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Figure 1. The paper proposes a novel generative model, producing realistic residential roof models. An aerial shot of the real houses are at

the left. Our generated samples are at the right. In the middle, we overlay a real house and our generation with similar structure.

Abstract

This paper presents Roof-GAN, a novel generative ad-

versarial network that generates structured geometry of res-

idential roof structures as a set of roof primitives and their

relationships. Given the number of primitives, the genera-

tor produces a structured roof model as a graph, which con-

sists of 1) primitive geometry as raster images at each node,

encoding facet segmentation and angles; 2) inter-primitive

colinear/coplanar relationships at each edge; and 3) prim-

itive geometry in a vector format at each node, generated

by a novel differentiable vectorizer while enforcing the re-

lationships. The discriminator is trained to assess the prim-

itive raster geometry, the primitive relationships, and the

primitive vector geometry in a fully end-to-end architec-

ture. Qualitative and quantitative evaluations demonstrate

the effectiveness of our approach in generating diverse and

realistic roof models over the competing methods with a

novel metric proposed in this paper for the task of struc-

tured geometry generation. Code and data are available at

https://github.com/yi-ming-qian/roofgan.

1. Introduction

Residential roof structure exhibits intricate structural de-

tails and regularities. An observation reveals that a complex

polygonal surface structure emerges from a careful combi-

nation of a few primitive shapes under incident geometric

relationships such as colinearity or coplanarity. Automated

generation of high quality residential house models and any

man-made structures beyond would have tremendous im-

pact on broader disciplines such as construction, manufac-

turing, urban planning, and visual effects.

With the emergence of deep learning, automated gen-

eration of CAD-style 3D models has seen a breakthrough.

Early methods focus on generating geometry without their

incident relationships as a part assembly [17, 26, 35]. Auto-

encoder based methods learn to generate both geometry and

relationships in a form of a binary tree [18], a hierarchical

N-ary tree [23], or deformable mesh models [10]. These

techniques use fully connected layers with 1D feature vec-

tors to produce CAD geometries in a vector format.

The paper takes the CAD-geometry generation research

to the next level, while making the following distinctions

from the existing methods: 1) Adversarial training is the

foundation of our architecture, providing real generative

power over auto-encoder based methods; 2) Convolution

with raster-geometry representation enables effective spa-

tial part arrangements and incident relationship generation;

and 3) A novel differentiable vectorization module gener-

ates vector-geometry in an end-to-end architecture.

Concretely, we propose a novel generative adversarial
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network, dubbed Roof-GAN. Given the number of primi-

tives, the generator produces a structured geometry model

as a graph. A node contains primitive geometry information

as a 4-channel image (i.e., roof facet segmentation and roof

angles). An edge contains incident primitive relationships

as one-hot vectors (i.e., colinearity of footprint boundaries

and parallelism of facets, where colinear and parallel im-

plies coplanar). A node also contains geometry information

in a vector format from a differentiable vectorizer, which

is further capable of enforcing incident relationships. Roof-

GAN employs two discriminators, one for assessing holistic

geometry composition and the other for examining relation-

ship labels together with geometry.

We have evaluated the proposed approach against the

current state-of-the-art, while creating a new database of

CAD-style roof geometry with incident relationships, con-

sisting of 502 residential houses. Qualitative and quanti-

tative evaluations demonstrate the effectiveness of Roof-

GAN against competing methods in generating diverse and

realistic set of roof models with a novel metric proposed in

this paper for the task of structured geometry generation.

Code and data are available at https://github.com/

yi-ming-qian/roofgan.

2. Related Work

We review related techniques in three domains: archi-

tectural reconstruction, generative models for architectural

structures, and assembly-based modeling.

Architectural reconstruction: Reconstruction of architec-

tural elements such as lines, planes, room layouts, and 3D

buildings has a long history in vision research. Traditional

methods are either rule-based, e.g., built on shape gram-

mars [6, 20, 16], or use optimization with ad-hoc objec-

tives, typically requiring depth or multiple view information

to infer planes [9], room layouts [31], or CAD-quality ob-

jects [25]. With the surge of deep neural networks (DNNs),

data-driven methods enable single-image reconstruction of

depthmaps [21, 29], room layouts [41], or wire-frame build-

ing models [42]. Shape grammars are also utilized for roof

reconstruction by DNNs, which classify grammar branches

and estimate geometric parameters [38]. Recently, Conv-

MPN [39] learns to reconstruct vector-graphics building

models, without shape grammars, by using a relational neu-

ral architecture, which is the backbone of our network. In

contrast to reconstruction, our RoofGAN is a fully genera-

tive model, striving for plausibility and diversity.

Generative models for architecture: Procedural models

with hand-crafted rules can provide production-level solu-

tions to virtual building generation [24]. Various techniques

have been leveraged to improve the generation quality such

as Markov Chain Monte Carlo [32], discrete optimization

[13] and, probabilistic graphical model [22].

Inspired by the success in deep image generation, sev-

eral deep generative networks have been proposed for 2D

or 3D structured data [3]. Recursive neural networks have

been applied to learn object placements and relations for in-

door scene generation [19], while graph CNNs have been

trained to generate room layouts [33] or floorplans [15, 36]

by providing building outlines as input. Closer to our work,

House-GAN [27] employs a generative adverserial network

for floorplan generation, while requiring room adjacency re-

lations as input. Roof-GAN also follows adverserial train-

ing, but does not input building outlines or adjacency rela-

tions. Instead, the relations are generated by the network.

Assembly-based modeling.: Many methods have been pro-

posed for 3D shape generation using different representa-

tions: voxels [34, 11], point clouds [2, 8], meshes [4], and

implicit functions [5, 28]. Generative models for 3D shape

structures [37, 3] are typically trained to learn models of

part variations and assembly. Most representative works

resort to part and structure autoencoders, that are built on

different shape structure representations, including hierar-

chical trees in GRASS [18], graphs in StructureNet [23],

part assembly sequences in PQ-Net [35], and more general

graphs in other works [30, 7, 10]. In contrast, our network

is designed with generative capability and diversity in mind,

relying on adversarial training which is shown to be effec-

tive even with a relative small training set.

3. Structured Roof Geometry Representation

A combination of a few number of rectangular roof prim-

itives explains the majority of residential roof structure. We

represent a roof as a graph, where a node encodes prim-

itive geometry information and an edge encodes pairwise

incident relationships. Structured geometry representation

is at the heart of this research, enabling 1) effective spatial

reasoning of primitive arrangement; and 2) differentiable

vectorization in an end-to-end architecture.

Geometry representation at nodes: We assume that each

primitive is an axis-aligned rectangle. The top covering

is either horizontal-gable, vertical-gable, horizontal-hip, or

vertical-hip (See Fig. 2). A 4-channel image is our repre-

sentation, where the first three channels constitute one-hot

encoding over the three facet orientations: 1) left/right fac-

ing; 2) top/bottom facing; and 3) background. The fourth

channel is the facet angle (i.e., the angle between the normal

and the inverse gravity), which is set to 0 for background.

Differentiable vectorization (Sect. 4.2) converts a 4-

channel image into a 6d vector. The six numbers are the four

boundary coordinates of the rectangle and the two roof an-

gles (one for left/right facets and one for top/bottom facets).

Note that we are further assuming that 1) Primitives are

symmetric, where the angles of the left/right (resp. the

top/bottom) facets are equal. 2) The height of the wall is

a constant (not generated). 3) When primitives overlap, we

keep the highest facet and ignore invisible portions.
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(a) Horizontal gable (b) Vertical gable (c) Horizontal hip (d) Vertical hip

Figure 2. Our model handles four types of roof primitives, whose

sample 3D models are shown at the top. The bottom shows a part

of our raster geometry representation, where a 3-dimensional one-

hot encoding represents the roof facet type per pixel: top/bottom

facing (blue), left/right facing (green), or background (grey). The

representation also has a roof-angle image, which stores the angle

between the facet normal and the inverse gravity per pixel.

Relationship representation at edges: For each pair of

primitives, 6d one-hot encoding represents colinearity of

rectangular boundaries and parallelism of polygonal facets.

Concretely, the first dimension encodes if the left rectan-

gular boundaries are colinear. The next three dimensions

are for the colinearity of the right/top/bottom boundaries.

We do not model a colinearity of the left boundary and the

right boundary, which rarely happens in our data because

primitives overlap instead. The remaining two dimensions

encode the parallelism of the facets of the primitive pair

(one for the left/right facets and one for top/bottom facets),

where facets are coplanar when they are parallel and the

corresponding boundaries are colinear.

4. Roof-GAN

Relational GAN for floorplan generation is our back-

bone [27]. Given the number of primitives, Roof-GAN ini-

tializes a complete graph of noise vectors and generates a

roof geometry (See Fig. 3). We focus on the differences

from the prior work, where the architectural details are in

the supplementary document and Section 6 explains how

we pick the number of primitives at training and testing.

4.1. Generator

Each node is initialized with a 128d noise vector sam-

pled from the normal distribution. Note that there are no

one-hot node-type vectors as in the prior work [27], because

node/edge properties are to be generated instead of given in

our work. The architecture is the same till the output layers,

where the last feature volume per node has the dimension

of 16 × 32 × 32. Two 3-layer CNNs are used to produce a

3× 32× 32 facet orientation image and a 1× 32× 32 facet

angle image. A softmax function is applied for the orienta-

tion image and a sigmoid function is applied for the angle

image as the cosine value of the angle. For each node pair,

we concatenate node features into a 32 × 32 × 32 volume,

and apply a 5-layer CNN to downsample it into a 512×1×1
vector. Finally, we use a linear layer and a sigmoid function

to convert to a 6d relationship vector. Note that the node

feature concatenation order is arbitrary.

4.2. Differentiable vectorization

A novel differentiable vectorization converts the raster

geometry into the vector format, serving two purposes.

First, this eradicates the post-processing heuristics for vec-

torization. Second, raster-geometry may not follow the re-

lationships. The vector parameterization allows us to gen-

erate relationship-enforced raster-geometry, which can be

passed to the discriminator for assessment. There are two

vectorization modules, one for rectangle boundary coordi-

nates and the other for roof angles/type. We here describe

the former and refer the latter to the supplementary doc-

ument, which is rather straightforward with a sequence of

reasonable heuristics. Note that both modules are fixed al-

gebraic machinery without learnable weights.

Zhang et al. proposed a neat vectorization trick for cor-

ner detection, which takes a corner probability image from

CNN and computes their weighted mean coordinate [40].

We extend the idea to rectangle boundary coordinate vector-

ization. Given a facet orientation image (i.e., a probability

image over left/right, top/bottom, or background classes),

we obtain a primitive mask probability by one minus the

background probability. Let us use the left-boundary coor-

dinate as an example. We compute the x-derivative of the

mask by finite difference, apply ReLU to keep only non-

negative responses, then take the weighted mean coordi-

nate [40]. The non-negative responses should concentrate

on the left boundary of the mask and this algebraic formula

computes the left boundary coordinate. Exactly the same

algebraic operations apply to the other three boundaries.

4.3. Differentiable relationship enforcement

Given rectangle boundary coordinates, we 1) enforce

their colinearity relationships and obtain adjusted boundary

coordinates probabilistically; 2) solve for the non-uniform

scale and translation that maps the original rectangle to the

adjusted one; and 3) warp the facet orientation/angle images

based on the transformation to obtain relationship-enforced

geometry-images. Note that roof angle generation is more

stable, and we do not enforce the parallelism relationships

with the roof angle image.

Without loss of generality, the adjusted left coordinate

of one primitive is calculated as the weighted average of

the left coordinates of all the primitives. The weight is 1

for itself and the colinear relationship probabilities for the

others. 1 Given the original and the adjusted coordinates,

1Low-probability relationship should not influence, and the weight for-
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Figure 3. Roof-GAN architecture. The generator takes a graph of noise vectors as input and utilize Conv-MPN [39] to obtain 3D feature

volumnes. Several convoluational layers are used to output per-node raster-geometry (here we draw orientation images only for illustration)

and pairwise relationships. A differentiable vectorization module converts the raster-geometry to the vector-geometry, followed by a dif-

ferentiable relationship enforcement. The geometry discriminator takes the raster-geometry before and after the relationship-enforcement

for all the nodes. The relationship discriminator acts on a pair of nodes while also taking the relationship information as the input.

we compute non-uniform scaling and translation parame-

ters and apply image-warping to the facet orientation/angle

images by “grid sample” built-in function in PyTorch.

4.4. Discriminators

Roof-GAN has two discriminators, whose loss functions

are added with equal weights. The first discriminator fo-

cuses on geometry without relationships. As in the gener-

ator, we form a complete relational graph. At each node,

we concatenate the orientation image and the relationship-

enforced orientation image into a 6 × 32 × 32 volume. A

3-layer CNN converts to a 16× 32× 32 volume. The same

architecture converts the angle images into a 16 × 32 × 32
volume. We further concatenate these two volumes to ob-

tain an input to the Conv-MPN architecture, which is the

same as the prior work [27]. For ground-truth samples, the

relationship-enforced images are identical to the original.

The second discriminator takes a pair of nodes and an

edge. A 6d relationship vector at the edge is converted to a

4096d vector with a linear layer, and reshaped to a 4×32×
32 volume. We concatenate with the facet orientation/angle

images before and after the relationship enforcement (i.e.,

eight tensors), then use a 5-layer CNN to down-sample to

128 × 1 × 1, followed by a linear layer to output a scalar.

The average over all node-pairs is the discrimination score.

mula is in fact ReLU(2p− 1), where p is the original probability.

5. Dataset and Metrics

Zeng et al. introduced a database of residential houses in

England, containing height maps and surface normal maps

in the aerial view [38], which we borrow to construct our

database of structured roof geometry with relationships.

Quantitative evaluation of vector-graphics geometry is a

non-trivial task especially for the generative models. We

propose a new metric, dubbed Recursive Minimum Match-

ing Distance, which assess the realism and diversity of the

generated samples as in the FID metric, while respecting

the vector structure of the geometry representation.

5.1. Dataset

Given a surface normal image of a house in a Nadir

view, we use the annotation tool “Colabeler” [1] to anno-

tate the bounding box of each rectangle primitive and its

corresponding roof type. A total of 502 houses are anno-

tated, out of which (152, 256, 68, 26) houses have (2, 3,

4, 5) rectangles, respectively. The colinearity relationships

are obtained by simply checking the equality of the anno-

tated bounding box coordinates with an error tolerance of

1 pixel to account for rare human errors. Facet angles are

calculated from depthmaps by the pre-processing algorithm

of the prior work [38]. Parallelism is automatically deter-

mined by checking the equality of the angles with an er-

ror tolerance of 18◦. When detecting the colinearity (resp.
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parallelism), we enforce the relationship by snapping one

coordinate (resp. angle) to the other.

The next step is to merge connected coplanar (i.e., co-

linear and parallel) rectangular facets into a single polyg-

onal facet. For each house, we rasterize all the primitives

from their parameters into a common facet orientation im-

age (instance-aware), facet angle image, and a height map,

while discarding invisible facet information per pixel based

on the height values. We use the rasterized images to iden-

tify connected coplanar facets and merge them into a single

polygon. The data pre-processing algorithms are all heuris-

tics and their details are referred to the supplementary. Fi-

nally, we perform standard 8x data augmentation by 90◦

rotation and mirroring, yielding a total of 4,016 houses.

5.2. Metrics

For quantitative evaluation of generative models for

structured geometry, we propose a novel distance metric for

a pair of sets of polygonal 3D models, dubbed Recursive

Minimum Matching Distance (RMMD), which measures

the realism and the diversity of the generation. 2 RMMD

is recursively defined for a pair (s1, s2), each of which is a

set of polygonal surface models ({mi}), each of which is a

set of facets ({fi}), each of which is a set of vertices ({vi}):

DS(s1, s2) =
∑

m1∈s1

⋆

min
m2∈s2

DM (m1,m2) + DM (m2,m1)

2|s1|
,

DM (m1,m2) =
∑

f1∈m1

⋆

min
f2∈m2

DF (f1, f2) + DF (f2, f1)

2|m1|
,

DF (f1, f2) =
∑

v1∈f1

⋆

min
v2∈f2

DV (v1, v2) + DV (v2, v1)

2|f1|
,

DV (v1, v2) = |v1 − v2| .

At the bottom of the recursion, the distance DV (v1, v2) be-

tween two vertices is their Euclidean distance. The distance

DF (f1, f2) between two facets is computed as follows. For

each vertex in f1, we find the closest vertex from f2 based

on the vertex-distance. The average over all the vertices

in f1 is the facet-distance, except that we enforce mutual

exclusiveness in the matching, that is, each vertex in f2 is

matched at most once. The mutual exclusiveness implies

that when f1 has more vertices than f2 (topologically incon-

sistent), some vertices do not have matches and the largest

possible distance (i.e., diagonal of the square image) is used

for the average calculation (⋆ denotes a special min opera-

tion with abuse of notation). In practice, after computing all

pairwise vertex distances, we use a greedy algorithm to find

the minimum distance matching. The model DM and the

set DS distances are defined in the same way recursively.

2Since our roof 3D model can be represented as a 2D polygon in a

Nadir view, we present the metric in a case of 2D polygons but the formula

applies to general 3D models.

RMMD measures geometric and topological differences

into a single number in the unit of the vertex Euclidean dis-

tance. Note that each distance function is asymmetric and

we make it symmetric inside each summation. At the top

level, the number of ground-truth samples (512 augmented

from 64) is less than the number of samples in a generation

(1000), and an asymmetric distance D(g1, g2) is used as our

metric, where g1 is the ground-truth set. RMMD measures

the realism and the diversity, because there must be a similar

model for every ground-truth sample.

Lastly, RMMD is sensitive to scale and translation differ-

ences. We normalize each model by taking its axis aligned

bounding box and apply uniform scaling and translation so

that the bounding box is center-aligned and tightly fits in-

side a square image, which is assumed to be 16m× 16m.

We also use a standard FID metric [14]. Each roof model

is represented as a surface normal image where the 3D sur-

face normal vector is used as a RGB value and the back-

ground is set to white. Again, 64 ground-truth samples and

1,000 generated samples are used for the metric calculation.

6. Experiments

We have implemented Roof-GAN in PyTorch and

trained the models with WGAN-GP [12] and the Adam op-

timizer. The learning rate is 0.0001, the batch size is 16, the

number of critics is 1, and the weight of gradient penalty is

10. The training takes about 17 hours on an NVIDIA GTX

1080 Ti GPU with 11GB of RAM for 200k iterations.

6.1. Competing methods

We have compared against three competing methods and

two Roof-GAN variants for an ablation study.

• PQ-Net [35] learns a latent geometry representation with

a Seq2Seq-based auto-encoder, followed by latent GAN [2]

for code generation. We keep the original auto-encoder ar-

chitecture and modify the input/output as a sequence of roof

primitives to fit our problem. Concretely, the input/output

vector is a concatenation of boundary coordinates, facet an-

gles, one-hot encoded primitive types, and the number of

primitives. The training requires a pre-defined sequential

order of primitives, for which we start from the largest rect-

angle, and then sort in a decreasing order of the distances to

the largest one. We make no changes to the latent GAN.

• PQ-Net-Relation is a novel variant of PQ-Net, where

pairwise relationships are serialized into a one-hot vector

with a fixed order and concatenated to the representation.

Note that the original PQ-Net did not encode relationships.

• House-GAN is a state-of-the-art floorplan generative

model [27]. We make two modifications: (1) At the end

of the generator, we add two 4-layer CNNs (each followed

by a linear layer) to output the facet angle vectors and the

one-hot vector encoding the primitive types; (2) At the be-
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Table 1. Quantitative evaluations. Three variants of the proposed

approach (Roof-GAN) are compared against the three competing

methods on the two metrics. Recursive minimum matching dis-

tance (RMMD) is a new metric, while FID is a standard one. The

smaller the better for both metrics. “GAN” column indicates if

a method is GAN-based or not. “Rela.” column indicates if a

method generates relationships or not, as opposed to threshood-

based snapping. The colors cyan and blue represent the best and

the second best methods.

Method GAN Rela. FID RMMD

PQ-Net 12.0 7.80

PQ-Net-Relation X 13.5 6.97

House-GAN X 18.4 7.43

Roof-GAN (w/o rela.) X 10.6 6.61

Roof-GAN (w/o diff.) X X 11.9 6.48

Roof-GAN X X 9.8 6.20

ginning of the discriminator, we add two linear layers to

transform the facet angle vector and the primitive type vec-

tor to 512d, which is reshaped to 2× 16× 16 and concate-

nated with the feature tensor of the primitive mask.

• Roof-GAN (w/o rela.) is a variant of our architecture

without the relationship generation. The relationship dis-

criminator, the differentiable vectorization, and the differ-

entiable relationship enforcement are also removed.

• Roof-GAN (w/o diff.) is a variant without the differen-

tiable vectorization and the differentiable enforcement mod-

ules during training. These modules do not have learnable

weights and are utilized during testing.

PQ-Net, House-GAN, and Roof-GAN (w/o rela.) do not

generate relationship labels, and a simple snapping heuris-

tic with a threshold is used. We vary the thresholds, but

do not see much differences in the results. Therefore, we

use an error tolerance of 1 pixel for colinearity and 18◦ for

parallelism, the same threshold setting used in the ground-

truth preparation. House-GAN and Roof-GAN requires

the relational graph, in particular, the number of primi-

tives for a model generation. Both at training and test-

ing time, we randomly pick the number of primitives by

following the statistics of samples in our database, that

is, (30%, 51%, 14%, 5%) for houses with (2, 3, 4, 5) prim-

itives. PQ-Net and PQ-Net-Relation sequentially produces

primitives until the termination probability reaches 0.5. We

have 502 house samples before augmentation and randomly

split them into 438 training and 64 testing samples. Each

system generates 1,000 samples for the evaluation.

6.2. Quantitative evaluations

Table 1 shows the main quantitative evaluations, where

Roof-GAN makes clear improvements over all the compet-

ing methods on both metrics. PQ-Net is one of the state-of-

the-art methods but has the largest error with the RMMD

metric. PQ-Net-Relation is a novel baseline proposed in

Table 2. Cross-validation results. To prevent a method from simply

copying and pasting, we split the training and testing sets based on

the number of primitives. See the text for the details.

3 Primitives 4 Primitives

Method FID RMMD FID RMMD

PQ-Net 13.0 10.4 14.6 12.9

House-GAN 27.5 8.5 27.2 12.5

Roof-GAN 11.1 7.5 13.8 10.9

this paper, which encodes relationships in addition to the ge-

ometric parameters. PQ-Net-Relation reduces the error by

roughly 11%, which verifies the importance of relationship

encoding, a key contribution of this paper. House-GAN is

another existing state-of-the-art and better than PQ-Net by

about 5% in RMMD, but inferior to all our variants.

The last three rows of Table 1 form the ablation study

over the two technical contributions, relationship encoding

and differentiable modules. Roof-GAN (w/o rela.) does

not use relationship encoding and the differentiable mod-

ules, dropping the performance by about 6.6% compared

to Roof-GAN (all). The comparison between Roof-GAN

(w/o rela.) and House-GAN sheds a light on our geometry

representation (Sect. 3), which is in fact the only difference

between the two systems. House-GAN uses vectorized rep-

resentation for facet angles and primitive types while we

use the new raster representation in Sect. 3. Roof-GAN

(w/o diff.) drops the performance about 4.5%, validating

the contributions of the differentiable modules.

The contributions of our innovations become even more

significant in the cross validation experiments in Table 2. In

order to prevent a method from copying and pasting models,

we split the training and testing sets based on the number of

primitives. Concretely, for the left columns (3 Primitives)

of the table, we train the networks on houses with 2, 4, and

5 primitives and test on houses with 3 primitives. The per-

formance gap further increases, where our RMMD score is

better by 39% than PQ-Net and by 13% than House-GAN

for the case of (3 Primitives). Note that this evaluation may

appear unfair for PQ-Net, which does not use the number of

primitives in the test set. However, PQ-Net does not allow

an external control and rarely generate such samples (i.e.,

around 3%), incapable of exploring new compositions.

Roof-GAN outperforms all the other methods in the FID

metric consistently. However, it is not clear why and how.

For example, House-GAN is the worst in FID, despite rea-

sonable RMMD scores. RMMD has an intuitive physical

meaning with a physical unit, and can also provide a dis-

tance measure for a particular pair of samples, which can

be used for a model retrieval evaluation, all of which will

be demonstrated in the next section.

2801



H
o
u
se
-G
A
N

R
o
o
f-
G
A
N

P
Q
-N
e
t

2
 P

ri
m

it
iv

e
s

3
P

ri
m

it
iv

e
s

4
 P

ri
m

it
iv

e
s

5
P

ri
m

it
iv

e
s

Figure 4. Qualitative evaluations among PQ-Net [35], House-GAN [27], and Roof-GAN (ours). Red ovals indicate non-realistic roof
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metric to find the closest sample among 1,000 generations by each method. Roof-GAN models are visually similar to the queries, which is

also supported by the RMMD metric listed at the bottom of each model.

6.3. Qualitative evaluations

Figure 4 compares generated models by the three meth-

ods. Both PQ-Net and House-GAN generate unrealistic

roof models. For example, PQ-Net produces isolated, too

long, or too thin components. Individual primitive shapes

look much better in House-GAN, but poor incident rela-

tionships lead to unrealistic polygonal shapes and topology

due to the failures of threshold based snapping. Roof-GAN,

on the other hand, learns to generate incident relationships,

producing complex and realistic combination of roof primi-

tives. The last four rows of the figure show the roof models

with 2, 3, 4, and 5 primitives, respectively. Diversity of our

generation is apparent in each row, especially in the last two

rows. Compositional capability is another strength of Roof-

GAN, which generates a new realistic roof structure such

as an O-shaped building (highlighted by the cyan oval in

Fig. 4), which does not exist in our database.

Lastly, Figure 5 demonstrates the model retrieval eval-

uations based on the RMMD metric. Each column shows

a reference GT model at the top, and the closest sample

by each method (from 1,000 generations). Roof-GAN is

able to produce visually similar roof structures consistently,

which is also supported by the RMMD metric. For exam-

ple in the second column from the right, Roof-GAN is the

only sample that has the same topology as the ground-truth.

House-GAN sample is reasonable but misses a triangular

facet in the middle and is penalized severely by the metric.

We provide more retrieval evaluations and the visualization

of reconstructed models in the supplementary.

7. Conclusion

This paper proposes a novel generative adversarial net-

work that generates structured geometry of residential roof

structures. For a roof represented as a graph, the gener-

ator learns to generate primitive geometries at the nodes

and incident geometric relationships at the edges. Qualita-

tive and quantitative evaluations demonstrate the effective-

ness of our approach in generating diverse and realistic roof

models over all the competing methods. Our future work in-

cludes the handling of higher-order primitive relationships

such as symmetries and more diverse and complex primitive

types such as dormers and chimneys.
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