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(a) (c) (d)(b)

Figure 1: Given an input image of a hotel room (a), we detect its scene objects in (b) and learn to identify the Scene Essence

that comprises a collection of essential elements for recognizing the scene, as labeled by the yellow bounding boxes. The

image with essential elements preserved but minor ones inpainted are shown in (c), which, still, would be visually recognized

as a hotel room. Should we further wipe off elements from the Scene Essence, in this case the bed, the scene will be

interpreted as a living room.

Abstract

What scene elements, if any, are indispensable for recog-

nizing a scene? We strive to answer this question through

the lens of an exotic learning scheme. Our goal is to iden-

tify a collection of such pivotal elements, which we term as

Scene Essence, to be those that would alter scene recog-

nition if taken out from the scene. To this end, we devise

a novel approach that learns to partition the scene objects

into two groups, essential ones and minor ones, under the

supervision that if only the essential ones are kept while the

minor ones are erased in the input image, a scene recog-

nizer would preserve its original prediction. Specifically,

we introduce a learnable graph neural network (GNN) for

labelling scene objects, based on which the minor ones are

wiped off by an off-the-shelf image inpainter. The features of

the inpainted image derived in this way, together with those

learned from the GNN with the minor-object nodes pruned,

are expected to fool the scene discriminator. Both sub-

jective and objective evaluations on Places365, SUN397,

and MIT67 datasets demonstrate that, the learned Scene

Essence yields a visually plausible image that convincingly

retains the original scene category.

1. Introduction

Looking at the image in Fig. 1(a), we may effortlessly

tell that it is a scene of a hotel room. But if we are asked to

pinpoint a few indispensable objects in the scene, if any, that

dedicate our recognition, it might take us some effort to fig-

ure them out: maybe the sofa, or the table, or a combination

of both? If we human observers find this to be a non-trivial

task, shall we expect deep networks to be competent?

In this paper, we target at learning to extract a collec-

tion of such scene objects, which, together with the scene

background, are coined as Scene Essence. In other words,

Scene Essence comprises the scene background and pivotal

scene objects, if any, that jointly make a scene a scene, and

hence serves as a scene signature. We show an example of

the learned Scene Essence, in Fig. 1(c), where only the sofa

and the bed are preserved while all other objects are wiped

off by an off-the-shelf image inpainter [91]. This derived

Scene Essence image successfully fools a state-of-the-art

scene recognizer [99], since it is still categorized as a hotel

room; in fact, even when we human observers look at this

image, likely we will not even doubt it is being a hotel-room

image. Should we, however, take one more object from the

Scene Essence, for example the bed as shown in Fig. 1(c),

the scene recognizer will immediately alter its prediction, in

this case to a living room, which indeed appears to be such
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Figure 2: (a) and (b) respectively show the original dorm scene

image and its corresponding Scene Essence; (c) shows the learned

Scene Essence if provided with a label of bedroom, and (d) shows

the one learned with a label of office.

for human.

Despite prior efforts on attribution maps [65, 73] and

activation maps [101, 54] also aim to interpret the scene

recognition rationale, the proposed Scene Essence distin-

guishes itself from the perspective that it reasons at object

level and meanwhile delivers a minimum set of objects to

ensure the image being recognized as the original category.

Furthermore, Scene Essence comes with other unique and

interesting properties, such as generating images of other

categories and hence enabling scene transfer. For example,

an image of the dorm category is shown in Fig. 2(a); when

trained with the original label, Scene Essence will remove

the dispensable objects like the books on the bed, and keep

the essential ones as in Fig. 2(b). If, however, we train our

network with other labels, such as bedroom or office, Scene

Essence would consequently produce images displayed re-

spectively in Fig. 2(c) and Fig. 2(d), which are indeed vi-

sually convincing scenes from the two categories and hence

offer an exotic and inexpensive way of conducting scene

transfer.

We devise a novel approach to learning Scene Essence,

by explicitly accounting for both object-level semantics and

visual evidences. The core idea here is to learn a partition

of scene objects into two groups, essential ones and minor

ones, such that if the minor ones are erased by an image in-

painter while the essential ones are preserved, a scene clas-

sifier would not alter its predicted label. To this end, we

propose an innovative network architecture that first takes

an image as input and conducts object detection using an

off-the-shelf detector module. Each detected object is mod-

eled as a node in a scene graph, which is then fed into a

learnable hierarchical Graph Neural Network (GNN) for la-

beling each node as essential or minor. Next, an off-the-

shelf image inpainter is introduced to erase the minor ob-

jects and produce the Scene Essence image, whose visual

feature is concatenated with the features learned from GNN

and afterwards fed into a scene discriminator. The GNN

module, therefore, learns to update its parameters from the

supervision back-propagated from the scene discriminator

and the image inpaitner, and eventually specializes in iden-

tifying essential objects.

In sum, our contribution is an exotic scene signature,

termed as Scene Essence, that maintains a minimum set of

scene objects to preserve its predicted label and meanwhile

offers an inexpensive way for scene transfer. Scene Essence

is derived via a novel network architecture, in which a GNN

learns to categorize scene objects under the supervision that

if only the essential ones are kept while the rest ones are

wiped off, a scene recognizer will stick to its original pre-

diction. We conduct extensive objective and subjective ex-

periments to evaluate Scene Essence in terms of recognition

accuracy, visual quality, and inter-category transferability,

and showcase that it may readily serve as a new option for

interpreting scene recognition rationale at the object level.

2. Related Work

We briefly review here prior works related to ours, in-

cluding scene recognition, discriminative region detection,

graph convolutional network, and image inpainting.

Scene Recognition. Earlier scene recognition meth-

ods learn to understand the scene from the spatial correla-

tion between handcrafted features of random regions [60,

30, 55, 38, 56]. Due to the development of deep learn-

ing [36, 66, 25], data-driven based feature learning methods

are proposed and have achieved promising performance on

scene recognition [102, 48, 68, 100, 29, 84, 43]. More re-

cently, the embedded structural information in the image is

utilized for scene understanding [11, 6, 69, 59]. However,

none of the existing methods tried to learn to find the Scene

Essence that maintains the minimum set of elements to pre-

serve the predicted category.

Discriminative Region Detection. Traditional discrim-

inative region detection methods rely on handcrafted fea-

tures to locate the discriminative areas [67, 32]. In re-

cent years, deep-learning-based methods have dominated

discriminative region detection. They can be broadly cat-

egorized into three classes. Methods in the first class focus

on the dense prediction [62, 45, 76], those in the second

estimate activation maps for locating the discriminative re-

gions [82, 13], and the ones in the third class explore the

convolutional responses from CNNs [96, 98, 95, 81]. More

recently, the structural attention mechanism is implemented

to extract discriminative regions in scene image [11]. How-

ever, none of the existing methods explored the object-level

discrimination.

Graph Neural Network. Earlier works on graph-

related tasks either assume the node features to be pre-

defined [58, 79, 80, 51, 50, 37], or apply iterative schemes

for learning node representations, which are time consum-

ing [17, 63, 21, 72]. Recently, graph neural networks

have been proposed to learn graph features. They can

be coarsely categorized into two types: spectral-based ap-

proaches, which aim to develop graph convolution based on

the spectral theory [42, 40, 34, 78, 15, 26, 9], and spatial-

based ones, which investigate information mutual depen-

dency [75, 28, 12, 3, 18, 52, 22, 19, 53, 2, 1, 39, 49, 89,

88, 87, 94, 74]. More recently, the hierarchical GCN [90]
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is proposed to strengthen the learning capability and has

achieved promising results.

Image Inpainting. Traditional image inpainting meth-

ods utilize the cross image correlation to inpaint the masked

area [7, 4, 41, 5, 8, 14]. Thanks to the development of

deep learning, especially the generative adversarial net-

works [20], many deep learning based inpainting algo-

rithms have been proposed and delivered visually realistic

results [61, 35, 23, 57, 92, 44, 71]. The more recent meth-

ods utilize both intra-image information and learning from

large datasets, and gain significant improvement in terms of

semantic continuity and visual authenticity [86, 91, 85, 93,

31, 101, 70, 92, 97]. However, image inpainting concerns

only the inpainting process, but not the explicit object-level

inference as done in our approach.

3. Method

In this section, we show the working scheme of the pro-

posed approach in detail. As depicted in Fig. 3, our ap-

proach comprises four stages. In Stage 1, we utilize a detec-

tion module on the input image to detect the objects in the

scene and extract their semantic and spatial information. In

Stage 2, we model the scene image as a graph, in which each

node corresponds to an object in the scene. Afterwards, we

apply the GNN module to cluster the detected objects into

two groups, Essential ones and Minor ones. The clustering

result is then utilized for the inpainting mask generation and

the structural feature extraction. In Stage 3, we first feed

the scene image and the inpainting mask into the inpainting

module for wiping the Minor objects off. The erased image,

then goes through the visual scene recognition (VSR) mod-

ule for visual feature extraction. In Stage 4, we concatenate

the structural feature and the visual feature, and then feed

the concatenated feature into the scene classifier.

3.1. Stage 1: Detection

We adopt a detection module in Stage 1 to detect the

objects in the scene image so as to derive object-level fea-

tures. Specifically, we implement the pretrained Mask-

RCNN model [24] on the scene images. For each de-

tected object, we construct a 1028-dimension feature vec-

tor that encodes both the semantic and spatial information.

Features in first 1024 dimensions are taken directly from

the last layer of Mask-RCNN to embrace the semantics,

while features in the last four dimensions, namely upper-left

and lower-right coordinates of the detection bounding box,

are adopted to encode its spatial information. The 1028-

dimension vectors are further fed to Stage 2, and taken to be

the features of the corresponding node in the scene graph.

3.2. Stage 2: GNN Module

The second stage of our approach takes as input the in-

stance semantics obtained in Stage 1, and models the inter-

plays between the scene objects using a scene graph. Let N

denotes the number of detected objects in Stage 1. We then

construct a graph of N nodes and link all the pairs of the

N nodes to form a complete graph. Each node in the graph

holds a 1028-dimension feature.

We then feed the graph into the GNN module for clus-

tering the objects into two groups, the Essential and Mi-

nor ones. Specifically, we represent the graph G as (A,F ),
where A ∈ {0, 1}N×N denotes the adjacency matrix, and

F ∈ R
N×d denotes the feature matrix with d-dimension

node feature.

For basic GNN layers, the general “message-passing” ar-

chitecture is employed for structural information aggrega-

tion:
X

(l) = E(A,X
(l−1); θ(l)), (1)

where X l ∈ R
N×d denotes the node embedding (i.e. “mes-

sage”) computed after l steps of the GNN, the input node

embedding X(0) for the first step is initialized as the fea-

ture matrix F ; E denotes the message propagation function,

which takes the adjacency matrix, the trainable parameter

θ(l), and the node embedding X(l−1) generated from the

previous step as input. Specifically, we implement the E

using the combination of linear transformation and ReLU

activation:
X

(l) = E(A,X
(l−1); θ(l))

= ReLU(B̃−
1
2 ÃB̃

−
1
2X

(l−1)
W

(l)),
(2)

where Ã = A + I , B̃ =
P

j Ãij , and W l ∈ R
d×d denotes

the trainable parameter matrix.

We then implement the DIFFPOOL layer [90] on the

node embedding for nodes clustering. Specifically, S(l) ∈

R
nl×nl+1 is defined as the assignment matrix for clustering

the nl nodes in layer l into the nl+1 groups in layer l + 1.

Each row of S(l) corresponds to one of the nodes or groups

at layer l, and each column of S(l) corresponds to one of the

nl+1 groups in layer l + 1. Thus, the node embedding and

the adjacency matrix in layer l + 1 are computed as:

X
(l+1) = S

(l)T
X

(l)
∈ R

nl+1×d
, (3)

A
(l+1) = S

(l)T
A

(l)
S

(l)
∈ R

nl+1×nl+1 . (4)

The assignment matrix Sl is computed as:

S
(l) = Sigmoid(α ∗ (S

(l)
init − β)),

S
(l)
init = softmax(GNNl,pool(A

(l)
, X

(l))),
(5)

where the GNNl,pool denotes the GNN layer for comput-

ing the assignment matrix from the node embedding, α is a

hand-setting threshold and β is a learnable parameter. S(l)

is normalized to be converged to {0, 1} for ensuring that

each node is assigned to one of the groups.

In the last DIFFPOOL layer of the GNN module, the

number of clustered groups, nl+1, is set as 2 for cluster-

ing the nodes into two groups, the Essential and Minor

ones. Let K denote the total number of implemeneted

DIFFPOOL layers in the GNN module and let LD =
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Figure 3: Illustration of the proposed approach.
L

denotes concatenation, and
N

denotes element-wise multiplication. Note that, the

white regions in the mask denote the ones to be erased. In Stage 2, the structural feature is extracted only from the sub-graph formed by

the Essential objects.

[lD1
, lD2

, ..., lDK
] denote the DIFFPOOL layer indexes, the

structural feature of the scene graph is computed with the

assignment matrix of the last DIFFPOOL layer:

E
struct = S

(lDK
)[:, 1]

T
X

lDK ∈ R
1×d

, (6)

where the S(lDK
)[:, 1] denotes the assignment column for

the Essential group and S(lDK
)[:, 2] denotes the column for

the Minor one.

3.3. Stage 3: Visual Understanding

Given the clustering results from the previous stage, we

erase the Minor objects and then extract the visual features

from the derived image. This is achieved by our inpaint-

ing module and VSR module: the former takes care of the

erasing process and the latter carries out feature extraction.

Specifically, we first compute the assignment score

Sobj ∈ R
N×1 for objects to be Essential:

Sobj =

K−1Y

i=1

S
(lDi

)
∗ S

(lDK
)[:, 1]. (7)

With the assignment score si ∈ Sobj of the i-th object and

its corresponding detected location Li = (xul, yul, xlr, ylr)
from Stage 1, the inpainting mask M is updated as:

M [xul : xlr, yul : ylr] = si, (8)

where M is initialized as an all-ones matrix. The masked

image is then derived as follows:

Pm = P ⊗M, (9)

where the P denotes the input image and ⊗ denotes

element-wise multiplication.

Next, we concatenate the inpainting mask M and the

masked image Pm, and feed it into the inpainting module

shown in Fig. 4. Here, we adopt the generative inpainting

network proposed by Yu et al. [91]. The erased image is

thus obtained:

PI = (1−M)⊗GI(Pm, 1−M) +M ⊗ P, (10)

where the PI denotes the erased image and the GI denotes

the generative inpainting network.

Finally, the erased image PI is fed into the VSR mod-

ule for visual feature extraction. Specifically, we adopt the

VGG-16 [66] to achieve this task. The visual feature from

the second last layer of VGG-16 is extracted:

E
visual = V SR(PI). (11)

3.4. Stage 4: Scene Classifier

Once the structural feature Estruct and the visual feature

Evisual are collected, we stack them together and feed the

concatenation into the scene classifier:

Ỹ = Nsc(E
struct

, E
visual; θsc), (12)

where the Ỹ denotes the predicted class of the erased scene

image, Nsc denotes the scene classifier network, and θsc
denotes the trainable parameters.

We then compute the cross entropy loss for the predic-

tion:

LCE =
1

T

TX

i=1

H(Yi, Ỹi), (13)

where T denotes the number of input samples, H denotes

cross entropy function, and Yi denotes the ground-truth

scene class.
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Figure 4: The architecture of the inpainting module. The yellow

filters denote the standard convolutional operation and the blue

ones denote the dilated convolutional operation.

Moreover, to encourage all Minor objects to be erased,

we introduce a l1-norm term to penalize the number of kept

objects. We write,

Lnorm =
1

T

TX

i=1

1

Ni

||Si
obj ||1, (14)

where Ni denotes the number of detected objects in an im-

age. The final objective function for the proposed approach

is taken to be
L = LCE + λLnorm, (15)

where λ denotes the balancing weight.

4. Implementation Details

We show here the details of training settings and module

implementations.

Training Settings. Our networks are implemented us-

ing PyTorch and with 4 Tesla V-100 SXM2 GPUs. In the

training process, the batch size is 192. The loss balancing

weight λ is set to be 0.5, α is set to be 103, and the learning

rate is manually reduced from 0.0001 to 0.00001.

GNN module. We implement two DIFFPOOL layers in

the GNN module, each of which follows a three-layer neu-

ral network with residual connections. The feature dimen-

sions of the neural network layers are set to be 512, 256,

and 512 respectively. For the last neural network layer, we

adopt ReLU as its activation function. The learning rate of

the GNN module is set to be 0.003 for obtaining the best

performance.

For the first DIFFPOOL layer in the GNN module, we

set its number of clustered groups as 4. Therefore, the N

detected objects are clustered into 4 groups, meaning that

the number of nodes in the scene graph should be at least

4. For images which contains fewer than 4 detected objects,

the self-connected virtual nodes are inserted so as to form a

4-node scene graph. Specifically, the virtual node is set to

be with all zeros semantic and spatial information.

Inpainting Module. We adopt a popular generative in-

painting network [91] as the inpainting module in our ap-

proach. Specifically, we pretrain it on MS-COCO dataset

[46] and fix it in the training process. This module is im-

plemented to produce visually realistic and reasonable in-

painted contents. If we simply replace the areas of Mi-

nor objects with mean pixel value, the visual quality will

be poor, especially for large area erasing, thus affecting the

scene understanding and decreasing the scene recognition

performance.

In the inpainting mask generation process, the areas of

detected objects may overlap. If the overlapped objects be-

long to the same group, for example Essential objects, we

average their assignment scores to be the mask value for

the overlapped area. Otherwise, we average the assignment

scores of the Minor objects to be the mask value.

VSR Module. We adopt the VGG-16 network [66] as

our VSR module. Specifically, we pretrain it on the selected

scene datasets. The pretrained VSR module is adopted

to ensure that the Essential objects of the scene are kept.

Since the VSR module takes the erased image as its input,

it is expected to tell whether the input image belongs to the

ground-truth scene category or not. If not, the Essential ob-

jects are incorrectly erased, through which supervision is

back-propagated to update the network parameters.

Scene Classifier. We implement a three-layer neural net-

work as the scene classifier. The feature dimensions of each

neural network layer are set to be 1512, 1024, Nc, where

Nc denotes the number of categories for each dataset. We

adopt the ReLU as the activation function for the first two

layers.

5. Experiments

In this section, we provide our experimental setups and

show the results. Since we are not aware of any existing

work that performs exactly the same task as we do here, we

mainly focus on showing the promise of the proposed ap-

proach. We also compare part of our approach with other

popular models. Our goal is, again, to show the possibil-

ity of learning Scene Essence, rather than trying to beat

the state-of-the-art scene recognition, GNN, and inpainting

models. Other modules with the same functionality, as long

as end-to-end trainable, can be adopted in our approach to

achieve potentially better performances.

5.1. Datasets

We adopt three datasets, Places365 [99], SUN397 [83],

and MIT67 [60] to validate the proposed least scene sub-

graph learning approach.

Places365 Dataset [99]. It is one of the largest scene-

centric datasets, which comprises two subsets, Places365-

standard and Places365-challenge. In our experiments, the

Places365-standard, which consists of around 1.8 million

images from 365 scene classes, is used for training and val-

idation. The validation set of Places365-standard, which

comprises 100 images per class, is used for testing. Also,

10-fold validation is used during the training process.

SUN397 Dataset [83]. It is one of the most commonly

used scene recognition datasets, which comprises around

109k images from 397 scene classes. In our experiments,

we randomly chose 50 images as test ones, 20 as valida-

tion ones for each scene class. In total, we use around 81k

images for training, 8k for validation, and 20k for testing.
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Figure 5: Scene Essence examples. The first two rows show the scenes in Places365 and their corresponding Scene Essence; the third and

fourth row show the ones in SUN397; the last row shows the ones in MIT67. Within each pair, the upper/left one is the original image and

the lower/right one is the corresponding Scene Essence.

Term MIT67 Acc (%) SUN397 Acc (%)

MFA-FS [16] 79.57 61.71

HSCFVC [47] 79.50 -

MFAFVNeT [43] 80.30 62.51

LSO-VLADNet [10] 81.70 61.60

Three [27] 80.90 66.23

S-HunA [64] 83.70 -

SpecNet [33] 84.30 67.60

CNN-DL [48] 82.86 67.90

LGN [11] 85.37 69.48

Ours 83.92 68.31

Table 1: Scene recognition accuracy of our approach and the state-

of-the-art ones on the MIT67 and SUN397 datasets.

MIT67 Dataset [60]. It comprises around 16k images

from 67 real-world indoor scenes. We adopt 20 images of

each category for testing, 20 for validation, and the rest for

training. In total, we use around 13.4k images for training,

1.3k for validation, and 1.3k for testing.

5.2. Scene Recognition

The scene recognition accuracy of our proposed ap-

proach and the state-of-the-art scene recognition methods

on SUN397 and MIT67 datasets are shown in Tab. 1. As

Term Top-1 Acc (%) Top-5 Acc (%)

CNN-SMN [68] 54.30 -

Places365-ResNet [99] 54.74 85.08

Places365-VGG [99] 55.24 84.91

Deeper BN-Inception [77] 56.00 86.00

LGN [11] 56.50 86.24

Ours 55.21 80.42

Table 2: Scene recognition accuracy of our approach and the state-

of-the-art ones on the Places365-standard datasets.

can be seen, although the aim of our approach targets at

learning the Scene Essence, which keeps only few objects

in the scene, it still achieves performance on par with the

state of the art.

We present the recognition accuracy on Places365

dataset in Tab. 2, where both the top-1 and top-5 accuracy

are reported. The top-5 accuracy of our approach is consid-

erably lower than those of other methods, as compared to

difference on top-1 accuracy. This can be explained by that,

the Scene Essence only keeps the Essential objects for its

predicted category, thus reducing the inter-category affini-

ties and further resulting in the lower top-5 accuracy.
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Figure 6: Scene transfer. The left image of each group shows the original scene, the middle one shows the Scene Essence of the ground-truth

category, the right one shows the transferred Scene Essence of the second-top predicted category for the original scene.

λ 0.1 0.3 0.5 0.7 0.9

Acc (%) 55.25 55.22 55.21 9.57 6.09

Erasing Ratio 0.33 0.46 0.58 0.64 0.71

Table 3: Effect of λ on scene recognition accuracy and erasing

ratio. Results are obtained on Places365.

Term Places SUN MIT Places SUN MIT

UE1 UE1 UE1 UE2 UE2 UE2

Score 98.23 98.74 97.59 99.52 99.39 99.15

Std 0.013 0.011 0.015 0.016 0.017 0.012

Table 4: Score and standard deviation of the first and second visual

results validation user-study.

5.3. Erasing Ratio

We introduce a l1-norm term as a part of the objective

function, to penalize the number of objects left in the scene,

and hence encourage all Minor objects to be wiped off. A

balancing weight λ is used to trade-off the scene recognition

accuracy and the ratio of erased objects. In this experiment,

we show the effect of λ on the erasing ratio and its cor-

responding recognition accuracy. Specifically, we compute

the erasing ratio of each image using ER = Nm

N
, where Nm

denotes the number of Minor objects and N denotes the to-

tal number of detected objects. As can be seen from Tab. 3,

when λ is small (i.e. ≤ 0.5), the Minor objects are erased

and the scene recognition accuracy stays stable. However,

Essential objects tend to be erased with the increasing of λ

and thus the recognition accuracy decreases dramatically.

5.4. Visual Results Validation

To validate the authenticity of the Scene Essence, we

conduct two user-study experiments, where 112 users are

involved to evaluate the quality of the erased images. In the

first user-study experiment (UE1), we send each user 100

randomly selected image pairs, where one of them is the

ground-truth image and the other is its corresponding Scene

Essence, and ask the user whether or not these two images

belongs to the same scene category. As can be seen from

Tab. 4, the proposed method achieves 98.23% (same class)

on Places365, 98.74% on SUN397, and 97.59% on MIT67.

In the second user-study experiment (UE2), we send

each user 100 randomly selected Scene Essences with their

ground-truth category label, and ask the user whether the

Scene Essence belongs to the category or not. The proposed

method achieves 99.52% same class on Places365, 99.39%

on SUN397, and 99.15% on MIT67, as shown in Tab. 4.

It is interesting to note that the score is higher in the

second experiment when compared with the first one. This

can be explained that, in the first experiment, the attention

of users is driven to seek the visual difference between the

scene image and its corresponding Scene Essence. Such vi-

sual differences are explicitly taken into account and hence

influence the final decision. In the second experiment, how-

ever, the attention of users focuses on the entire image, and

is thus less affected.

The results of these two experiments show that our pro-

posed approach indeed achieves promising and stable per-

formances in terms of the visual quality.

5.5. Essence Validation

To validate that our Scene Essence maintains the mini-

mum set of objects to preserve its predicted scene category,

we conduct a subjective experiment as well as an objective

one. In the subjective experiment (EV1), we involve 112

users, and then send each user 100 randomly selected de-

fective Essence and their corresponding ground-truth cate-

gory. The defective Essence is generated by randomly eras-

ing one of the kept objects in our Scene Essence. Then we

ask each user whether or not the further-erased image be-

longs to the ground-truth scene category. The results are

shown in Tab. 5, in which we see the scores drop dramati-

cally when compared to ones of our Scene Essence.

In the objective experiment, we train a ResNet-18 net-

work [25] on Places365, and then use it as the classifier to

predict the category of the original scene images, our Scene

Essences, and the defective Essence. As can be seen from

Tab. 6, our Scene Essence achieves recognition accuracy

similar to the original images, while accuracy of defective
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Term Places365-EV1 SUN397-EV1 MIT67-EV1

Score 23.98 23.31 21.43

Std 0.122 0.127 0.114

Table 5: Score and standard deviation of the subjective essence

validation experiment.

Term Original Scene Scene Essence Defective Essence

Acc(%) 54.74 53.95 17.11

Table 6: Accuracy of a ResNet-18 classifier obtained using the

original scene, Scene Essence, and the defective Essence on

Places365.

Term Ours GSM [65] GBP [73] Original Scene

Acc (%) 53.95 32.65 34.04 54.74

Table 7: Scene recognition accuracy for Scene Essence obtained

by our approach, GSM, and GBP on Places365.

Essence reduces significantly.

The results from these two experiments show that our

Scene Essence truly maintains a minimum set of objects to

preserve its predicted scene category; in other words, the

kept objects in Scene Essence are indeed indispensable.

5.6. Visual Results Comparison

Since there is no existing method that aims to learn Scene

Essence, we modified two state-of-the-art discriminative re-

gion detection methods, the gradient saliency map (GSM)

[65] and the guided back-propagation (GBP) [73], and com-

pare their results with ours. Specifically, as shown in Fig. 7,

we assign the importance of each detected object based on

its area-averaged importance score produced by the compar-

ison methods. We then keep k objects with top importance

scores as Essential objects, in which k denotes the number

of Essential objects derived in our Scene Essence approach.

To compare our approach and the modified ones, we train

a ResNet-18 network on Places365, and then use it as the

classifier to predict the category of our Scene Essence and

those from the modified methods. As can be seen from

Tab. 7, our approach outperforms the other methods by a

large margin, demonstrating that our explicit object-level

reasoning yields a better performance in terms of interpret-

ing recognition rationale.

5.7. Visual Results and Ablation Study

Examples of the derived Scene Essence are shown in

Fig. 5, where the proposed method generates visually pleas-

ing results. In Fig. 6, we showcase several scene transfer

examples enabled by Scene Essence. Specifically, here we

use the second-top predicted category of the original scene

to be the training label in order to derive Scene Essence.

We conduct an ablation study to compare our GNN mod-

ule with a GAT network [74] on the scene recognition accu-

racy, to demonstrate its capability to partition scene objects

into Essential and Minor ones. As can be seen from Tab. 8,

our GNN model outperforms GAT on all datasets. This can

(a) (b) (c) (d) (e)

Figure 7: (a) shows the original office scene image, (b) shows

the saliency map obtained from GSM, (c) shows the ranked object

detections from the saliency map, (d) shows the Scene Essence

obtained from GSM method, and (e) shows our Scene Essence.

Term Places365 Acc(%) SUN397 Acc(%) MIT67 Acc(%)

Ours 55.21 68.31 83.92

GAT [74] 50.64 62.91 76.83

Table 8: Scene recognition accuracy of our GNN module and the

GAT network on Places365, SUN397 and MIT67.

Term Ours GAT Ours GAT

-full -full -full -without-S -without-S

Places365 55.21 50.64 43.84 40.66

SUN397 68.31 62.91 54.58 49.14

MIT67 83.92 76.83 60.37 54.77

Table 9: Results of our GNN and GAT under different setups. We

compare the recognition accuracies of the two networks trained

with full settings in our paper (Ours-full/GAT-full), and those

of the two trainings without spatial information (Ours-without-

S/GAT-without-S).

be in part explained by that, the GAT network lacks the sub-

graph level understanding (i.e. the hierarchical clustering).

We next conduct an experiment to study the impact of the

spatial information encoded in our GNN module. If we re-

move the bounding-box coordinates from the node features,

and hence reduce the feature dimension to 1024, the perfor-

mances of both our GNN and GAT decrease significantly

as shown in Fig. 9, indicating that the spatial coordinates of

objects play a crucial role.

6. Conclusion

In this paper, we introduced Scene Essence, a novel

scene signature that maintains a minimum set of objects

with pivotal roles in scene recognition. We also proposed

an innovative network to learn Scene Essence, in which a

GNN is trained to partition the scene objects into Essential

and Minor ones, and the latter are erased by an inpainter

so as to fool the scene discriminator. Subjective and ob-

jective experiments demonstrate that, Scene Essence indeed

captures key elements and hence is capable of interpreting

scene recognition at object level, which has been largely

overlooked by prior works. We also showcase that Scene

Essence offers an inexpensive way to realize scene transfer.
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