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Sapienza University of Rome

rodola@di.uniroma1.it

Abstract

Machine learning models are known to be vulnerable

to adversarial attacks, namely perturbations of the data

that lead to wrong predictions despite being imperceptible.

However, the existence of “universal” attacks (i.e., unique

perturbations that transfer across different data points) has

only been demonstrated for images to date. Part of the rea-

son lies in the lack of a common domain, for geometric data

such as graphs, meshes, and point clouds, where a univer-

sal perturbation can be defined. In this paper, we offer a

change in perspective and demonstrate the existence of uni-

versal attacks for geometric data (shapes). We introduce a

computational procedure that operates entirely in the spec-

tral domain, where the attacks take the form of small pertur-

bations to short eigenvalue sequences; the resulting geom-

etry is then synthesized via shape-from-spectrum recovery.

Our attacks are universal, in that they transfer across dif-

ferent shapes, different representations (meshes and point

clouds), and generalize to previously unseen data.

1. Introduction

As machine learning methods become more and more

pervasive, so their vulnerabilities are becoming more ex-

posed. In recent years, it has been extensively shown that

classifiers are susceptible to so-called adversarial attacks,

i.e., misclassifications induced by feeding carefully per-

turbed data (adversarial examples) into the trained model.

Adversarial examples can be crafted for image, graph, point

cloud, and mesh data, as demonstrated by a thriving stream

of research output across the computer vision, geometry

processing, and machine learning communities.

Remarkably, universal perturbations are also known to

exist for image data. For a given classifier C acting on im-

ages of size w × h, a universal perturbation P ∈ R
w×h is

such that C(I + P ) 6= C(I) for a large number of images
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Figure 1: Universal spectral attacks on 3D horses from the

SMAL dataset (only 3 out of 10 shapes are visualized). Top

row: Original shapes with their first ten Laplacian eigen-

values and the correct labels predicted by a state-of-the-art

classifier. The shapes undergo pose deformations, and have

different scale, orientation and location in 3D space. Middle

row: A universal perturbation is applied to the eigenvalues.

Bottom row: The resulting shape embeddings synthesized

from the perturbed spectra, which are now assigned wrong

labels by the classifier.

I; crucially, P is small under some norm ‖P‖ so that it is

hard to perceive, and is fixed for all such images. In other

words, P is image-agnostic to some extent. This definition

of universal perturbations is made possible by the fact that

the operation I + P can be invariably defined for all possi-

ble I and P , since all w × h images share the same grid of

2D coordinates. As soon as one shifts the focus from im-

ages to geometric data, the existence of a common space is

no longer guaranteed; each individual graph G is a differ-

ent domain in and by itself, and an operation of the form

“G + P ” can only be defined if G and P share the same

topology. Therefore, if universality is desired, one has to

define a way to transfer the perturbation P across different

graphs, while at the same time ensuring it induces misclas-
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sification in all cases.

In this paper, we introduce a new paradigm for universal

adversarial attacks on geometric data (specifically, meshes

and point clouds), in which the perturbation transfer is car-

ried out implicitly. We do so by identifying a common do-

main as the space of (truncated) Laplacian spectra. This

space is compact, since it only consists of short sequences

of eigenvalues; it is invariant to isometric deformations

(e.g., changes in pose); it only loosely depends on resolution

and connectivity of the source geometry; and it is easy and

efficient to compute for any given geometric object. Once

a universal perturbation is computed in this space, the in-

dividual adversarial examples are recovered via a synthesis

process that goes from eigenvalues to 3D coordinates.

2. Related work

Adversarial attacks were discovered in the seminal pa-

per by Szegedy et al. [46], and have since been extensively

explored in the image domain [16, 28, 51, 43, 23, 57, 19,

54, 5, 2, 28, 42, 35, 8, 25], natural language processing

[14, 6, 21], and reinforcement learning [15], to name just

a few. In this paper, we focus on universal attacks for ge-

ometric data, hence this section covers relevant prior work

addressing the two aspects.

Adversarial attacks on geometric data. Compared to the

image domain, the literature on adversarial attacks for ge-

ometric or topological data is less crowded, but is growing

at a steady pace. Attacks on graphs are relatively more ex-

plored due to their relevance in tasks of community detec-

tion [9], plausibility and link prediction [55, 45], and clas-

sification [12, 60] among others. These attacks operate by

modifying the graph topology, i.e., by adding, removing, or

rewiring edge connections (see the recent survey [52] for

an in-depth treatment). Our aim is different; instead of at-

tacking the discrete structure representing the 3D shape, for

example by changing its triangle connectivity, we seek for

attacks that modify the 3D point coordinates. This brings

us closer to attacking the underlying surface itself, indepen-

dently of its specific representation, which in turn endows

us with the ability to concoct attacks for both meshes and

point clouds within a unified framework.

The literature on adversarial attacks for irregular point

cloud data has also witnessed a recent growth. Works such

as [26, 49, 56, 17] define the adversarial perturbations as

small point shifts in 3D space, or as the addition of out-

lier points to the cloud to confuse the classifier. Since these

sparse displacements can lead to noticeable artifacts, addi-

tional regularization terms to promote smooth perturbations

were introduced in [48, 47], while in [58] the perturbation

is a global rigid isometry applied to the 3D point cloud.

Works targeting mesh data are more scarce. In [50], the

authors employ a differentiable renderer to define a percep-

tual loss, and generate attacks on photorealistic renderings

by perturbing the shape texture and geometry. More re-

cently, the work [30] introduced band-limited perturbations

for mesh and point cloud classifiers, resulting in perturba-

tions that are smooth by construction. Since we are also

interested in smooth perturbations, we include the smooth-

ness term of [30] into our construction as well.

None of the aforementioned methods provides a way to

seek for universal perturbations, i.e., each perturbation is

crafted for a given data sample independently of others, nor

can these methods be trivially extended to address the more

challenging, universal setting. We will clarify this statement

more formally in the sequel.

Universal adversarial attacks for image classifiers were

discovered by Moosavi-Dezfooli et al. [32], who introduced

an iterative algorithm to compute universal perturbations

over a set of input images. Since then, other approaches

have been proposed to find universal perturbations using

generative models [18, 37, 41], more efficient optimization

schemes [44], based on patches rather than individual pix-

els [4], or applied to other image-based tasks different from

classification [20, 33]; we refer to the recent survey [7] for

additional examples. On graph structured data, universal

attacks were recently considered in [53]; however, in their

setting, universality is meant across different signals de-

fined on a fixed graph, therefore their attacks do not transfer

among different graphs. To the best of our knowledge, to

date, no approaches have been proposed to address univer-

sal attacks for graphs or other geometric data such as point

clouds and meshes.

For the sake of clarity, we mention here the closely re-

lated notion of transferability of attacks across different

architectures, see [27, 34] for examples with image-based

classifiers, and [17] for point clouds. This is different than

universality, which is instead meant across data samples

(the scope of this paper), rather than across learning models.

2.1. Contribution

Our main contributions can be summarized as follows:

• We demonstrate, for the first time, the existence of uni-

versal adversarial perturbations for non-rigid 3D geo-

metric data;

• We introduce a computational procedure for finding

such perturbations, which operates in the spectral do-

main, and follows an analysis–synthesis paradigm;

• We show that our attacks are universal in two ways: (i)

across different shapes, and (ii) across different repre-

sentations, such as meshes and point clouds;

• We show the generalization property of our attacks to

previously unseen data.
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3. Universal spectral perturbations

Following prior work on universal attacks, our frame-

work assumes white-box access to a given classifier, since

we backpropagate the error through its parameters (which

are held fixed throughout the entire optimization). Further,

we focus on untargeted attacks; namely, we do not specify

a target class for the misclassification, but only require the

classifier to change its prediction.

3.1. Problem setting & motivation

Given a pre-trained classifier C and a set of objects {Xi},

our objective is to find a perturbation P such that:

1. C(Xi + P ) 6= C(Xi) for most i and for a proper defi-

nition of the ‘+’ operation (universality);

2. P is small in some sense, since it must remain unno-

ticed (noticeability).

The goals set above generalize those found in [32] to a

broader setting. If the objects {Xi} are plain images of

fixed size as in [32], then the sum operation is well defined

pixel-wise, since both P and the image set {Xi} belong to

the same vector space. However, if each Xi is an instance

of non-flat structured data, one faces a number of issues.

Assume for simplicity that each Xi ∈ R
n×3 is a 3D

point cloud with n points. Following previous adversarial

schemes for point clouds [26, 49, 56, 17, 48, 47], a pertur-

bation P ∈ R
n×3 can be defined as a displacement field

such that Xi + P is a slight modification of the point po-

sitions of Xi in 3D space. However, such a P can not be

optimized to be universal, since it can not be directly added

to a different shape Xj with j 6= i. First, the sum Xj + P

only makes sense if Xi and Xj have the same point order-

ing, or equivalently, if a dense point-to-point map is avail-

able between them. Second, even if a map is available, this

type of attack can not be deformation-invariant: since a per-

vertex perturbation is extrinsic by definition, it depends on

the specific 3D coordinates to which it is applied (see Fig-

ure 2). Therefore, a successful per-vertex attack on mesh

Xi will not remain successful if Xi is rotated or isometri-

cally deformed, even if these transformations preserve the

mesh topology.

3.2. Our approach

The main issue of the aforementioned approach is that

it models perturbations as extrinsic quantities, i.e., which

depend on the specific way in which the 3D objects are em-

bedded into the ambient Euclidean space.

To address this issue, we propose to shift to an intrinsic

representation. Let us be given a set of shapes S = {Xi}.

For each shape Xi ∈ S we define its spectral representation

of length k as the sequence:

σ(Xi) = (λi
1, λ

i
2, . . . , λ

i
k) , (1)

Figure 2: An extrinsic perturbation can not be universal and

transformation-invariant at the same time. Even if a map

is available for each pair of shapes, using it to estimate the

right transformation for the perturbation is possible in the

rigid case, but much harder in the general non-rigid case,

and not guaranteed to lead to misclassification in both cases.

where the λ’s are the first k eigenvalues of the Laplace-

Beltrami operator of Xi, ordered increasingly. The Lapla-

cian eigenvalues capture geometric information of the shape

and can be computed easily; importantly, they do not de-

pend on how the shape is embedded in 3D, but they are an

intrinsic quantity that is invariant to non-rigid isometries.

Objective 1: Universality. We define our universal per-

turbation ρ to be a local solution to the following nonlinear

optimization problem:

min
ρ∈R

k

Pi

∑

Xi∈S

‖σ(Xi)(1 + ρ)− σ(Pi(Xi))‖
2
2 (2)

s.t. C(Pi(Xi)) 6= C(Xi) ∀Xi ∈ S (3)

Note that ρ ∈ R
k is universal and is an element-wise

multiplicative perturbation in the spectral domain, while

Pi(Xi) are shape-specific extrinsic perturbations for each

shape. The constraints of Eq. (3) ensure that all the shapes

in the optimization are misclassified. The spectral perturba-

tion is multiplicative, rather than additive, so that it does not

depend on the absolute scale of the eigenvalues.

To get a better grasp of what the energy of Eq. (2) en-

forces, we illustrate its action via the following commuta-

tive diagram:

Xi (λi)

X̃i (λ̃i)

σ

Pi ρ

σ

The diagram expresses the fact that perturbing the eigen-

values of a given shape Xi (upper path) is equivalent to

first perturbing the shape embedding itself, and then com-

puting its eigenvalues (lower path). This is known to be

true for small perturbations; a classical result of Bando and

Urakawa [3] states that Laplacian eigenvalues change con-

tinuously with the surface metric, meaning that a small per-

turbation of the spectrum corresponds to a small perturba-

tion of the geometry.

Both the spectral perturbation ρ and the spatial perturba-

tions Pi(Xi) are unknown and must be solved for; however,
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the former is shape-agnostic and fixed for all i, while the

latter is shape-dependent. We seek for the set of extrinsic

modifications to the geometries in S , that simultaneously

give rise to the same change in the eigenvalues.

Remark. The optimal ρ∗ minimizing Eq. (2)-(3) is a well-

defined universal perturbation, since it applies to all shapes

in the optimization set S . In particular, one can discard the

shape-dependent Pi’s, and verify misclassification for all

Xi ∈ S by decoding σ(Xi)(1+ ρ∗) to a 3D shape (we give

an algorithm in Sec. 3.4).

The remark above supports our main claim on the ex-

istence of universal adversarial perturbations for non-rigid

3D geometric data. Furthermore, as we empirically show

in our experiments, the universal spectral perturbations ρ∗

also exhibit generalization outside of the optimization set in

several cases.

Objective 2: Noticeability. We model the per-shape per-

turbation Pi(Xi) as an extrinsic displacement Xi + Pi.

Adversarial attacks on images explicitly impose an upper

bound ‖Pi‖ < ǫ (see, e.g., [32]) to ensure imperceptible

perturbations. Here we appeal instead to the theoretical re-

sult, also mentioned previously, that small changes in the

geometry correspond to small changes in the eigenvalues

[3]. This expectation is encoded in our energy of Eq. (2).

Therefore, by minimizing this energy, we are also implic-

itly bounding the perturbation strength.

Further, we follow the smoothness principle of [30, 47,

48], which aims to ensure that each Pi is as smooth as pos-

sible. This corresponds to imposing a bound on the gradi-

ent norm ‖∇Pi‖, preventing jittered perturbations. In par-

ticular, we adopt subspace parametrization [30] due to its

simplicity. Each Pi is expressed as a linear combination of

smooth vector fields:

Pi(Xi) = Xi +Φiαi , (4)

where Φi is a n × b matrix whose columns are the first b

Laplacian eigenfunctions of Xi (with b ≪ n, where n is

the total number of vertices), and αi is a b × 3 matrix of

expansion coefficients. For smaller values of b, one gets a

smoother deformation field. This band-limited representa-

tion of the displacement only requires solving for 3b ≪ 3n
coefficients per shape; furthermore, it ensures smoothness

(bounded gradient) as Laplacian eigenfunctions are optimal

for representing smooth functions (see [1, Th. 3.1]).

The complete optimization problem reads:

min
ρ∈R

k

{αi}i

∑

Xi∈S

‖σ(Xi)(1 + ρ)− σ(Xi +Φiαi)‖
2
2 (5)

s.t. C(Xi +Φiαi) 6= C(Xi) ∀Xi ∈ S (6)

which involves in total k optimization variables for the

spectral perturbation ρ, and 3b · |S| variables for the spa-

tial perturbation coefficients αi; in our tests, we typically

use b = 20 and k = 3b. These numbers do not depend on

the number of points of the shapes Xi, hence we can afford

optimizing over shapes with varying resolutions.

3.3. Properties of spectral perturbations

Before moving on to the algorithmic details, we list here

a few important properties of our formulation. The key idea

behind this approach lies in the realization that the space

of eigenvalues can serve as a convenient common domain,

where different geometric data can be easily represented.

The spectral domain carries important invariances that are

directly inherited by our perturbations:

• We do not need an input correspondence between the

shapes, nor do we have to solve for one. This also goes

beyond adversarial perturbation methods for images,

where one exploits the correspondence given “for free”

by the canonical ordering of the pixel grid;

• Since Laplacian eigenvalues are robust against varying

point density and resolution, our optimization does not

require the shapes to have the same number of points

or same resolution;

• Since Laplacian eigenvalues can be computed both for

meshes and point clouds, spectral perturbations do not

require a special treatment depending on the geometry

representation.

Laplacian spectra are isometry-invariant, hence their per-

turbation is expected to have similar effects on isometric

shapes. Similarly, since we use multiplicative perturbations,

we are also invariant to scale changes of the eigenvalues,

and in turn, to scale changes of the 3D shapes. We empiri-

cally confirm these properties in the experimental section.

3.4. Algorithm

We follow the general approach of Carlini and Wag-

ner [5] to minimize problem (5), and pass to the uncon-

strained minimization:

min
ρ∈R

k

{αi}i

∑

Xi∈S

‖σ(Xi)(1+ρ)−σ(Xi+Φiαi)‖
2
2+cA(Xi, αi) (7)

where A is an adversarial penalty relaxing the constraints

of Eq. (6), and defined as follows:

A(Xi, αi) = (8)

µ(Z(Xi, αi)C(Xi)−max{Z(Xi, αi)j : j 6= C(Xi)})

Here Z(Xi, αi) is the unnormalized log-probability vec-

tor predicted by classifier C for the shape (Xi +Φiαi), and
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µ(x) = max(x,−m) is a function sending the penalty to

zero once a given misclassification margin m is hit. The

contribution of the adversarial penalty to the minimization

problem is weighted by the trade-off parameter c.

Solving this unconstrained problem does not guarantee

that all the shapes are misclassified and, in general, such a

perturbation is not guaranteed to always exist. Nevertheless,

in practice the optimized perturbation leads to misclassifica-

tion for most of the shapes, as we show in our experiments.

Optimization. For each shape Xi, we discretize its

Laplace-Beltrami operator as a positive semi-definite ma-

trix using the classical cotangent scheme [36], whose eigen-

values and eigenfunctions can be computed with standard

sparse eigensolvers. The optimization variables of Eq. (7)

are optimized for with the Adam optimizer [24], which is

robust to local minima. This involves computing the quan-

tities σ(Xi + Φiαi) at each iteration, i.e., the eigenvalues

of the deformed shapes, as well as their derivatives with re-

spect to the deformation coefficients αi. For the eigenvalue

derivatives, we use the closed form expressions of Mag-

nus [29]. Each iteration takes approximately 1s on an i7

9700k CPU (dominated by eigenvalue decomposition); for

an average number of 500 iterations per optimization, the

average runtime to find a universal perturbation on a set of

15 shapes is ∼1h.

Generalization to new samples. Once a spectral pertur-

bation ρ is estimated for a small set of shapes, it can be

applied to new shapes and still fool the classifier. This was

also observed for the image-based universal attacks of [32].

However, in the image domain, applying a universal per-

turbation to a new data sample is a simple addition of two

images. In our case, the perturbation is not additive in the

spatial domain, but multiplicative in the spectral domain.

Given ρ and a new shape Y , we follow the paradigm:

Y 7→ (λi)
k
i=1 7→ (λi + λiρi)

k
i=1 7→ Ỹ , (9)

The first two steps are straightforward and can be easily

computed. The last step requires resynthesizing the ge-

ometry from the perturbed spectrum – an inverse problem

known in mathematical physics as ‘hearing the shape of

the drum’ [22], and recently tackled by ‘isospectralization’

techniques in [11, 31].

To address this, we simply run the optimization of Eq. (7)

without the adversarial term and with fixed ρ, which is now

given. This way, we optimize only for the coefficients α,

which define a smooth transformation for the geometry of

Y . Optimizing over smooth geometric perturbations has a

regularization effect as it greatly reduces the space of pos-

sible embeddings, making this ‘isospectralization’ problem

easier to solve than in [11, 31]; in these works, a solution is

sought from scratch over all possible point configurations in

Original Perturbed [11] Ours

λ λ+ ρλ ρ

0

−0.02

+0.02

0

0.2

Figure 3: For a source shape X ∈ S with spectrum λ (left),

we compute a perturbation ρ by optimizing Eq. (7) over

S , and obtain the Perturbed shape (second from the left,

observe the foreleg movement). If we now discard the

Perturbed embedding and try to recover it using [11] with

λ + ρλ as a target, we get a wrong solution (third from the

left) which aligns correctly the eigenvalues, but fails to re-

cover the correct deformation. Our approach based on op-

timizing for a smooth deformation recovers the Perturbed

shape almost exactly (rightmost).

3D, making the optimization much harder and prone to poor

reconstructions, as shown with a comparison in Figure 3.

4. Experimental evaluation

In this section we report quantitative results and show

qualitative examples of universal spectral perturbations,

demonstrating their efficacy and empirically confirming

their main properties.

Datasets. We tested with two recent and extensive datasets

of non-rigid 3D shapes: the SMAL dataset of 3D ani-

mals [59], and the CoMA dataset of human face expres-

sions [39]. The former is composed by 600 meshes of 5

animal species in different poses, generated via a paramet-

ric model. For fair comparisons, we used the same shapes

and experimental setup proposed in [30], using 480 shapes

for training the classifiers, and the remaining 120 for test.

The classification task assigns each shape to a specific ani-

mal category. CoMA is a 4D dataset containing sequences

of 3D shapes of 13 different people performing 13 different

facial expressions. We used the same train/test split pro-

posed in [40] to train the classifiers, where the task is to

classify on subject identity.

Classifiers. We perform our attacks on two different state-

of-the-art classifiers for 3D shapes:

1. A convolutional mesh classifier with the architecture

of [39], where the convolution is based on fast Cheby-

shev filters [13]. This learning model is powerful, but

needs consistent meshing and correspondence at train-

ing time. We refer to this classifier as ChebyNet;

2. A PointNet based classifier [38]. This architecture is

more general, as it is able to handle unorganized point

clouds, possibly with different numbers of points. We

refer to this classifier as PointNet.
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Figure 4: Sensitivity to parameters (SMAL dataset, Point-

Net classifier). We evaluate each quantitative measure at in-

creasing values of b = (15, 20, 30) and number of eigenval-

ues k = (45, 60, 90). Large numbers for curvature distor-

tion imply more noticeable perturbations. From the success

rate we observe a trend: the spectral bandwidth k should not

be too large, and the deformation not too smooth. However,

lack of smoothness also leads to larger noticeability.

Both classifiers are trained to classify the subject identity

for CoMA data, and the animal species for SMAL data,

irrespective of pose. During the training phase, we aug-

mented each dataset by randomly rotating and translating

the shapes, and jittering the vertex positions.

4.1. Sensitivity to parameters

We expose two parameters: the spectral bandwidth k,

that is the number of eigenvalues that undergo the spectral

perturbation, and the spatial bandwidth b, that is the number

of eigenfunctions to represent the spatial perturbation. Both

affect the noticeability and success rate of the attack.

A small value for b leads to smoother and less noticeable

perturbations, but makes it harder to find universal ones. On

the other hand, large values allow for stronger deformations,

but which are also more universal. This is typical of uni-

ID 4

ID 2 ID 2 ID 2 ID 2 ID 2

0

720

Figure 5: Examples of a universal adversarial attack on

ChebyNet from a class of the CoMA dataset. Top to bot-

tom: original shapes, barplot with their spectra in blue and

their perturbation ρ in red (ρ is scaled by a factor 104 for

visualization purposes), deformed shapes.

Table 1: Comparison between our method and non-

universal approaches. We observe that a slight drop in accu-

racy and an increase of the deformation strength is needed,

in order to gain a universal encoding of the attacks.

SMAL success rate curv. dist. L2-norm

SHAPE-DEPENDENT

[30] (ChebyNet) 100% 2.51 3.6e-2

ChebyNet 100% 2.91 7.7e-2

UNIVERSAL

ChebyNet 100% 2.49 9.0e-2

PointNet 93.3% 1.31 5.9e-2

CoMA success rate curv. dist. L2-norm

SHAPE-DEPENDENT

[30] (ChebyNet) 94.3% 3.30 8.5e-3

ChebyNet 91.7% 1.61 1.7e-3

UNIVERSAL

ChebyNet 91.7% 2.30 2.8e-3

PointNet 100% 5.71 6.9e-3

versal perturbations, which have been observed to be more

noticeable than per-instance perturbations also in the image

domain [32]. Parameter k expresses the degree of univer-

sality that we require from the attack, since each of the k

dimensions of ρ encodes a constraint for the perturbation.

A small k leads to more global deformations, leaving the

attack free to apply local shape-dependent corrections. In-

creasing k makes it harder to obtain a successful universal

attack, since a longer perturbation vector ρ imposes more

geometric constraints on the attack.

We performed a systematic study of b and k, quantify-

ing noticeability through two deformation measures: cur-

vature distortion, defined as the average absolute difference

between the mean curvature at corresponding vertices in the

original and perturbed shape; and L2-norm, defined as the

average Euclidean distance between corresponding vertices

in the original and perturbed shape. The success rate is the

percentage of attacks that give rise to misclassification.

Quantitative results are reported in Figure 4, revealing

a trade-off between the amount of curvature distortion and

the success rate. On the contrary, the L2-norm decreases

with b; this is consistent with what was shown in [30], since

smoother deformations force the attack to move a bigger

proportion of the shape, as the classifier can not be fooled

with small local perturbations. Based on this, we claim that

L2-norm is probably not a good metric for capturing notice-

ability on deformable shapes, since localized deformations

are usually more disturbing to the human observer. For all

our experiments, we use b = 20 and k = 60 as a good trade-

off between noticeability and success rate; in our plots, we

only show k = 10 eigenvalues for visualization purposes.

4.2. Universality

We optimize problem (7) over 15 random shapes of the

same class from the test set, obtaining a set of spatial coef-

3221



cow cow cow

big catbig catbig cat

0

−28

+28

0

−28

+28

0

−28

+28

0

0.2

big cat big cat big cat

hippohorsehorse

0

−44

+44

0

−44

+44

0

−44

+44

Figure 6: Examples of universal adversarial attacks on

PointNet from 2 classes of the SMAL dataset (top: cows,

bottom: big cats). The heatmap encodes curvature distor-

tion, growing from white to dark red. Even if the original

shapes are not isometric, as can be noted also from their

spectra (blue bars), a universal spectral perturbation ρ (red

bars, scaled by a factor 103) leads to misclassification.

ficients αi for each shape Xi, and a universal perturbation ρ

common to all the shapes. We use the same optimization pa-

rameters for all the datasets and classifiers, with c = 5e− 2.

In Table 1 we evaluate the quality of our adversarial at-

tacks in terms of success rate and deformation strength. As

we can see, the strength of the attack is inversely propor-

tional to the success rate, further confirming the conclusions

drawn in our sensitivity analysis. Table 1 also includes re-

sults obtained with our method without optimizing for the

universal perturbation ρ in Eq. (7), i.e., we optimize for the

coefficients αi independently for each shape. As expected,

this leads to a slight increase of the success rate and a less

noticeable deformation. For completeness, we also report

results from the state-of-the-art method [30], which uses a

geometric regularizer to bound the distortion. Several qual-

itative examples are shown in Figures 5, 6 and 8.

4.3. Generalization

As described in Section 3.4, once we optimize for

a universal perturbation ρ on a set of shapes, this can

be used to transfer the deformation to a new shape.

attack generalization generalization

horsehorse

horsecowcow

cow

0

−28

+28

0

−32

+32

0

−32

+32

Figure 7: Generalization results on two different classes

from SMAL. Left: the spectral perturbation ρ estimated for

a set of 15 horses (1 shown in the first column) is applied

to an unseen shape of the same class (second column) as

described in the text. The resulting deformed shape (second

column, bottom shape) is incorrectly classified. Right: an-

other example from a different class. In the bar plots ρ (red)

is scaled by a factor 103.

We do this by smoothly deforming the new shape as

to make its spectrum match the target perturbation ρ.
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In the inset figure, we show

that minimizing only the

spectral term in Eq. (7) in-

duces by itself a minimization

of the adversarial penalty,

bringing in turn the classifier

to a wrong prediction. This suggests that the spectral energy

is a strong prior for finding adversarial perturbations.

We performed a quantitative evaluation of the general-

ization capability on the CoMA dataset, obtaining success-

ful adversarial attacks on unseen shapes on 80.8% of the

cases for the PointNet classifier, and 49.2% with ChebyNet.

Finally, in Figures 7 and 8 we show some qualitative exam-

ples on both the CoMA and SMAL datasets, showing how

we are able to produce a similar deformation on new sam-

ples without requiring any correspondence.

4.4. Meshes and point clouds

One of the main advantages of working in a spectral

domain is that it is agnostic to the surface representation,

as long as a good approximation of the Laplacian opera-

tor can be computed on it. This property allows us to han-

dle seamlessly shapes with different tessellation, resolution,

and even surfaces represented by unorganized point clouds.

In fact, the only limitation is posed by the classifier under

attack, which might be representation-specific.

Triangle meshes. To prove the robustness of our attack

to different tessellations, we independently remeshed each

shape of the SMAL dataset to random number of vertices

3222



Universal attack on ID 10 Generalization on ID 10

ID 2 ID 2 ID 3 ID 3 ID 2 ID 3 ID 3 ID 2 ID 3

ρ

0

−0.01

+0.01

0

720

Figure 8: On the left, examples of a universal adversarial attack on 15 shapes (only 5 shown) classified with PointNet. The

resulting universal spectral perturbation (middle) is used to generalize the attack to 4 new shapes of the same subject (right).

within 30% to 50% of the original ones. We then used

these shapes to perform a universal adversarial attack on the

PointNet classifier. Not surprisingly, we noted an increase

of performance for the adversarial attack, obtaining up to

94% of success rate with an average curvature distortion of

0.80. This improvement is explainable by the reduced num-

ber of points given as input to PointNet for classification,

making the adversarial attack easier to perform. Qualitative

examples are shown in Figure 9.

Point clouds. In Figure 10 we show a qualitative exam-

ple of generalization to point clouds. We optimized for a

universal perturbation to the PointNet classifier, using 15

meshes from the CoMA test set. We then applied our gen-

eralization procedure to a point cloud derived from a new

pose of the same subject. To estimate a Laplace operator

for the point cloud, we used the method described in [10].
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−44
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Figure 9: Results on remeshed shapes from SMAL. The

first column shows the result of the universal attack on the

hippo category, while the remaining two are on the bigcat

category. Both are conducted on a set of 15 shapes.

5. Conclusion

We introduced a method to compute universal adversar-

ial perturbations on 3D geometric data. The key idea lies

in the adoption of the Laplacian spectrum as an intermedi-

ate shared domain for multiple shapes, where perturbations

can be computed and then resynthesized into the geometry

via shape-from-spectrum recovery. Operating with eigen-

values endows our attacks with robustness to deformation,

sampling, and shape representation, leading in turn to gen-

eralization outside of the optimization set. Currently, the

main limitation of this approach is its limited applicability

to shapes belonging to very different classes; for example,

we were not able to find successful universal perturbations

for faces and animals simultaneously. This is due to the fact

that different classes may have very different spectra; look-

ing for an alternative, perhaps learned, representation might

be a potential solution to explore in the future.
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Emanuele Rodolà. Generating adversarial surfaces via

band-limited perturbations. Computer Graphics Forum,

39(5):253–264, 2020.

[31] Riccardo Marin, Arianna Rampini, Umberto Castellani,

Emanuele Rodolà, Maks Ovsjanikov, and Simone Melzi. In-

stant recovery of shape from spectrum via latent space con-

nections. In International Conference on 3D Vision (3DV),

2020.

[32] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, and Pascal Frossard. Universal adversarial perturba-

tions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1765–1773, 2017.

[33] Konda Reddy Mopuri, Aditya Ganeshan, and R Venkatesh

Babu. Generalizable data-free objective for crafting uni-

versal adversarial perturbations. IEEE transactions on pat-

tern analysis and machine intelligence, 41(10):2452–2465,

2018.

[34] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow.

Transferability in machine learning: from phenomena to

black-box attacks using adversarial samples. arXiv preprint

arXiv:1605.07277, 2016.

[35] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Prac-

tical black-box attacks against machine learning. In Proceed-

ings of the 2017 ACM on Asia Conference on Computer and

Communications Security, ASIA CCS ’17, pages 506–519,

New York, NY, USA, 2017. ACM.

[36] Ulrich Pinkall and Konrad Polthier. Computing discrete min-

imal surfaces and their conjugates. Experimental mathemat-

ics, 2(1):15–36, 1993.

[37] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Be-

longie. Generative adversarial perturbations. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4422–4431, 2018.

[38] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017.

[39] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D faces using convolutional

mesh autoencoders. In European Conference on Computer

Vision (ECCV), 2018.

[40] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D faces using convolutional

mesh autoencoders. In European Conference on Computer

Vision (ECCV), volume Lecture Notes in Computer Science,

vol 11207, pages 725–741. Springer, Cham, Sept. 2018.

[41] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R

Venkatesh Babu. Nag: Network for adversary generation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 742–751, 2018.
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