasonably sized

training batches. For more complex tasks like panoptic seg-

mentation, the simple cropping strategy also affects the per-

formance on object detection and consequently on instance

segmentation. In particular, extracting fixed-size crops from

images during training introduces a bias towards truncating

large objects, with the likely consequence of underestimat-

ing their actual bounding box sizes during inference on full

images (see, e.g. Fig. 1 left). Indeed, Fig. 2 (left) shows that

the distribution of box sizes during crop-based training on

the high-resolution Mapillary Vistas [22] dataset does not

match with the one derived from full-image training data.

In addition, Fig. 2 (right) shows that large objects (based on

# pixels) are drastically underrepresented, which may lead

to over-fitting and thus further harming generalization.

In this paper we overcome these issue by introducing two

novel contributions: 1) A crop-based training strategy ex-

ploiting a crop-aware loss function (CABB) to address the

problem of cropping large objects, and 2) Instance scale-

uniform (ISUS) sampling as data augmentation strategy to

combat the imbalance of object scales in the training data.

Our solution enjoys all benefits from crop-based training as

discussed above. In addition, our crop-aware loss incen-

tivizes the model to predict bounding boxes to be consistent

with the visible parts of cropped objects, while not over-

penalizing predictions outside of the crop. The underlying

intuition is simple: Even if an object bounding box size

was modified through cropping, the actual object bound-

ing boxes may be larger than what is visible to the net-

work during training. By not penalizing hypothetical pre-

dictions beyond the visible area of a crop but still within

their actual sizes, we can better model the bounding box

size distribution given by the original training data. With

ISUS we introduce an effective data augmentation strategy

to improve feature-pyramid like representations as used for

object detection at multiple scales. It aims at more evenly

distributing supervision of object instances during training

across pyramid scales, leading to improved recognition per-

formance of instances at all scales during inference. In

the experimental analyses we find that our crop-aware loss

function is particularly effective on high-resolution images

as available in the challenging Mapillary Vistas [22], Indian

Driving [27], or Cityscapes [8] datasets.

Contributions. We summarize our contributions to the

panoptic segmentation research community as follows.

• We introduce a novel, crop-aware training loss appli-

cable to improving bounding box detection in panop-

tic segmentation networks when training them in a

crop-based way. At negligible computational over-

head (∼10ms per batch) we show how our new loss

addresses issues of crop-based training, considerably

improving the performance on disproportionately of-

ten truncated bounding boxes.

• We describe a novel Instance Scale-Uniform Sampling

approach to smooth the distribution of object sizes ob-

served by a network at training time, improving its

generalization across scales.

• We significantly push the state-of-the-art results on the

high-resolution Mapillary Vistas dataset, improving on

multiple evaluation metrics like Panoptic Quality [16]

(+4.5%) and mean average precision (mAP) for mask

segmentation (+5.2%). We also obtain remarkable per-

formance gains on IDD and Cityscapes, improving PQ

by +0.6% and mAP by +4.1% and +1.5%, respectively.

2. Technical Contributions

In this section we present our main methodological con-

tributions. In particular, in Sec. 2.1 we describe a novel

Instance-Scale Uniform Sampling (ISUS) approach aimed

at reducing the object scale imbalance inherent in high-

resolution panoptic datasets. Sections 2.2, 2.3 and 2.4 de-

scribe the Crop-Aware Bounding Box (CABB) loss, which

we propose as a mitigation to the bias imposed by crop-

based training on the detection of large objects.

2.1. Instance Scale­Uniform Sampling (ISUS)

Most top-down panoptic segmentation networks build on

top of backbones that produce a “pyramid” of features at

multiple scales. At training time, some heuristic rule [15]

is applied to split the ground truth instances across the

available scales, such that the network is trained to detect

small objects using high-resolution features and large ob-

jects using low-resolution features. By sharing the parame-

ters of the prediction modules (e.g. the RPN and ROI heads

of [23]) across all scales, the network is incentivized to learn

scale-invariant features. When dealing with high-resolution

images, however, this approach encounters two major is-

sues: i) the range of object scales can greatly exceed the

range of scales available in the feature pyramid, and ii) the
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Figure 2: Left: average intersection over union of cropped bounding boxes w.r.t. their original extent, computed using the

Mapillary Vistas training settings in Sec. 4.1. Right: distribution of object scales in the Mapillary Vistas training set.

distribution of object scales is markedly non-uniform (see

Fig. 2). While (i) can be partially addressed by adding more

feature scales, at the cost of increased memory and compu-

tation, (ii) will lead to a strong imbalance in the amount of

supervision received by each level of the feature pyramid.

In order to mitigate this imbalance, we propose an ex-

tension to the Class-Uniform Sampling (CUS) approach in-

troduced in [25] we coin Instance Scale-Uniform Sampling

(ISUS). The standard CUS data preparation process follows

four steps: 1) sample a semantic class with uniform proba-

bility; 2) load an image that contains that class and re-scale

it such that its shortest side matches a predefined size s0;

3) apply any data augmentation (e.g. flipping, random scal-

ing); and 4) produce a random crop from an area of the im-

age where the selected class is visible. In ISUS, we follow

the same steps as in CUS, except that the scale augmenta-

tion procedure is made instance-aware. In particular, when

a “thing” class is selected in step 1 and after completing step

2, we also sample a random instance of that class from the

image and a random feature pyramid level. Then, in step

3 we compute a scaling factor σ such that the selected in-

stance will be assigned to the selected level according to the

heuristic adopted by the network being trained. In order to

avoid excessively large or small scale factors, we clamp σ to

a limited range rth. Conversely, when a “stuff” class is se-

lected in step 1, we follow the standard scale augmentation

procedure, i.e. uniformly sample σ from a range rst. In the

long run, ISUS will have the effect of smoothing out the ob-

ject scale distribution, providing more uniform supervision

across all scales.

2.2. Bounding box regression

Most top-down panoptic segmentation approaches en-

code object bounding boxes in terms of offsets with respect

to a set of reference boxes [17, 23, 21]. These reference

boxes can be fixed, e.g. the “anchors” in the region proposal

stage, or be the output of a different network section, e.g.

the “proposals” in the detection stage. The goal of a net-

work component that predicts bounding boxes is to regress

these offset values given the input image (or derived fea-

tures thereof).

A ground-truth bounding box G is encoded in terms of a

center cG ∈ R
2 and dimensions dG ∈ R

2. Each ground-truth

box is assigned a reference (or anchor) bounding box A with

center cA ∈ R
2 and dimensions dA ∈ R

2. The ground truth

for the training procedure is then encoded in relative terms

and specifically given by ∆G = (δG,ωG) where

δG =
cG − cA

dA

∈ R
2 and ωG =

dG

dA

∈ R
2 .

Here and later, we implicitly assume for notational conve-

nience that operations and functions applied to vectors work

element-wise unless otherwise stated. We will also use the

notation ⊖ to denote the operation above that returns ∆G

given bounding boxes G and A, i.e. ∆G = G⊖ A.

Similarly, given an anchor bounding box A and ∆P =
(δP,ωP), we can recover the predicted bounding box P with

center cP and dimensions dP as

cP = cA + δPdA and dP = ωPdA .

Standard bounding box loss [24]. To train the network,

the following per-box loss is minimized over the training

dataset:

LBB(∆P; ∆G) = ‖ℓβ(δP−δG)+ℓβ(logωP−logωG)‖1 , (1)

where ‖ · ‖1 is the 1-norm and ℓβ denotes the Huber (a.k.a.

smooth-L1) norm with parameter β > 0, i.e.

ℓβ(z) =

{

1
2β z

2 |z| ≤ β

|z| − β
2 otherwise,

and |z| gives the absolute value of z.

2.3. Crop­Aware Bounding Box (CABB)

In a standard crop-based training, a ground-truth bound-

ing box G from the original image that overlaps with the

cropping area C is typically cropped yielding a new bound-

ing box denoted by G|C. 1 Accordingly, the actual ground-

truth ∆G that is used in the loss (1) is the result of ∆G =

1When masks are available like in instance or panoptic segmentation,

the cropping operation is performed at the mask level and the bounding

box is recomputed a posteriori. We implicitly assume that this is the case

if a ground-truth mask is available for G.
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Figure 3: Example of Crop-Aware Bounding Boxes

(CABB). We show 4 ground-truth boxes, three of which

fall partially outside the crop area. The corresponding set

ρ(G, C), a.k.a. CABB, consists of all rectangular bounding

boxes that can be formed by moving the white-bordered

corners within the feasible areas (depicted in blue). Note

that the areas extend to infinity but are truncated here.

G|C ⊖ A. Training with this modified ground-truth, however,

poses some issues, namely a bias towards cutting or missing

big objects at inference time (see, e.g., Fig. 1 and 6).

The solution we propose in this work consists in relax-

ing the notion of ground-truth bounding box G into a set of

ground-truth boxes that coincide with G|C after the cropping

operation. We denote by ρ(G, C) the function that computes

this set for given ground-truth box G and cropping area C,

i.e.

ρ(G, C) = {X ∈ B : X|C = G|C} ,

where X runs over all possible bounding boxes B. We re-

fer to ρ(G, C) as a Crop-Aware Bounding Box (CABB) that

in fact is a set of bounding boxes (see also Fig. 3). If the

ground-truth bounding box G is strictly contained in the crop

area then our CABB boils down to the original ground truth,

for ρ(G, C) = {G} in that case.2 Since we will use a rep-

resentation for bounding boxes relative to some anchor box

A we introduce also the notation ρA(G, C), which returns the

same set as above but with elements expressed relative to A,

i.e. ρA(G, C) = {X⊖ A : X ∈ ρ(G, C)}.

Crop-aware bounding box loss. In order to exploit the

proposed, relaxed notion of ground-truth bounding box,

we introduce the following new loss function for a given

ground-truth box G, anchor box A and crop area C:

LCABB(∆P) =min
∆

LBB(∆P; ∆) ,

s.t ∆ ∈ ρA(G, C) .
(2)

Any bounding box in ρ(G, C) is compatible with the cropped

ground-truth box we observe and thus could be potentially

2To simplify the description, we deliberately neglect the fact that a

bounding box strictly contained in the original image and touching the

boundary of the crop area should not be extended beyond the crop. How-

ever, our approach can be easily adapted to address these edge cases.

a valid prediction. To disambiguate, our new loss favours

the solution closer to the actual prediction from the network

in order to enforce a smoother training dynamic. Since the

ground-truth box that is typically adopted for the standard

loss in (1) belongs to the feasible set of the minimization in

our new loss, we have that LCABB lower bounds LBB.

2.4. Computational Aspects

This section focuses on the computational aspects of our

new loss. In particular, we will address the problem of eval-

uating it by solving the internal minimization as well as

computing the gradient.

The minimization problem that is nested into our new

loss has no straightforward solution, since it is neither con-

vex nor quasi-convex and in general, local, non-global so-

lutions might exist. Its feasible set is convex in ∆ = (δ,ω)
since it can be written in terms of linear equalities and in-

equalities. Each dimension gives rise to an independent

set of constraints and since also the objective function is

separable with respect to dimension-specific variables, we

have that the whole minimization problem can be separated

into two independent minimization problems involving only

dimension-specific variables.

Feasible set. Assume without loss of generality that the

cropping area C is a box with top-left coordinate (0, 0) and

bottom-right coordinate dC ∈ R
2. Then the feasible set of

each dimension-specific minimization problem can be writ-

ten as:

• δ − ω
2 ≤ − cA

dA
if cG ≤

dG
2 else δ − ω

2 = δG −
ωG

2 and

• δ + ω
2 ≥ dC−cA

dA
if cG ≥ dC −

dG
2 else δ + ω

2 = δG +
ωG

2 ,

where we dropped the boldface style from the vector-valued

variables to emphasize that the constraint is specified for a

single dimension.

Optimization problem. We will now enumerate the dif-

ferent cases characterizing the feasible set and for each of

them we will provide the dimension-specific optimization

problem that should be solved. Akin to the feasible set

above, all variables involved from here on refer implicitly

to a single dimension.

• If dG
2 < cG < dC−

dG
2 then ∆⋆ = (δG, ωG) is the solution

to the minimization problem in (2) for the dimension

under consideration, since the feasible set is singleton

in this case.

• If cG >
dG
2 and cG ≥ dC−

dG
2 , we obtain an optimization

problem in the variable ω of the form

min
ω

ℓβ

(

ω − ω̂

2

)

+ ℓβ(log(ω)− log(ωP))

s.t. ω ≥ b1 − a1 ,

(O1)
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where a1 = δG −
ωG

2 , b1 = dC−cA
dA

and ω̂ = 2(δP − a1).

If w⋆ is a solution to (O1) then ∆⋆ = (a1 + ω⋆

2 , ω⋆)
is a solution to the minimization problem in (2) for the

dimension under consideration.

• If cG ≤
dG
2 and cG < dC−

dG
2 , we obtain an optimization

problem like (O1) but with a1 = − cA
dA

, b1 = δG +
ωG

2 and ω̂ = 2(b1 − δP). If w⋆ is a solution to (O1)

under this parametrization then ∆⋆ = (b1 − ω⋆

2 , ω⋆)
is a solution to the minimization problem in (2) for the

dimension under consideration.

• If dC −
dG
2 ≤ cG ≤ dG

2 then we obtain an optimization

problem of the form

min
δ,ω

ℓβ(δ − δP) + ℓβ(log(ω)− log(ωP))

s.t. δ −
ω

2
≤ a2 , δ +

ω

2
≥ b2 ,

(O2)

where a2 = − cA
dA

and b2 = dC−cA
dA

. Solutions to (O2)

map directly to solutions to (2) for the dimension under

consideration.

We focus now on finding the solution to the optimization

problems (O1) and (O2).

Solution to (O1). As mentioned before, the optimization

problem in (2) is in general non-convex and might have

multiple local minima. The same holds true for the prob-

lem in (O1) despite having a single variable. Nonetheless,

we devised an ad-hoc solver for this problem that allows

to quickly converge to a global solution under the desired

precision. We skip the details due to lack of space, but we

provide them in the supplementary material (see Alg. 1).

Solution to (O2). To solve this problem we break it down

into cases. We start by noting that the solution to the uncon-

strained optimization problem is trivially given by δ⋆ = δP
and ω⋆ = ωP, because 0 is the minimizer of ℓβ . The solu-

tion ∆⋆ = (δ⋆, ω⋆) is valid for (O2) if it satisfies the con-

straints, but this is easy to check by substitution. If this is

the case, we found the solution, otherwise no solution exists

in the interior of the feasible set (see Prop. 1 in supplemen-

tary material), but lies along the boundary of the feasible

set. Accordingly, we start by forcing the first constraint to

be active. This yields an instance of (O1) with a1 = a2,

b1 = b2 and ω̂ = 2(δP − a2), which can be solved using

the algorithm from the supplementary material, yielding ω⋆
1 .

By substituting it into the activated constraint we obtain the

other variable δ⋆1 = a2 +
ω⋆

1

2 . Next, we move to activating

the second constraint. This yields again an instance of the

same optimization problem with the only difference being

ω̂ = 2(b2−δP). Again we solve it obtaining ω⋆
2 and by sub-

stitution into the activated constraint we get δ⋆2 = b2 −
ω⋆

2

2 .

We finally retain the solution among (δ⋆1 , ω
⋆
1) and (δ⋆2 , ω

⋆
2)

yielding the lowest objective. See Alg. 2 in supplementary

material for further details.

Gradient. For the sake of training a neural network, we

are interested in computing gradients of the new loss func-

tion, which exhibits a nested optimization problem. The

following result shows that the derivative of the new loss

function is equivalent to the derivative of the original one,

with the ground-truth box replaced (as a constant) by the so-

lution to the internal minimization problem. In general the

solution to the internal minimization problem is a function

of ∆P but the following result states that no gradient term

is originated from this dependency. This is indeed a direct

consequence of the envelope theorem [1].

Proposition 1. Let φ be a function returning the minimizer

in (2) given ∆P, i.e. LCABB(∆P) = LBB(∆P, φ(∆P)) holds

for any ∆P. Then

d

d∆P

LCABB(∆P) =
∂

∂∆P

LBB(∆P,∆)

∣

∣

∣

∣

∆=φ(∆P)

.

3. Related Works

After scrutinizing the literature, we have found no other

work directly addressing the specific challenges of training

panoptic segmentation networks on high-resolution data,

nor the bias introduced by crop-based training. Indeed,

to our knowledge, we are tackling these issues for the

first time. In the literature we find several methods for

panoptic segmentation that are architecture-wise compati-

ble with our CABB loss and ISUS, among which we have

EfficientPS [21], AUNet [18], TASCNet [17], Panoptic-

FPN [15], UPSNet [29] and Seamless Scene Segmenta-

tion [23], to mention a few. Indeed, those approaches rely

on the computation of bounding boxes at some stage, and

employ network backbones that produce multi-scale feature

pyramids. Among them, only the first two report crop-based

training results in the original work, while the remaining

ones report full-image training results. This however does

not mean that the latter approaches would not benefit from

crop-based trainings. Indeed, in this work, we perform ex-

periments using Seamless Scene Segmentation as baseline

and show that there is significant improvements deriving

from a crop-based training protocol. Other panoptic seg-

mentation methods that benefit from crop-based training are

AdaptIS [26], DeeperLab [30] SSAP [10] and Panoptic-

Deeplab [6]. The latter approaches however are neither

based on bounding boxes nor employ feature pyramids,

thus our contributions do not directly apply to them. More

broadly, recent works dealing with high-resolution image

data include RefineNet [19] or CascadePSP [7], which how-

ever address the task of conventional semantic segmentation

rather than Panoptic segmentation.
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Figure 4: Overview of the main functional blocks of our

network. Red: network body, i.e. HRNet-W48+. Green:

instance segmentation section, composed of an FPN mod-

ule followed by a Region Proposal Head (RPH) and a mask

segmentation head. Blue: semantic segmentation section,

i.e. DeepLabv3 head. Yellow: final panoptic fusion step.

4. Experimental Results

We evaluate our proposed CABB loss on the three largest

publicly available, high-resolution panoptic segmentation

datasets: Mapillary Vistas [22] (MVD), the Indian Driving

Dataset [27] (IDD) and Cityscapes [9] (CS). MVD com-

prises 18k training, 2k validation, and 5k testing images,

with resolutions ranging from 2 to 22 Mpixels and aver-

aging 8.8 Mpixels, and annotations covering 65 semantic

classes, 37 of which instance-specific. IDD comprises 7k

training, 1k validation, and 2k testing images, most cap-

tured at a 2 Mpixels resolution and annotated with 26 se-

mantic classes, 9 of them instance-specific. Cityscapes

comprises 3k training, 500 validation, and 1.5k testing im-

ages, captured at 2 Mpixels resolutions and annotated with

19 classes, 8 of which instance-specific. Next, we present

detailed ablation studies and a comparison with recent state-

of-the-art panoptic segmentation approaches.

4.1. Network and Training Details

Our CABB loss and ISUS, described in Sec. 2.3, can be

used in most top-down panoptic segmentation networks.

To evaluate their effects, however, we focus our atten-

tion on a specific architecture, carefully crafted to achieve

state-of-the-art performance on high-resolution datasets al-

ready without using either. In particular, we follow the

general framework of Seamless-Scene-Segmentation [23],

with several modifications described below (see Fig. 4).

First, we replace the ResNet-50 “body” with HRNetV2-

W48+ [28, 6], a specialized backbone which preserves

high-resolution information from the image to the final

stages of the network. Second, we replace the “Mini-DL”

segmentation head from [23] with a DeepLabV3+ [4] mod-

ule, connected to the HRNetV2-W48+ body as described

in [6]. As in [23], we apply synchronized InPlace-ABN [25]

throughout the network. Finally, CABB loss is used to re-

place the standard bounding box regression loss both in the

region proposal and object detection modules.

We train our networks with stochastic gradient descent

on 8 NVidia V100 GPUs with 32GB of memory. The

HRNetV2-W48+ backbone is initialized from an ImageNet

pre-training in the MVD and IDD experiments, while the

Cityscapes networks are fine-tuned from their MVD-trained

counterparts. We fix the crop size to 1024×1024 for MVD,

and to 512× 512 for IDD and Cityscapes due to their lower

resolution, while inference is always performed on full im-

ages. Average inference time on MVD is ∼ 1.2s per image.

To reduce inter-run variability and obtain more comparable

results, we fix all sources of randomness that can be eas-

ily controlled, resulting in the same sequence of images and

initial network weights across all our trainings. For a de-

tailed breakdown of the training hyper-parameters refer to

Sec. D of the supplementary material.

4.2. Comparison with State of the Art

We provide a comparison of results in Table 1, with

baselines including methods trained on full images (TASC-

Net [17], Seamless [23]) and crops (AdaptIS [26], Effi-

cientPS [21], Panoptic Deeplab [6]), as well as multiple

different backbones (EfficientNet in EffcientPS, ResNet-

50 in Seamless and TASCNet, ResNeXt-101 in AdaptIS,

Xception-71 and HRNet-W48+ in Panoptic Deeplab). We

consider several different variants of our network: (i) one

using the standard bounding box regression loss and CUS,

trained either on full images (FULL) or crops (CROP); (ii)

one using our CABB loss and CUS, trained on crops (CROP

+ CABB); (iii) one using the standard bounding box regres-

sion loss and ISUS, trained on crops (CROP + ISUS); and

finally (iv) one using both our CABB loss and ISUS, trained

on crops (CROP + CABB + ISUS).

The MVD results on top in Table 1 show that CROP out-

performs FULL on all metrics, attesting to the advantages

of crop-based training. Both our CABB loss and ISUS sep-

arately lead to consistent improvements w.r.t. CROP on

all aggregate and pure recognition metrics. The effects of

CABB and ISUS will be explored in more detail in Sec. 4.3.

We also see that even the weakest among our network vari-

ants surpasses all PQ baselines, the only exception being

the HRNet-W48-based version of Panoptic Deeplab. Af-

ter introducing all of our contributions in CROP + CABB +

ISUS, we establish a new state of the art on Mapillary Vistas,

surpassing existing approaches by very wide margins (e.g.

+4.5% PQ, +5.2% mAP).

The IDD experiments in the middle of Table 1 show sim-

ilar results: CROP outperforms FULL in most metrics, while

CABB + ISUS bring further improvements, most pronounced

in PC. Compared to prior works, we observe much im-

proved mAP scores and state of the art PQ, while segmen-

tation metrics lag a bit behind. One possible explanation

could be the advanced panoptic fusion strategy adopted in

EfficientPS, which particularly aims at improving instance
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Network C Pre-training PQ PQth PQst mAP mIoU PC PCth PCst PQ†

TASCNet [17] ✗ I 32.6 31.1 34.4 18.6 – – – – –

AdaptIS [26] ✓ I 35.9 31.5 – – – – – – –

Seamless [23] ✗ I 37.7 33.8 42.9 16.4 50.4 – – – –

Deeplab, X71 [6] ✓ I 37.7 30.4 47.4 14.9 55.3 – – – –

EfficientPS [21] ✓ I 38.3 33.9 44.2 18.7 52.6 – – – –

Deeplab, HR48 [6] ✓ I 40.6 – – 17.8 57.6 – – – –

Seamless [23] + CROP ✓ I 39.2 36.5 42.8 19.0 50.8 48.8 41.2 59.0 41.5

Seamless [23] + CABB + ISUS ✓ I 40.5 38.0 43.7 19.4 51.0 50.7 43.1 60.8 42.9

FULL ✗ I 39.4 34.0 46.5 16.2 54.4 55.2 49.7 62.4 39.5

CROP ✓ I 43.6 41.9 45.9 22.3 54.9 56.2 52.4 61.2 45.7

CROP + CABB ✓ I 44.5 42.5 47.0 23.0 55.4 57.4 54.2 61.6 46.3

CROP + ISUS ✓ I 44.7 43.1 46.9 23.0 56.3 59.4 56.1 63.7 46.9

CROP + CABB + ISUS ✓ I 45.1 43.4 47.4 23.9 56.3 60.4 57.2 64.6 47.2

Seamless [23] ✗ I 47.7 48.9 47.1 30.1 69.6 – – – –

EfficientPS [21] ✓ I 50.1 50.7 49.8 31.6 71.3 – – – –

FULL ✗ I 49.1 51.0 48.1 32.3 69.0 71.0 76.2 68.3 50.5

CROP ✓ I 50.3 52.5 49.1 35.3 69.7 70.8 73.8 69.2 51.4

CROP + CABB + ISUS ✓ I 50.7 52.9 49.5 35.7 70.4 72.8 78.1 70.0 51.9

Seamless [23] ✗ I, V 65.0 60.7 68.0 – 80.7 – – – –

Deeplab, X71 [6] ✓ I, V 65.3 – – 38.8 82.5 – – – –

EfficientPS [21] ✓ I, V 66.1 62.7 68.5 41.9 81.0 – – – –

FULL ✗ I, V 66.0 61.7 69.1 39.5 64.2 80.8 79.9 81.4 64.2

CROP ✓ I, V 66.6 61.1 69.5 42.2 81.7 81.3 80.0 82.3 64.4

CROP + CABB + ISUS ✓ I, V 66.7 62.4 69.9 43.4 82.6 82.6 82.4 82.7 65.1

Table 1: State of the art results on Mapillary Vistas (top) , the Indian Driving Dataset (middle) , and Cityscapes (bottom)

compared with variants of our network. A ✓symbol in column “C” indicates crop-based training. “Deeplab” abbreviates

Panoptic Deeplab [6]. “I” and “V” are used to indicate pre-training on ImageNet and Mapillary Vistas, respectively.

segmentation. We observe the same trends in the Cityscapes

results reported in the bottom of Table 1, although with re-

duced margins. While Cityscapes is smaller than IDD and

MVD, and some metrics are already quite saturated, we still

get notable +1.5% gain for mAP in our CROP + CABB +

ISUS setting over previous state-of-the-art.

4.3. Detailed Analysis

After showing our new high-scores for MVD, IDD and

Cityscapes in the previous section we provde in-depth anal-

yses for CABB and ISUS next. First, to validate the gen-

erality of our proposals, we evaluate crop-based training,

our CABB loss, and ISUS when applied to the approach of

Porzi et al. [23]. We report the results in Table 1 under two

settings, both trained on 1024 × 1024 crops: the unmodi-

fied network from [23], reproduced from their original code

(Seamless + CROP), and the same network combined with

our CABB loss and ISUS (Seamless + CABB + ISUS). Con-

sistent with our other results, the introduction of crop-based

training brings consistent improvements over the baseline,

particularly in detection metrics, while the CABB loss and

ISUS further boost the scores achieving a +2.8% improve-

ment in PQ w.r.t. Seamless. Further ablations on ISUS are

reported in Sec. E of the supplementary material.

As discussed in Sec. 1 and 2, we expect crop-based train-

ing to have a negative impact on large objects, which we

aim to mitigate with our CABB loss, while our ISUS should

bring improvements across all scales by smoothing out the

object size imbalance. To verify this, in Fig. 5 we plot box

(left) and mask (right) mAP scores as a function of object

size (i.e. area), splitting the validation instances into five

categories according to size percentiles. As expected, CROP

outperforms FULL by a wide margin on smaller objects, as

it is able to work on almost double the input resolution. On

the other hand, the gap between CROP and FULL shrinks as

object size increases, with FULL finally surpassing CROP on

the largest objects. By adding CABB the crop-based net-

work is able to fill the gap with FULL when dealing with

objects in the 99th size percentile, while maintaining strong

performance in all other size categories. ISUS brings gener-

alized improvements over CROP at most scales, with the ex-

ception of the smallest one. More surprisingly, ISUS seems

to be similarly beneficial as CABB on the largest objects.

A possible explanation is that, by increasing generalization
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Figure 5: Mean Average Precision results on Mapillary Vistas, averaged over different size-based subdivisions of the valida-

tion instances. The reported ranges are percentiles of the distribution of instance areas in the validation set.

Figure 6: Ground truth (first row) and panoptic segmentation results on Mapillary Vistas’ validation set obtained with CROP

(second row) and CROP + CABB + ISUS (third row). Notice how CROP + CABB + ISUS is able to detect very big instances

which are completely missed by CROP. This figure is best viewed on screen and at magnification.

across scales, ISUS allows the network to properly infer the

sizes and positions of objects that are bigger than the train-

ing crop. Finally, when CABB and ISUS are combined, we

observe consistent improvements on all sizes.

In Table 1 we report additional comparisons between our

network variants, based on PC and PQ† (see Sec. C in the

supplementary material). In all datasets, we observe a clear

improvement in these metrics when the CABB loss and ISUS

are introduced in the network. In particular, the gap between

CROP and CROP + CABB + ISUS in PCth is markedly larger

than in PQth. This is unsurprising, as the PC metrics weight

image segments proportionally to size, clearly highlighting

how the CABB loss is able to boost the network’s accuracy

on large instances. This is also visible from the qualitative

results in Fig. 6, showing a comparison between the outputs

of CROP and CROP + CABB + ISUS on 12Mpixels Mapillary

Vistas validation images featuring large objects.

5. Conclusions

In this paper we have tackled the problem of training

panoptic segmentation networks on high resolution images,

using crop-based training strategies to enable the use of

modern, high-capacity architectures. Training on crops has

a negative impact on the detection of large objects, which

we addressed by introducing a novel crop-aware bounding

box regression loss. To counteract the imbalanced distri-

bution of objects sizes, we further proposed a novel data

sampling and augmentation strategy which we have shown

to improve generalization across scales. By combining

these with a state-of-the-art panoptic segmentation archi-

tecture we achieved new top scores on the Mapillary Vistas

dataset, surpassing the previous best performing approaches

by +4.5% PQ and +5.2% mAP. We also showed state of the

art results on the Indian Driving and Cityscapes datasets on

multiple detection and segmentation metrics.
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