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Abstract

We present a self-supervised Contrastive Video Repre-

sentation Learning (CVRL) method to learn spatiotemporal

visual representations from unlabeled videos. Our rep-

resentations are learned using a contrastive loss, where

two augmented clips from the same short video are pulled

together in the embedding space, while clips from different

videos are pushed away. We study what makes for good

data augmentations for video self-supervised learning and

find that both spatial and temporal information are crucial.

We carefully design data augmentations involving spatial

and temporal cues. Concretely, we propose a temporally

consistent spatial augmentation method to impose strong

spatial augmentations on each frame of the video while

maintaining the temporal consistency across frames. We

also propose a sampling-based temporal augmentation

method to avoid overly enforcing invariance on clips that

are distant in time. On Kinetics-600, a linear classifier

trained on the representations learned by CVRL achieves

70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50)

backbone, outperforming ImageNet supervised pre-training

by 15.7% and SimCLR unsupervised pre-training by 18.8%

using the same inflated R3D-50. The performance of

CVRL can be further improved to 72.9% with a larger

R3D-152 (2⇥ filters) backbone, significantly closing the

gap between unsupervised and supervised video represen-

tation learning. Our code and models will be available at

https://github.com/tensorflow/models/tree/master/official/.

1. Introduction

Representation learning is of crucial importance in com-

puter vision tasks, and a number of highly promising recent

developments in this area have carried over successfully

from the static image domain to the video domain. Clas-

sic hand-crafted local invariant features (e.g., SIFT [44])

⇤ The first two authors contributed equally. This work was performed

while Rui Qian worked at Google.

Figure 1. Kinetics-600 top-1 linear classification accuracy of

different spatiotemporal representations. CVRL outperforms Ima-

geNet supervised [33] and SimCLR unsupervised [10] pre-training

using the same 3D inflated ResNets, closing the gap between un-

supervised and supervised video representation learning.

for images have their counterparts (e.g., 3D SIFT [55]) in

videos, where the temporal dimension of videos gives rise

to key differences between them. Similarly, state-of-the-art

neural networks for video understanding [63, 9, 31, 71, 17,

16] often extend 2D convolutional neural networks [33, 36]

for images along the temporal dimension. More recently,

unsupervised or self-supervised learning of representations

from unlabeled visual data [32, 10, 26, 7] has gained mo-

mentum in the literature partially thanks to its ability to

model the abundantly available unlabeled data.

However, self-supervised learning gravitates to different

dimensions in videos and images, respectively. It is nat-

ural to engineer self-supervised learning signals along the

temporal dimension in videos. Examples abound, including

models for predicting the future [58, 43, 28], changing tem-

poral sampling rates [73], sorting video frames or clips [42,

39, 72] and combining a few tasks [5]. Meanwhile, in the

domain of static images, some recent work [32, 10, 26, 7]

that exploits spatial self-supervision has reported unprece-

dented performance on image representation learning.

The long-standing pursuit after temporal cues for self-
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supervised video representation learning has left self-

supervision signals in the spatial subspace under-exploited

for videos. To promote the spatial self-supervision sig-

nals in videos, we build a Contrastive Video Representa-

tion Learning (CVRL) framework to learn spatiotemporal

representations from unlabeled videos. Figure 2 illustrates

our framework, which contrasts the similarity between two

positive video clips against those of negative pairs using the

InfoNCE contrastive loss [48]. Since there is no label in

self-supervised learning, we construct positive pairs as two

augmented video clips sampled from the same input video.

We carefully design data augmentations to involve both

spatial and temporal cues for CVRL. Simply applying spa-

tial augmentation independently to video frames actually

hurts the learning because it breaks the natural motion along

the time dimension. Instead, we propose a temporally con-

sistent spatial augmentation method by fixing the random-

ness across frames. It is simple and yet vital as demon-

strated in our experiments. For temporal augmentation, we

take visual content into account by a sampling strategy tai-

lored for the CVRL framework. On the one hand, a pair

of positive clips that are temporally distant may contain

very different visual content, leading to a low similarity that

could be indistinguishable from those of the negative pairs.

On the other hand, completely discarding the clips that are

far in time reduces the temporal augmentation effect. To

this end, we propose a sampling strategy to ensure the time

difference between two positive clips follows a monoton-

ically decreasing distribution. Effectively, CVRL mainly

learns from positive pairs of temporally close clips and sec-

ondarily sees some temporally distant clips during training.

The efficacy of the proposed spatial and temporal augmen-

tation methods is verified by extensive ablation studies.

We primarily evaluate the learned video representations

on both Kinetics-400 [38] and Kinetics-600 [8] by train-

ing a linear classifier following [10, 32] on top of frozen

backbones. We also study semi-supervised learning, down-

stream action classification and detection to further assess

CVRL. We next summarize our main findings.

Mixing spatial and temporal cues boosts the perfor-

mance. Relying on spatial or temporal augmentation only

yields relatively low performance, as shown in Table 9. In

contrast, we achieve an improvement of 22.9% top-1 accu-

racy by combining both augmentations in the manner we

proposed above, i.e., temporally consistent spatial augmen-

tation and the temporal sampling strategy.

Our representations outperform prior arts. The linear

evaluation of CVRL achieves more than 15% gain over

competing baselines, as shown in Figure 1 and Table 2.

On Kinetics-400, CVRL achieves 12.6% improvement over

ImageNet pre-training, which were shown competitive in

previous work [73, 24]. For semi-supervised learning (Ta-

ble 3), CVRL surpasses all other baselines especially when

there is only 1% labeled data, indicating the advantage of

our self-learned feature is more profound with limited la-

bels. For downtream action classification on UCF-101 [57]

and HMDB-51 [41], CVRL has obvious advantages over

other methods based on the vision modality and is compet-

itive with state-of-the-art multimodal methods (Table 4).

Our CVRL framework benefits from larger datasets

and networks. We study the effect of more training

data in CVRL. We design an evaluation protocol by first

pre-training models on different amounts of data with same

iterations, and then comparing the performance on the same

validation set. As shown in Figure 4, a clear improvement

is observed by using 50% more data, demonstrating the

potential of CVRL to scale to larger unlabeled datasets. We

also conduct experiments with wider & deeper networks

and observe consistent improvements (Table 2), demon-

strating that CVRL is more effective with larger networks.

2. Related Work

Self-supervised video representation learning. It is nat-

ural to exploit the temporal dimension in self-supervised

video representation learning. Some early work predicts

the future on top of frame-wise representations [58]. More

recent work learns from raw videos by predicting mo-

tion and appearance statistics [66], speed [6, 67] and en-

codings [43, 28, 29]. Aside from predicting the future,

other common approaches include sorting frames or video

clips [42, 72, 39, 18] along the temporal dimension and

learning from proxy tasks like rotation [37]. Yang et al. [73]

learn by maintaining consistent representations of different

sampling rates. Furthermore, videos can often supply mul-

timodal signals for cross-modality self-supervision, such as

geometric cues [19], speech or language [60, 59, 45], au-

dio [40, 3, 51, 4], optical flow [30] or combinations of mul-

tiple modalities [2] and tasks [52].

Self-supervised image representation learning. Some

early work learns visual representations from unlabeled im-

ages via manually specified pretext tasks, for instance, the

auto-encoding methods [50, 77, 78] that leverage contexts,

channels, or colors. Other pretext tasks include but are not

limited to relative patch location [14], jigsaw puzzles [47],

and image rotations [22]. Interestingly, most of the pretext

tasks can be integrated into a contrastive learning frame-

work [32, 10, 76, 26, 48, 35, 61], which maintains relative

consistency between the representations of an image and its

augmented view. The augmentation could encompass vari-

ous pretext tasks. Tian et al. [62] study what makes a good

view in this framework. Clustering can also provide an ef-

fective addition to the framework [7]. It is worth noting that

the recent wave of contrastive learning shares a similar loss

objective as instance discrimination [70].
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Figure 2. Overview of the proposed spatiotemporal Contrastive Video Representation Learning (CVRL) framework. From a raw

video, we first sample a temporal interval from a monotonically decreasing distribution. The temporal interval represents the number of

frames between the start points of two clips, and we sample two clips from a video according to this interval. Afterwards we apply a

temporally consistent spatial augmentation to each of the clips and feed them into a 3D backbone with an MLP head. The contrastive loss

is used to train the network to attract the clips from the same video and repel the clips from different videos in the embedding space.

Videos as supervision for images and beyond. Video can

help supervise the learning of image representations [68, 49,

65, 24, 53], correspondences [69, 15], and robotic behav-

iors [56] thanks to its rich content about different views of

objects and its motion and tracking cues. On the other hand,

Girdhar et al. [23] propose to learn video representations by

distillation from image representations.

3. Methodology

3.1. Video Representation Learning Framework

We build our self-supervised contrastive video represen-

tation learning framework as illustrated in Figure 2. The

core of this framework is an InfoNCE contrastive loss [48]

applied on features extracted from augmented videos. Sup-

pose we sample N raw videos and augment them, resulting

in 2N clips (the augmentation module is described in Sec-

tion 3.3). Denote zi, z
0
i

as the encoded representations of

the two augmented clips of the i-th input video. The In-

foNCE contrastive loss is defined as L = 1
N

P
N

i=1 Li and

Li = � log
exp(sim(zi, z

0
i
)/⌧)

P2N
k=1 1[k 6=i] exp(sim(zi, zk)/⌧)

, (1)

where sim(u,v) = u
>
v/kuk2kvk2 is the inner product

between two `2 normalized vectors, 1[·] is an indicator ex-

cluding from the denominator the self-similarity of the en-

coded video zi, and ⌧ > 0 is a temperature parameter.

The loss allows the positive pair (zi, z
0
i
) to attract mutually

while they repel the other items in the mini-batch.

We discuss other components of the framework as fol-

lows: (1) an encoder network maps an input video clip to its

representation z, (2) spatiotemporal augmentations to con-

struct positive pairs (zi, z
0
i
) and the properties they induce,

and (3) methods to evaluate the learned representations.

3.2. Video Encoder

We encode a video sequence using 3D-ResNets [33, 31]

as backbones. We expand the original 2D convolution ker-

nels to 3D to capture spatiotemporal information in videos.

The design of our 3D-ResNets mainly follows the “slow”

pathway of the SlowFast network [17] with two minor mod-

ifications: (1) the temporal stride of 2 in the data layer, and

(2) the temporal kernel size of 5 and stride of 2 in the first

convolution layer. We also take as input a higher tempo-

ral resolution. Table 1 and Section 4.1 provide more de-

tails of the network. The video representation is a 2048-

dimensional feature vector. As suggested by SimCLR [10],

we add a multi-layer projection head onto the backbone to

obtain the encoded 128-dimensional feature vector z used

in Equation 1. During evaluation, we discard the MLP and

use the 2048-dimensional representation directly from the

backbone to make the video encoder compatible with other

supervised learning methods. We also experiment with 2⇥
and 4⇥ backbones, which multiply the number of filters

in the network, including the backbone’s output feature di-

mension and all layers in MLP, by 2⇥ and 4⇥ accordingly.

3.3. Data Augmentation

The flexibility of CVRL allows us to study a variety of

desired properties, which are incorporated in the form of

data augmentations. We focus on the augmentations in both

temporal and spatial dimensions.

6966



Stage Network Output size T × S2

raw clip - 32× 2242

data stride 2, 12 16× 2242

conv1
5 × 72, 64

8× 1122

stride 2, 22

pool1
1× 32 max

8× 562

stride 1, 22

conv2





1×12, 64

1×32, 64

1×12, 256



×3 8× 562

conv3





1×12, 128

1×32, 128

1×12, 512



×4 8× 282

conv4





3×12, 256

1×32, 256

1×12, 1024



×6 8× 142

conv5





3×12, 512

1×32, 512

1×12, 2048



×3 8× 72

global average pooling 1× 12

Table 1. Our video encoder: a 3D-ResNet-50 (R3D-50). The in-

put video has 16 frames (stride 2) in self-supervised pre-training

and 32 frames (stride 2) in linear evaluation, semi-supervised

learning, supervised learning and downstream tasks.

Temporal Augmentation: a sampling perspective. It is

straightforward to take two clips from an input video as a

positive pair, but how to sample the two clips matters. Pre-

vious work provides temporal augmentation techniques like

sorting video frames or clips [42, 39, 72], altering playback

rates [75, 67], etc. However, directly incorporating them

into CVRL would result in learning temporally invariant

features, which opposes the temporally evolving nature of

videos. We instead account for the temporal changes using

a sampling strategy. The main motivation is that two clips

from the same video would be more distinct when their tem-

poral interval is larger. If we sample temporally distant clips

with smaller probabilities, the contrastive loss (Equation 1)

would focus more on the temporally close clips, pulling

their features closer and imposing less penalty over the clips

that are far away in time. Given an input video of length T ,

our sampling strategy takes two steps. We first draw a time

interval t from a distribution P (t) over [0, T ]. We then uni-

formly sample a clip from [0, T�t], followed by the second

clip which is delayed by t after the first. More details on

the sampling procedure can be found in Appendix A. We

experiment with monotonically increasing, decreasing, and

uniform distributions, as illustrated in Figure 3. We find that

decreasing distributions (a-c) generally perform better than

the uniform (d) or increasing ones (e-f), aligning well with

our motivation above of assigning lower sampling probabil-

ity on larger temporal intervals.

(a) P (t) ∝ −t+ c (63.8% acc.) (b) P (t) ∝ −t0.5 + c (63.1% acc.)

(c) P (t) ∝ −t2 + c (62.9% acc.) (d) P (t) ∝ c (62.7% acc.)

(e) P (t) ∝ t+ c (62.4% acc.) (f) P (t) ∝ t2 + c (61.9% acc.)

Figure 3. Performance of different sampling distributions. The

x-axis is the temporal interval t between two clips in a video, and

the y-axis is the sampling probability P (t). We report linear eval-

uation accuracy upon 200 epochs of pre-training on Kinetics-400.

Spatial Augmentation: a temporally consistent design.

Spatial augmentation is widely used in both supervised

learning and unsupervised learning for images. Although

the question of how to apply strong spatial augmentations

to videos remains open, a natural strategy is to utilize ex-

isting image-based spatial augmentation methods to the

video frames one by one. However, this method could

break the motion cues across frames. Spatial augmentation

methods often contain some randomness such as random

cropping, color jittering and blurring as important ways to

strengthen their effectiveness. In videos, however, such ran-

domness between consecutive frames, could negatively af-

fect the representation learning along the temporal dimen-

sion. Therefore, we design a simple yet effective approach

to address this issue, by making the spatial augmentations

consistent along the temporal dimension. With fixed ran-

domness across frames, the 3D video encoder is able to bet-

ter utilize spatiotemporal cues. This approach is validated

by experimental results in Table 9. Algorithm 1 demon-

strates the detailed procedure of our temporally consistent

spatial augmentations, where the hyper-parameters are only

generated once for each video and applied to all frames. An

illustration can be found in Appendix C.2.

3.4. Evaluation

As a common practice in self-supervised representation

learning [10, 32], we mainly evaluate the learned video rep-

resentations by fixing the weights in the pre-trained video

encoder and training a linear classifier on top of it. We also
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Algorithm 1: Temporally consistent spatial augmentation

Input: Video clip V = {f1, f2, · · · , fM} with M frames

Crop: Randomly crop a spatial region with size ratio S

in range of [0.3, 1] and aspect ratio A in [0.5, 2]
Resize: Resize the cropped region to size of 224× 224
Flip: Draw a flag Ff from {0, 1} with 50% on 1
Jitter: Draw a flag Fj from {0, 1} with 80% on 1
Grey: Draw a flag Fg from {0, 1} with 20% on 1
for k ∈ {1, . . . ,M} do

f 0

k = Resize
�

Crop(fk, size = S, aspect = A)
�

f 0

k = Flip(f 0

k) if Ff = 1
f 0

k = Color jitter(f 0

k) if Fj = 1
f 0

k = Greyscale(f 0

k) if Fg = 1
f 0

k = Gaussian blur(f 0

k)
end for

Output: Augmented video clip V 0 = {f 0

1, f
0

2, · · · , f
0

M}

assess the learned representations by fine-tuning the entire

video encoder network in a semi-supervised learning setting

as well as in downstream action classification and detection

tasks. More details to come in Section 4.

4. Experiments

We mainly conduct experiments on the Kinetics-400

(K400) [38] and Kinetics-600 [8] (K600) datasets. K400

consists of about 240k training videos and 20k validation

videos belonging to 400 action classes. K600 is a super-

set of K400 by revising ambiguous classes and adding 200

more classes, containing about 360k training and 28k vali-

dation videos from 600 classes. We note that K400 has been

extensively used in the literature and hope our additional

results on K600 would further demonstrate the effective-

ness of CVRL and offer a reference to the field. The videos

in Kinetics have a duration of around 10 seconds, with 25

frames per second (i.e., around 250 frames per video). We

adopt the standard protocol [10, 32] of self-supervised pre-

training and linear evaluation as the primary metric for eval-

uating the learned representations. We also evaluate the

learned representations via semi-supervised learning and

downstream tasks.

4.1. Implementation Details

We use SGD as our optimizer with the momentum of 0.9.

All models are trained with the mini-batch size of 1024 ex-

cept for downstream tasks. We linearly warm-up the learn-

ing rate in the first 5 epochs [25] followed by the scheduling

strategy of half-period cosine learning rate decay [34]. We

apply the proposed temporal and spatial augmentations for

the self-supervised pre-training. For other tasks, we only

use standard data augmentations of cropping, resizing, and

flipping. During testing, we densely sample 10 clips from

each video and apply a 3-crop evaluation following [17].

Self-supervised pre-training. We sample two 16-frame

clips with the temporal stride of 2 from each video for the

self-supervised pre-training of video representations. The

duration of a clip is 1.28 seconds out of around 10 seconds

of a video. We use synchronized batch normalization to

avoid information leakage or overfitting [10]. The tempera-

ture ⌧ is set to 0.1 in the InfoNCE loss for all experiments.

The initial learning rate is set to 0.32.

Linear evaluation. We evaluate video representations us-

ing a linear classifier by fixing all the weights in the back-

bone. During training, we sample a 32-frame clip with the

temporal stride of 2 from each video to train the linear clas-

sifier for 100 epochs with an initial learning rate of 32. We

`2 normalize the feature before feeding it to the classifier.

Semi-supervised learning. We conduct semi-supervised

learning, namely, by fine-tuning the pre-trained network on

small subsets of Kinetics. We sample 1% and 10% videos

from each class in the training set, forming two balanced

subsets, respectively. The evaluation set remains the same.

We use pre-trained backbones to initialize network parame-

ters and fine-tune all layers using an initial learning rate of

0.2 without warm-up. We train the model for 100 epochs on

the 1% subset and 50 epochs on the 10% subset.

Downstream action classification. On UCF-101 [57] and

HMDB-51 [41], we use the pre-trained backbone on Kinet-

ics to initialize the network parameters. We report results

for both fine-tuning (i.e., fine-tune all layers) and linear

evaluation (i.e., train a linear classifier by fixing all back-

cbone weights). All the models are trained with a mini-

batch size of 128 for 50 epochs. We use an initial learning

rate of 0.16 for fine-tuning on both datasets, 0.8 for linear

evaluation on UCF-101 and 0.2 for HMDB-51.

Downstream action detection. For action detection, we

work on AVA [27] containing 211k training and 57k valida-

tion videos. AVA provides spatiotemporal labels of each ac-

tion in long videos of 15 to 30 minutes. Following [17, 73],

we adopt a Faster-RCNN [54] baseline with modifications

to enable it to process videos. We use pre-trained backbones

on Kinetics-400 to initialize the detector, and train with the

standard 1⇥ schedule (12 epochs, decay learning rate by

10⇥ at 8-th and 11-th epoch). We use an initial learning

rate of 0.2 with 32 videos per batch.

Supervised learning. To understand where CVRL stands,

we also report supervised learning results. The setting for

supervised learning is the same as linear evaluation except

that we train the entire encoder network from scratch for

200 epochs without feature normalization. We use an initial

learning rate of 0.8 and a dropout rate of 0.5 following [17].

4.2. Experimental Results

Comparison baselines. We compare our CVRL method

with two baselines: (1) ImageNet inflated [33]: inflat-

ing the 2D ResNets pre-trained on ImageNet to our 3D
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Method Backbone (#params) Pre-train data (duration) Mod. Linear eval. Top-1 Acc. (%)

VTHCL [73] R3D-50 (31.7M) K400 (28d) V K400 37.8

SimCLR inflated R3D-50 (31.7M) K400 (28d) V K400 46.8

VINCE [24] R-50 (23.5M) K400 (28d) V K400 49.1

ImageNet inflated R3D-50 (31.7M) ImageNet (N/A) V K400 53.5

SeCo [74] R-50 (23.5M) K400 (28d) V K400 61.9

CVRL R3D-50 (31.7M) K400 (28d) V K400 66.1

CVRL R3D-101 (59.7M) K400 (28d) V K400 67.6

CVRL R3D-152 (2×) (328.0M) K600 (44d) V K400 71.6

Supervised (K400) R3D-50 (31.7M) N/A V N/A 76.0

SimCLR inflated R3D-50 (31.7M) K600 (44d) V K600 51.6

ImageNet inflated R3D-50 (31.7M) ImageNet (N/A) V K600 54.7

MMV-VA [2] S3D-G (9.1M) AS + HT (16y) VA K600 59.8

MMV [2] TSM-50×2 (93.9M) AS + HT (16y) VAT K600 70.5

CVRL R3D-50 (31.7M) K600 (44d) V K600 70.4

CVRL R3D-101 (59.7M) K600 (44d) V K600 71.6

CVRL R3D-152 (2×) (328.0M) K600 (44d) V K600 72.9

Supervised (K600) R3D-50 (31.7M) N/A V N/A 79.4

Table 2. Linear evaluation results. CVRL shows superior performance compared to state-of-the-art methods and baselines, significantly

closes the gap with supervised learning. R-50 in the network column represents the standard 2D ResNet-50.

ResNets by duplicating it along the temporal dimension,

and (2) SimCLR inflated [10]: inflating the 2D ResNets

pre-trained with SimCLR on the frame images of Kinet-

ics 1. SimCLR inflated serves as an important frame-based

baseline for our method by directly applying the state-of-

the-art image self-supervised learning algorithm to Kinetics

frames, where no temporal information is learned. In ad-

dition, we present the results of supervised learning as an

upper bound of our method.

Notations. We aim at providing an extensive comparison

with prior work, but video self-supervised learning methods

could be diverse in pre-training datasets and input modal-

ities. For pre-training datasets, we use K400 in short

for Kinetics-400 [38], K600 for Kinetics-600 [8], HT for

HowTo100M [46], AS for AudioSet [20], IG65M for In-

stagram65M [21], and YT8M for YouTube8M [1]. We also

calculate the total length of the videos in one dataset to indi-

cate its scale, namely duration in the table, by using years or

days. Following [2], we divide modalities into four types:

Vision, Flow, Audio and Text.

Linear evaluation. Linear evaluation is the most straight-

forward way to quantify the quality of the learned represen-

tation. As shown in Table 2, while some previous state-

of-the-art methods [73, 24] are worse than ImageNet in-

flated, our CVRL outperforms the ImageNet inflated by

12.6% in top-1 accuracy on K400. Compared with the

frame-based SimCLR inflated encoder, CVRL has 19.7%

improvement, demonstrating the advantage of the learned

1We find a SimCLR model pre-trained on Kinetics frames slightly out-

performs the same model pre-trained on ImageNet released by [10]. This

is probably due to the domain difference between ImageNet and Kinetics.

Method Backbone
K400 Top-1 Acc. (∆ vs. Sup.)

1% label 10% label

Supervised R3D-50 3.2 39.6

SimCLR infla. R3D-50 11.8 (8.6↑) 46.1 (6.5↑)

ImageNet infla. R3D-50 16.0 (12.8↑) 49.1 (9.5↑)

CVRL R3D-50 35.1 (31.9↑) 58.1 (18.5↑)

Table 3. Semi-supervised learning on Kinetics-400.

spatiotemporal representation over spatial only ones. Fi-

nally, compared with the supervised upper bound, CVRL

greatly closes the gap between self-supervised and super-

vised learning. We also compare CVRL with the very recent

state-of-the-art multimodal video self-supervised learning

method MMV [2] on K600. CVRL achieves performance

that is on par with MMV (70.4% vs. 70.5%), with 133⇥
less pre-training data (44 days vs. 16 years), 3⇥ fewer pa-

rameters (31.7M vs. 93.9M) and only a single vision modal-

ity (V vs. VAT). With a deeper R3D-101, CVRL is able to

show better performance (71.6% vs. 70.5%) with only 60%

parameters (59.7M vs. 93.9M). Pre-training and linear eval-

uation curves can be found in Appendix C.1.

Semi-supervised learning. For semi-supervised learning

on K400, as presented in Table 3, CVRL surpasses all other

baselines across different architectures and label fractions,

especially when there is only 1% labeled data for fine-

tuning, indicating that the advantage of our self-supervised

CVRL is more profound when the labeled data is limited.

Results on K600 can be found in Appendix B.1.

Downstream action classification. Pre-training the net-

work encoder on a large dataset and fine-tuning all layers or

conducting linear evaluation on UCF-101 [57] and HMDB-

51 [41] is the most common evaluation protocol in the video
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self-supervised learning literature. We organize previous

methods mainly by (1) what input modality is used and (2)

which dataset is pre-trained on. We provide a comprehen-

sive comparison in Table 4. We first divide all entries by

the input modality they used. Inside each modality, we ar-

range the entries w.r.t. the performance on UCF-101 by as-

cending order. We notice there is inconsistency in previous

work on reporting results with different splits of UCF-101

and HMDB-51, so we report on both split-1 and 3 splits

average. For fine-tuning, CVRL significantly outperforms

methods using Vision modality only. Compared with mul-

timodal methods using Vision and Flow [29, 30], Vision

and Text [45], CVRL still ranks top. Multimodal methods

using Vision and Audio are able to achieve better perfor-

mance starting from GDT [51] on AS, while it is worth to

point out that the pre-trained dataset is 9⇥ larger than K400

which we pre-train CVRL on with single Vision modality.

For CVRL pre-trained on K600, it is only worse than the

best model of [3, 51, 52, 2] on UCF-101 and outperforms

the best model of [3, 52] on HMDB-51, where their pre-

training datasets are 108⇥ to 174⇥ larger than K600. For

linear evaluation, CVRL is better than all single and multi

modal methods with the only exception of MMV [2] on

UCF-101. On HMDB-51, CVRL demonstrates very com-

petitive performance, outperforming all methods using vi-

sion modality and multimodal methods of [29, 30, 45, 3].

In conclusion, CVRL shows competitive performance on

downstream action classification, compared with single and

mutilmodal video self-supervised learning methods.

Downstream action detection. We conduct experiments

on AVA [27] dataset which benchmarks methods for de-

tecting when an action happens in the temporal domain and

where it happens in the spatial domain. Each video in AVA

is annotated for 15 to 30 minutes and we consider this as an

important experiment to demonstrate the transferability of

CVRL learned features. We adopt Faster-RCNN [54] and

replace the 2D ResNet backbone with our video encoder in

Table 1. Following [17, 73], we compute region-of-interest

(RoI) features by using a 3D RoIAlign on the features from

the last conv block. We then perform a temporal average

pooling followed by a spatial max pooling, and feed the

feature into a sigmoid-based classifier for mutli-label pre-

diction. We use pre-trained weights to initialize the video

encoder, and fine-tune all layers for 12 epochs. We report

mean Average-Precision (mAP) in Table 5, where CVRL

shows better performance than baselines.

4.3. Ablation Study

We conduct extensive ablation studies for CVRL based

on 200 epochs pre-training on Kinetics-400 and report top-1

linear evaluation accuracy on Kinetics-400.

Method
Pre-train data

Mod.
Top-1 Acc. (%)

(duration) UCF HMDB

Fine-Tuning

MotionPred† [66] K400 (28d) V 61.2 33.4

3D-RotNet‡ [37] K400 (28d) V 64.5 34.3

ST-Puzzle‡ [39] K400 (28d) V 65.8 33.7

ClipOrder† [72] K400 (28d) V 72.4 30.9

DPC‡ [28] K400 (28d) V 75.7 35.7

PacePred† [67] K400 (28d) V 77.1 36.6

MemDPC§ [29] K400 (28d) V 78.1 41.2

CBT‡ [59] K600+ (273d) V 79.5 44.6

SpeedNet† [6] K400 (28d) V 81.1 48.8

VTHCL§ [73] K400 (28d) V 82.1 49.2

DynamoNet‡ [13] YT8M(13y) V 88.1 59.9

SeCo§ [74] K400 (28d) V 88.3 55.6

MemDPC§ [29] K400 (28d) VF 86.1 54.5

CoCLR† [30] K400 (28d) VF 90.6 62.9

MIL-NCE‡ [45] HT (15y) VT 91.3 61.0

AVTS‡ [40] AS (240d) VA 89.0 61.6

MMV-VA‡ [2] AS+HT (16y) VA 91.1 68.3

XDC‡ [3] AS (240d) VA 91.2 61.0

GDT‡ [51] AS (240d) VA 92.5 66.1

XDC‡ [3] IG65M (21y) VA 94.2 67.4

GDT‡ [51] IG65M (21y) VA 95.2 72.8

Elo§ [52] YT8M (13y) VFA 93.8 67.4

MMV‡ [2] AS+HT (16y) VAT 95.2 75.0

CVRL‡(R3D-50) K400 (28d) V 92.2 66.7

CVRL†(R3D-50) K400 (28d) V 92.9 67.9

CVRL‡(R3D-50) K600 (44d) V 93.4 68.0

CVRL†(R3D-50) K600 (44d) V 93.6 69.4

CVRL‡(R3D-152(2×)) K600 (44d) V 93.9 69.9

CVRL†(R3D-152(2×)) K600 (44d) V 94.4 70.6

Linear Evaluation

MemDPC§ [29] K400 (28d) VF 54.1 30.5

CoCLR† [30] K400 (28d) VF 77.8 52.4

MIL-NCE‡ [45] HT (15y) VT 83.4 54.8

XDC‡ [3] AS (240d) VA 85.3 56.0

MMV-VA‡ [2] AS+HT (16y) VA 86.2 61.5

Elo§ [52] YT8M (13y) VFA - 64.5

MMV‡ [2] AS+HT (16y) VAT 91.8 67.1

CVRL‡(R3D-50) K400 (28d) V 89.2 57.3

CVRL†(R3D-50) K400 (28d) V 89.8 58.3

CVRL‡(R3D-50) K600 (44d) V 90.6 59.7

CVRL†(R3D-50) K600 (44d) V 90.8 59.7

Table 4. Downstream action classification results on UCF-101 and

HMDB-51. CVRL shows competitive performance compared with sin-

gle and muitl-modal methods, by using only the Vision modality on K400

and K600. † indicates split-1 accuracy, ‡ indicates averaged accuracy on 3

splits, § indicates evaluation split(s) not mentioned in paper.

Method Rand.
ImageNet SimCLR

CVRL Sup.
infla. infla.

mAP 6.9 14.0 14.2 16.3 19.1

Table 5. Downstream action detection results on AVA. We report

mean Average-Precision (mAP) to assess the performance. CVRL

outperforms ImageNet inflated and SimCLR inflated. All methods

use R3D-50 as the backbone.
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Backbone
Hidden Accuracy (%)

layers top-1 top-5

R3D-50

0 54.7 79.1

1 62.5 84.5

2 63.0 84.8

3 63.8 85.2

Table 6. Ablation on hidden layers.

Backbone
Batch Accuracy (%)

size top-1 top-5

R3D-50

256 60.2 82.5

512 62.9 84.7

1024 63.8 85.2

2048 61.8 84.2

Table 7. Ablation on batch size.

Backbone
Pretrain Accuracy (%)

epochs top-1 top-5

R3D-50

100 58.8 81.8

200 63.8 85.2

500 65.6 86.5

800 66.1 86.8

Table 8. Ablation on pre-training epochs.

Temporal

augmentation

Spatial

augmentation

Temporal

consistency

Accuracy (%)

top-1 top-5

3 33.0 57.3

3 40.9 66.6

3 3 52.3 76.0

3 3 3 63.8 85.2

Table 9. Ablation study on data augmentation.

Temporal interval sampling distribution. As shown in

Figure 3, we experiment with monotonically decreasing dis-

tributions (a-c), uniform distribution (d) and monotonically

increasing distributions (e-f). We find decreasing distribu-

tions are better. We also compare different power functions

for decreasing distribution and choose a simple exponent of

1 (i.e., linear) due to its simplicity and best performance.

Spatial and temporal augmentation. We conduct an ab-

lation study on the proposed temporally consistent spatial

augmentation. From results in Table 9, we have three ma-

jor observations. First, both temporal and spatial augmen-

tations are indispensable. Specifically, using both temporal

and spatial augmentations yields 52.3% top-1 accuracy, sig-

nificantly outperforming the same model pre-trained with

temporal augmentation only (33.0%) or spatial augmenta-

tion only (40.9%). Second, the proposed temporally consis-

tent module plays a critical role in achieving good perfor-

mance. Adding temporal consistency further improves the

top-1 accuracy to 63.8% by a large margin of 11.5% over

52.3%. Third, spatial augmentations, which are ignored to

some degree in existing self-supervised video representa-

tion learning literature, not only matter, but also contribute

more than the temporal augmentations.

More training data. We study whether using more data

would improve the performance of CVRL. We design an

evaluation protocol by first pre-training models on different

amount of data (K600 and K400) with same iterations to

remove the advantage brought by longer training, and then

comparing the performance on same validation set (K400

val). We verify that the training data of K600 has no over-

lapping video ids with the validation set of K400. We

present results of 46k (200 K400 epochs), 184k (800 K400

epochs) and 284k (800 K600 epochs) pre-training iterations

in Figure 4. We find more training data in K600 is benefi-

cial, demonstrating the potential of CVRL’s scalability on

larger unlabeled datasets.

Figure 4. More data is beneficial for CVRL. All models are eval-

uated on the validation set of K400 to provide a fair comparison.

Layers of projection head. We experiment with different

number of hidden layers. Unlike [11], we only use different

layers in pre-training and perform the linear evaluation on

top of the same backbone by removing the entire projection

head. In Table 6, we can see using 3 hidden layers yields the

best performance and we choose this as our default setting.

Batch size. The batch size determines how many negative

pairs we use for each positive pair during training. Our ex-

perimental results show that a batch size of 1024 already

achieves high performance. Larger batch sizes could nega-

tively impact the performance as shown in Table 7.

Pre-training epoch. As presented in Table 8, we exper-

iment with pre-training epochs varying from 100 to 800

and find consistent improvement with longer pre-training

epochs. We choose 800 epochs as our default setting.

5. Conclusion

This work presents a Contrastive Video Representation

Learning (CVRL) framework leveraging spatial and tempo-

ral cues to learn spatiotemporal representations from unla-

beled videos. Extensive studies on linear evaluation, semi-

supervised learning and various downstream tasks demon-

strate promising results of CVRL. In the future, we plan to

apply CVRL to a large set of unlabeled videos and incorpo-

rate additional modalities into our framework.
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